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Abstract

A finite group G is said to be a non-DCI group if there exist subsets S1

and S2 of G, such that the associated Cayley digraphs C−→ay(G;S1) and
C−→ay(G;S2) are isomorphic, but no automorphism of G carries S1 to S2.
Furthermore, G is said to be a non-CI group if the subsets S1 and S2

can be chosen to be closed under inverses, so we have undirected Cayley
graphs Cay(G;S1) and Cay(G;S2).

We show that if p is a prime number, and the elementary abelian p-
group (Zp)

r is a non-DCI group, then (Zp)
r+3 is a non-CI group. In most

cases, we can also show that (Zp)
r+2 is a non-CI group. In particular,

from Pablo Spiga’s proof that (Z3)
8 is a non-DCI group, we conclude that

(Z3)
10 is a non-CI group. This is the first example of a non-CI elementary

abelian 3-group.

1 Preliminaries

We state some basic definitions, in order to establish our conventions.

Definition 1.1 (cf. [7, pp. 302 and 307]). Let G be a finite group.

1. For any subset S of G, the Cayley digraph C−→ay(G;S) is the directed graph with
vertex set G, and with a directed edge g → h if and only if h ∈ Sg.

2. If S is symmetric (i.e., if S = S−1), then C−→ay(G;S) can be viewed as an
undirected graph, by replacing each pair of oppositely directed edges (x → y
and y → x) with an undirected edge (x — y), and replacing each directed loop
(x → x) with an undirected loop (x — x). This undirected graph is called a
Cayley graph, and is denoted Cay(G;S).

3. We often refer to S as the connection set of C−→ay(G;S) or Cay(G;S).

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



D. WITTE MORRIS AND J. MORRIS /AUSTRALAS. J. COMBIN. 90 (1) (2024), 46–59 47

4. A Cayley graph Cay(G;S) is said to be a CI graph if, for every symmetric
subset S ′ of G, such that Cay(G;S) ∼= Cay(G;S ′), there is an automorphism α
of G, such that α(S) = S ′.

5. Similarly, a Cayley digraph C−→ay(G;S) is said to be a DCI digraph if, for every
subset S ′ of G, such that C−→ay(G;S) ∼= C−→ay(G;S ′), there is an automorphism α
of G, such that α(S) = S ′.

6. G is a CI group if every Cayley graph of G is a CI graph, and

7. G is a DCI group if every Cayley digraph of G is a DCI digraph.

Thus, the difference between “CI” and “DCI” is whether only undirected graphs are
considered (so the generating set S is required to be symmetric), or all digraphs are
allowed (so S can be any subset of G).

Remark 1.2. The terminology in (6) and (7) is not entirely standard: some authors
use “CI” for the concept that we call “DCI,” and may use a phrase such as “CI with
respect to undirected graphs” for the concept that we call “CI.” The letters “CI” are
an abbreviation of “Cayley Isomorphism” [7, §3].

2 Introduction

Most finite groups are not CI groups. In particular, it is known that every CI group
has a subgroup of index at most 24 that is a direct product of elementary abelian
groups [8, Thm. 1.2]. (Recall that a group is elementary abelian if it is isomorphic to
(Zp)

r, for some prime number p, and some r ≥ 0.) However, it is not known which
groups with this property are indeed CI groups. (See the survey [7].) Therefore, a
fundamental problem in the theory of CI groups is to determine which elementary
abelian groups are CI groups. Since every subgroup of a CI group is a CI group [2,
Lem. 3.2], it suffices to determine, for each prime p, the smallest natural number r,
such that (Zp)

r is not a CI group. This number is 6 for p = 2 [3, 13], and it is known
that the number is at least 6 for all p [6], but the exact value is unknown for every
p > 2.

To provide an upper bound, Somlai [15, Thm. 2] showed in 2011 that if p > 3,
then the elementary abelian group of order p2p+3 is not a CI group. However, Somlai
[15, p. 324] also pointed out that the case p = 3 remained open: it was not known
whether there is an elementary abelian 3-group that is not a CI group, even though
Spiga [17, Thm. 2] had proved two years earlier that the elementary abelian group
of order 38 is not a DCI group (see Theorem 2.3), and larger examples of non-DCI
elementary abelian 3-groups had been constructed previously [11, 16]. To fill this
gap in the literature, we show that every example of a non-DCI elementary abelian
p-group will automatically yield an example of a (slightly larger) non-CI elementary
abelian p-group (for the same prime p), even if p = 3:

Theorem 2.1. If (Zp)
r is not a DCI group (and p is prime), then (Zp)

r+3 is not a

CI group.
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{v1, v3, v4, v5}

{w1 + av1 + bv2 + cv5 : a, b, c ∈ Z3}

{w2 + av1 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}

{w3 + av2 + bv3 + cv4 + dv5 : a, b, c, d ∈ Z3}

{w1 + w2 + av1 + bv2 + cv3 + bv4 + dv5 : a, b, c, d ∈ Z3}

{w1 + w3 + av1 + bv2 + av3 + cv4 + dv5 : a, b, c, d ∈ Z3}

{w2 + w3 + av1 + bv2 + cv3 + dv4 − (a+ b)v5 : a, b, c, d ∈ Z3}

{w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 + (−a− b+ c+ d)v5 : a, b, c, d ∈ Z3}

{2w1 + w2 + w3 + av1 + bv2 + cv3 + dv4 − (a+ b+ c+ d)v5 : a, b, c, d ∈ Z3}

{w1 + 2w2 + w3 + av1 + bv2 + cv3 + dv4 + (a+ b− c+ d)v5 : a, b, c, d ∈ Z3}

{w1 + w2 + 2w3 + av1 + bv2 + cv3 + dv4 + (a+ b+ c− d)v5 : a, b, c, d ∈ Z3}

Table 1: Eleven sets whose union is the connection set for Spiga’s non-DCI
Cayley digraph of (Z3)

8.

Moreover, the following result shows that we can usually decrease the exponent
in our answer by 1. (In fact, it will be explained in Remark 2.5(2) that the exponent
r + 2 will always suffice, but this improvement relies on a theorem that was proved
after the original version of this paper was written.)

Theorem 2.2. Assume (Zp)
r is not a DCI group (and p is prime). If either of the

following is true, then (Zp)
r+2 is not a CI group:

1. p 6= 3, or

2. there is a non-DCI Cayley digraph C−→ay
(
(Zp)

r;S
)
, such that |S| < pr−1.

For the reader’s convenience, we recall the detailed statement of the following
important example (that was mentioned above).

Theorem 2.3 (Spiga [17, proof of Thm. 2]). Let

{w1, w2, w3, v1, v2, v3, v4, v5}

be a generating set of (Z3)
8, and let S be the union of the eleven sets that are defined

in Table 1. Then C−→ay
(
(Z3)

8;S
)
is a non-DCI digraph.

We see from Table 1 that the outvalency of this Cayley digraph (i.e., the cardi-
nality of the connection set S) is 4 + 33 + 9 · 34 = 760. Since 760 < 37 (= 2187), we
immediately deduce the following from Theorem 2.2(2). It is the first example of a
non-CI elementary abelian 3-group.

Corollary 2.4. (Z3)
10 is not a CI group.
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Remarks 2.5.

1. By modifying Spiga’s example, the second author [9] has shown that (Z3)
8 is

not a CI group. Therefore, Corollary 2.4 may be of limited interest. However,
the argument in [9] is longer (and more intricate) than the proofs here (and
that paper was completed after this one). (Part of the reason our proof of
Corollary 2.4 is short is that we assume it is known that Spiga’s example is not
a DCI digraph, but [9] also makes this assumption.)

2. If we assume the above-mentioned fact that (Z3)
8 is not a CI group, then the

conclusion of Theorem 2.2 is true even without assuming (1) or (2):

if (Zp)
r is not a DCI group, then (Zp)

r+2 is not a CI group.

To see this, note that we may assume p = 3 (for otherwise Theorem 2.2(1)
applies). However, Spiga [17, Thm. 1] showed that (Z3)

5 is a DCI group, so we
must have r ≥ 6. Then r + 2 ≥ 8. If we assume that (Z3)

8 is not a CI group,
then this implies (Zp)

r+2 is not a CI group, as desired. Note that part (2) of
Theorem 2.2 was not used in this argument. In fact, knowing that (Z3)

8 is not
a CI group makes this part of the theorem superfluous.

3. Theorem 2.2(1) may have a better chance of being useful in the future. For
example, if it is ever proved that there is a constant C, such that, for every
prime p, the elementary abelian group of order pC is not a DCI group, then it
will immediately follow that there is a constant C ′, such that the elementary
abelian group of order pC

′

is not a CI group.

4. Every Cayley graph is a Cayley digraph, so (as is well known) it is clear that
every DCI group is a CI group. The reverse is not true. Indeed, the paper [4]
provides infinitely many examples of CI groups that are not DCI groups. How-
ever, it is not known whether the two properties are equivalent for elementary
abelian groups. In some sense, Theorem 2.1 shows, for this class of groups, that
the two properties are closely related (even if they are not exactly the same).

5. The CI property is a Cayley Isomorphism property for graphs, and the DCI
property is a Cayley Isomorphism property for digraphs, so comparing CI with
DCI is a comparison of the Cayley Isomorphism property for two different
relational structures (symmetric binary relations vs. arbitrary binary relations).
It is also interesting to consider other relational structures. In particular:

(a) Pálfy [14] showed that the cyclic group Zn has the Cayley Isomorphism
property for all relational structures if and only if either n = 4 or
gcd

(
n, φ(n)

)
= 1 (where φ is the the Euler totient function).

(b) For relational structures with a cyclic, transitive group of automorphisms,
Muzychuk [10] reduced the isomorphism problem to the case where the
number of points is a power of a prime number.

(c) Dobson and Spiga [5] (and others) have studied the Cayley Isomorphism
problem for ternary relations.
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(d) Muzychuk and Somlai [12] studied the Cayley Isomorphism property for
Cayley maps. Every Cayley map has an associated ternary relational
structure, so this is related to (c).

Our construction of a non-CI Cayley graph Cay(Ĝ; Ŝ) from a non-DCI Cayley
digraph C−→ay(G;S) is in Notation 3.3. It is a fairly straightforward adaptation of the

well-known observation that if X̃ is the bipartite double cover of a digraph
−→
X , i.e.,

if:

• V (X̃) = V (
−→
X )× {0, 1}, and

• (x, 0) is adjacent to (y, 1) in X̃ ⇐⇒ there is a directed edge from x to y in
−→
X ,

and we define a permutation π̃ of V (X̃) by π̃(x, i) =
(
π(x), i

)
, where π is a permu-

tation of V (
−→
X ), then

π̃ is an automorphism of the graph X̃

⇐⇒ π is an automorphism of the directed graph
−→
X.

3 Proofs of the main results

In this section, we prove Theorem 3.2, which easily implies the main results that
were stated in the Introduction (i.e., Theorems 2.1 and 2.2). Although elementary
abelian groups are our primary interest, the result is stated more generally, because
assuming that the group G is (elementary) abelian would not simplify the argument
to any significant extent.

Notation 3.1. If
−→
X is a digraph, then

−→
X− is the digraph that is obtained from

−→
X

by reversing all of its directed edges.

Theorem 3.2. Assume

• G is a finite group,

•
−→
X = C−→ay(G;S) is a non-DCI Cayley digraph,

• n ≥ 3 and k =

{
2 if n > 3;

3 if n = 3,

• either n > 3 or |S ∪ {1G}| ≤ |G|/3,

• m ≥ 3 and mk 6= |G|,

• A is a group of order m, and

• either
−→
X 6∼=

−→
X− or there is an automorphism α of G, such that α(S) = S−1.

Then G× A× Zn is not a CI group.
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Before proving this theorem, let us show that it contains Theorem 2.2 as a special
case, and then derive Theorem 2.1 from this latter result.

Proof of Theorem 2.2. For p = 2, it is well known that (Z2)
r is a CI group if and

only if it is a DCI group. (Every element of (Z2)
r is equal to its inverse, so every

generating set is symmetric. Hence, every Cayley digraph of (Z2)
r is also a Cayley

graph.) Therefore, we may assume p > 2.

Let G = (Zp)
r, m = n = p, and A = Zp, so G×A×Zn = G× (Zp)

2. Since (Zp)
r

is not a DCI group, there is a non-DCI Cayley digraph
−→
X = C−→ay(G;S). Also note

that, since G is abelian, the function α(g) = g−1 is a group automorphism, and it
obviously has the property that α(S) = S−1.

Assume, for the moment, that p > 3. Then k = 2 is not a power of p, so it is
obvious that mk 6= pr = |G|. Therefore, all of the hypotheses of Theorem 3.2 are
satisfied, so G× A× Zn is not a CI group.

We now assume p = 3. In this case, Condition (2) in the statement of Theorem 2.2
must hold, so we may assume |S| ≤ 3r−1 − 1. Then

|S ∪ {1G}| ≤ |S|+ 1 ≤ (3r−1 − 1) + 1 = 3r−1 = |G|/3.

Also, it is well known that (Zp)
2 is a DCI group (in fact, even (Zp)

5 is a DCI group
[6]), so |G| 6= 32 = 3 · 3 = mk. Therefore, all of the hypotheses of Theorem 3.2 are
satisfied again, so G× A× Zn is not a CI group.

Proof of Theorem 2.1. We may assume p = 3, for otherwise we can apply Theo-
rem 2.2(1). Then, by assumption, there is a non-DCI, Cayley digraph C−→ay

(
(Z3)

r;S).
Via the natural embedding of (Z3)

r in (Z3)
r+1, we also have the Cayley digraph

C−→ay
(
(Z3)

r+1;S), which is also non-DCI. Since S ∪ {1} ⊆ (Z3)
r, we have |S ∪ {1}| ≤

|(Z3)
r| = |(Z3)

r+1|/3, so we conclude from Theorem 2.2(2) (with r + 1 in the place
of r) that (Z3)

(r+1)+2 is not a CI group.

The remainder of this section will prove Theorem 3.2. To get started, we fix some
notation.

Notation 3.3. Let

•
−→
X = C−→ay(G;S) be a Cayley digraph of a nontrivial finite group G, such that

S 6= S−1 (so
−→
X is not an undirected graph),

• n ≥ 3 and k =

{
2 if n > 3;

3 if n = 3,

• A be a group of order m ≥ 3,

• B = 〈b〉 be a (multiplicative) cyclic group of order n,

• Ĝ = G × A × B (so G, A, and B can be naturally identified with subgroups

of Ĝ that centralize each other),
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• Ŝ = G ∪ Sb ∪ A ∪ Ab, and

• X̂ = Cay
(
Ĝ, Ŝ±1

)
, where Ŝ±1 = Ŝ ∪ { ŝ−1 | ŝ ∈ Ŝ }.

Note that, since G, A, and B are normal subgroups of Ĝ, there is no need to specify
whether cosets of these subgroups are right cosets or left cosets.

Remark 3.4. In our applications, we will take G = (Zp)
r and A = B = Zp, for

some prime p. To prove Theorem 3.2, we will show that if
−→
X is not a DCI digraph,

and some minor technical conditions are satisfied, then X̂ is not a CI graph.

Notation 3.5 ([1, §2]). For any group H, we use HR to denote the right regular

representation of H. This consists of all permutations of H that have the form
x 7→ xh, for some h ∈ H.

The following well-known, fundamental theorem shows that being a CI graph (or
CI digraph) is a property of the automorphism group of the graph (or digraph).

Theorem 3.6 (Babai [1, Lem. 3.1], or [7, Thm. 4.1]). A Cayley graph (or Cayley

digraph) Y of a group H is a CI graph (or DCI digraph) if and only if the conjugates

of HR are the only subgroups of AutY that are isomorphic to H and act sharply

transitively on V (Y ).

Adding a directed loop at every vertex of a digraph does not affect the automor-
phism group of the digraph. Therefore, the following causes no loss of generality:

Assumption 3.7. Assume 1G ∈ S, which means that C−→ay(G;S) has a directed loop
at every vertex.

Remark 3.8. Since b ∈ Ab, we know that b ∈ Ŝ, even without Assumption 3.7.
Therefore, adding 1G to S does not change Ŝ at all. The reason for making Assump-
tion 3.7 is to ensure that Sb is the set of all outneighbours of 1

Ĝ
that are in the coset

Gb. This avoids needing to treat the vertex b as a special case when looking at the
outneighbours of 1G.

The following simple result provides a crucial connection between Aut
−→
X and

Aut X̂.

Proposition 3.9. Suppose ϕ is an automorphism of X̂, such that

1. ϕ(1) = 1,

2. ϕ maps each coset of G to a coset of G, and

3. ϕ maps each coset of AB to a coset of AB.

Then the restriction of ϕ to G is either an automorphism of
−→
X or an isomorphism

from
−→
X to

−→
X−.
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Proof. By (2), we know that ϕ maps G to some coset of G. Since ϕ(1) = 1, this
implies that

ϕ(G) = G.

So the restriction of ϕ to G is a permutation of G.

From the definition of Ŝ, we see that 1 has |S| neighbours in the coset Gb and
also has |S| neighbours in the coset Gb−1 (and has |G| neighbours in its own coset G)
but has at most one neighbour in any other coset of G. Therefore,

ϕ(Gb) = Gbǫ, for some ǫ ∈ {±1}.

Let
−→
X ǫ be

−→
X or

−→
X−, depending on whether ǫ is 1 or −1, respectively.

We claim that ϕ(gb) = ϕ(g)bǫ, for every g ∈ G. To see this, note that (3)
implies ϕ(gb) ∈ ϕ(g)AB. Also, we see from the above displayed equations that
ϕ(gb) ∈ Gbǫ = ϕ(g)Gbǫ. Since (AB) ∩G = {1}, this implies the claim.

We can now complete the proof, by showing that the restriction of ϕ to G is an

isomorphism from
−→
X to

−→
X ǫ. To this end, let g, h ∈ G, such that g → h in

−→
X . This

means there exists s ∈ S, such that h = sg. Since sb ∈ Sb, we have g — (sb)g in X̂.

Since ϕ ∈ Aut X̂, this implies

ϕ(g) — ϕ
(
(sb)g

)
= ϕ

(
(sg)b

)
= ϕ(sg)bǫ.

Since ϕ(g), ϕ(sg) ∈ G, we see from the definition of Ŝ that this implies ϕ(sg) =

tǫϕ(g), for some t ∈ S. Hence, there is a directed edge from ϕ(g) to ϕ(sg) in
−→
X ǫ.

We have shown that if g → h in
−→
X , then ϕ(g) → ϕ(h) in

−→
X ǫ. Since

−→
X and

−→
X ǫ

are regular digraphs of the same outvalency, this implies that the permutation ϕ|G
is an isomorphism of digraphs.

Our next series of lemmas culminates in Lemma 3.12, which establishes simple
conditions that imply the hypotheses of the above proposition are satisfied. That
will complete our preparations for the proof of Theorem 3.2.

Lemma 3.10. If n > 3, then every maximal clique of X̂ is induced by one of the

following sets of vertices (for some x ∈ Ĝ):

a. Gx (i.e., a coset of the subgroup G),

b. Ax ∪ Abx, or

c. a subset of Gx ∪Gbx that does not contain any coset of G.

If n = 3, then (b) and (c) are replaced with:

b′. ABx, and

c′. a subset of GBx that does not contain any coset of G.
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Conversely, the subgraph induced by each subset listed in (a) or (b/b′) is a maximal

clique.

Proof. We first prove the “converse” that is stated the final sentence of the lemma.
Assume, without loss of generality, that x = 1.

(a) Since G is contained in Ŝ, it is clear that the subgraph induced by G is a

clique. So we just need to show that the clique is maximal. Suppose y ∈ Ĝ, such
that y /∈ G, but y is adjacent to every vertex in G. After translating by an element
of G, we may assume y ∈ AB. Since y is adjacent to 1, we also know that y ∈ Ŝ±1.
Hence, y ∈ A ∪ Ab ∪ Ab−1 (and y 6= 1). Since S 6= S−1 (see Notation 3.3), there is

some nontrivial g ∈ G, such that g−1 /∈ S. Now, we see from the definition of Ŝ that:

• If s ∈ Ŝ, such that sg ∈ AB, and sg 6= 1, then s ∈ (Sb)−1. Hence, g is not
adjacent to any element of A or Ab. Therefore, y /∈ A ∪ Ab.

• Similarly, if s ∈ Ŝ, such that sg−1 ∈ AB, and sg−1 6= 1, then s ∈ Sb. Hence,
g−1 is not adjacent to any element of Ab−1. Therefore, y /∈ Ab−1.

This is a contradiction. So we conclude that the clique induced by G is indeed
maximal.

(b) Since A is contained in Ŝ, it is clear that A and Ab each induce a clique.
Also, we know that every vertex in A is adjacent to every vertex in Ab, because Ab
is contained in Ŝ. Therefore, the subgraph induced by A∪Ab is a clique. So we just
need to show that this clique is maximal. Suppose y ∈ Ĝ, such that y /∈ A ∪ Ab,
but y is adjacent to every vertex in A ∪ Ab. Since y is adjacent to 1, we know that
y ∈ Ŝ±1. Since y /∈ A ∪ Ab, we conclude that y ∈ G ∪ Sb ∪ Sb−1 ∪ Ab−1. Since
n > 3, no element of GAb−1 is adjacent to any element of Ab. Therefore, we must
have y ∈ G∪ Sb (and y 6= 1, b). Then every neighbour of y that is in AB must be in

Gy ∪ Sby ∪ (Sb)−1y ⊆ GBy.

Since GBy does not include any nontrivial elements of A, this contradicts the fact
that y is adjacent to every vertex in A.

(b′) Since n = 3, we have AB ⊆ Ŝ, so the subgraph induced by AB is a clique. So

we just need to show that this clique is maximal. Suppose y ∈ Ĝ, such that y /∈ AB,
but y is adjacent to every vertex in AB. We may assume y ∈ G (after translating
by an element of AB). This implies that y is not adjacent to any nontrivial element
of A (see the proof of case (b)). This is a contradiction.

Now, let C be any maximal clique in X̂, and assume, without loss of generality,
that 1 ∈ C. This implies C ⊆ Ŝ±1. We will prove that C is contained in a clique of
type (a), (b), (b′), (c), or (c′).

Case 1. Assume C is not contained in any coset of GB. Then C must contain
some vertex of the form gabi where g ∈ G, i ∈ Z, and a is a nontrivial element of A.
Since gabi ∈ C ⊆ Ŝ±1, we must have g = 1 and i ∈ {0,±1}.
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Now, let v be any common neighbour of 1 and abi. Since a is nontrivial, these two
elements are in different cosets of GB, so we can choose some c ∈ {1, abi} that is not
in the coset GBv. Then (by the preceding argument) we have v = a′bjc, for some
a′ ∈ A and j ∈ {0,±1}. Hence, we have v ∈ AB. This shows that C is contained in
a maximal clique of type (b′) if n = 3.

So we may assume n > 3. Then no vertex in Ab is adjacent to any vertex in Ab−1.
Thus, C must be contained in either A ∪ Ab or Ab−1 ∪ A. Each of these sets is of
type (b) (with x ∈ {1, b−1}).

Case 2. Assume C is contained in a coset of GB, and is not of type (a). Since
1 ∈ C, we must have C ⊆ GB. We also know that C does not contain any coset of G
(since cosets of G induce maximal cliques of type (a)), so we may assume n > 3, for
otherwise C is of type (c′). Note that

C ⊆ GB ∩ Ŝ±1 = G ∪Gb ∪Gb−1.

However, no vertex in Gb is adjacent to any vertex in Gb−1 (since n > 3), so we
conclude that C is contained in either G∪Gb or Gb−1 ∪G. So C is of type (c) (with
x ∈ {1, b−1}).

Without Assumption 3.7 (which tells us that S contains the identity element
of G), the conclusion of the following lemma would only be that S is a coset of a
subgroup, not that it is a subgroup. It is a variation of the easy (and well known)
fact that if x and y are two vertices of C−→ay(G;S) that have the same outneighbours,
then S is a union of left cosets of the subgroup generated by xy−1.

Lemma 3.11. Assume D is a set of vertices of C−→ay(G;S), such that |D| ≥ max
(
|S|−

1, 2
)
, and all of the vertices in D have exactly the same outneighbours. Then S is a

subgroup of G.

Proof. Assume, without loss of generality, that 1 ∈ D. Then S is the set of out-
neighbours of every element of D, so Sd = S for every d ∈ D. This means that
S is a union of left cosets of 〈D〉. Since 1 ∈ S (see Assumption 3.7), this implies
that S contains 〈D〉. If S is not equal to this subgroup, then it is the union of at
least 2 cosets, so |S| ≥ 2|〈D〉| ≥ 2|D|. On the other hand, we are also assuming
that |D|+ 1 ≥ |S|. Combining these inequalities implies that |D|+ 1 ≥ 2|D|, which
contradicts the assumption that |D| ≥ 2.

Lemma 3.12. Assume

• ϕ is an automorphism of X̂ that fixes the vertex 1
Ĝ
,

• mk 6= |G| (recall that m and k were defined in Notation 3.3), and

• |S| ≤
(
|G|+ 1

)
/k.

Then the hypotheses of Proposition 3.9 are satisfied.
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Proof. 3.9(1): We have ϕ(1) = 1. This is true by assumption.

3.9(2): ϕ maps each coset of G to a coset of G. The maximal cliques of X̂ are
described in Lemma 3.10. It is obvious that every clique of type (a) has cardinal-
ity |G|, and that every clique of type (b) or (b′) has cardinality mk (since |A| = m).
Assume, for the moment, that

the cardinality of every maximal clique of type (c)
(or of type (c′) if n = 3) is strictly less than |G|.

(∗)

(We will show how to complete the proof with this assumption, and we will establish
later that the assumption is indeed true.) This assumption implies that the cosets
of G are the only maximal cliques whose cardinality is |G|. So every automorphism

of X̂ (including ϕ) must map each coset of G to a coset of G.

3.9(3): ϕ maps each coset of AB to a coset of AB. Each maximal clique of
type (b) or (b′) contains no more than one vertex of any coset of G. If a maximal
clique of type (c) or (c′) has this property, then it cannot have more than k vertices.
Since maximal cliques of type (b) or (b′) have mk vertices (and mk > k), this implies
that no automorphism can carry a maximal clique of type (b) or (b′) to a clique of
type (c) or (c′). So ϕ must preserve the set of cliques of type (b) (or (b′)). This
easily implies Hypothesis 3.9(3).

Now, all that remains is to prove Assumption (∗). To this end, let C be a maximal
clique of type (c) (or of type (c′) if n = 3), and suppose |C| ≥ |G|. (This will lead to
a contradiction, which completes the proof.) Also assume, without loss of generality,
that 1

Ĝ
∈ C. Then

C ⊆ GB ∩ Ŝ±1 = G ∪ Sb ∪ Sb−1 ⊆ G ∪Gb ∪Gb−1.

Let Ci = C ∩ Gbi for i ∈ {−1, 0, 1}. It is clear that |C1| ≤ |Sb| = |S| and |C−1| ≤
|Sb−1| = |S|.

We claim that also |C0| ≤ |S|. Since C 6= G and |C| ≥ |G|, we know that C * G.
Hence, C−1∪C1 6= ∅, so there is some gbǫ in C, with ǫ ∈ {±1}. The set of neighbours
of this vertex in G is (Sb)−ǫgbǫ. Since this set of neighbours contains C0 and has
cardinality |S|, we conclude that |C0| ≤ |S|.

Choose j ∈ {−1, 0, 1}, such that |Cj| is maximal. Since at most k of the sets
C−1, C0, C1 are nonempty, and

|Ci| ≤ |Cj| ≤ |S| ≤
(
|G|+ 1

)
/k,

then we have

|G| ≤ |C| = |C−1|+ |C0|+ |C1| ≤ k · |Cj| ≤ k · |S| ≤ k ·
(
|G|+ 1

)
/k = |G|+ 1,

so
|G|

k
≤ |Cj| ≤ |S| ≤

|G|

k
+

1

k
.
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Since 1/k < 1, this implies |Cj| = |S| (because the absolute value of the difference
of two distinct integers cannot be less than one). Also, since

|C−1|+ |C0|+ |C1| = |C| ≥ |G| ≥ k · |Cj| − 1,

we have |Ci| ≥ |Cj| − 1 for all i 6= j. Assume, for the sake of concreteness, that
j = 1, so we may let i = 0.

Since C is a clique, we know that every element of C1 is an outneighbour of every
element of C0. From the definition of Ŝ, we also know, for each x ∈ C0, that the
number of outneighbours of x in Gb is precisely |S| = |C1|. Hence, we conclude that
C1 is the set of all outneighbours of x that are in Gb; so C1 = Sbx. Since x is an
arbitrary element of C0 (and 1G ∈ C0), we conclude that Sbx = Sb 1G. Since Sb = bS
(recall that b commutes with all elements of G), this implies Sx = S, for all x ∈ C0.

Now Lemma 3.11 tells us that S is a subgroup of G. Therefore S is closed under
inverses (i.e., S = S−1). This contradicts the first bullet point of Notation 3.3.

We are now ready to prove Theorem 3.2. For the reader’s convenience, we copy
the statement here.

Theorem 3.2. Assume

• G is a finite group,

•
−→
X = C−→ay(G;S) is a non-DCI Cayley digraph,

• n ≥ 3 and k =

{
2 if n > 3;

3 if n = 3,

• either n > 3 or |S ∪ {1G}| ≤ |G|/3,

• m ≥ 3 and mk 6= |G|,

• A is a group of order m, and

• either
−→
X 6∼=

−→
X− or there is an automorphism α of G, such that α(S) = S−1.

Then G× A× Zn is not a CI group.

Proof. We may assume S 6= S−1, for otherwise Cay(G;S) is a non-CI Cayley graph
of G, so G is not a CI group; hence any finite group that contains G is also not a CI
group.

Let B = Zn, and recall that Ĝ, Ŝ, and X̂ = Cay(Ĝ; Ŝ±1) are defined in Nota-

tion 3.3. We will show that the Cayley graph X̂ is not a CI graph.

Since
−→
X is not DCI, we know from Theorem 3.6 that there is a subgroup M of

Aut
−→
X , such that M is isomorphic to G, and acts sharply transitively on the vertex

set V (
−→
X ) = G, but

no element of Aut
−→
X conjugates M to GR. (∗∗)
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It is easy to see that Aut
−→
X × AR × BR is contained in Aut X̂, so

• M × AR ×BR ⊆ Aut X̂, and it is clear that

• this subgroup is isomorphic to Ĝ and acts sharply transitively on G×A×B =
Ĝ = V (X̂).

If X̂ is CI, then Theorem 3.6 tells us that some ϕ ∈ Aut X̂ conjugatesM×AR×BR

to the right regular representation of Ĝ. We may assume ϕ(1
Ĝ
) = 1

Ĝ
(by composing

ϕ with a translation). Also, there is no loss of generality in assuming that |S| ≤(
|G|+1

)
/2, because we can replace S with its (almost) complement (GrS)∪{1G}.

(Recall that Assumption 3.7 requires us to keep 1G in S.) Then the hypotheses of
Lemma 3.12 are satisfied, so we conclude that the hypotheses of Proposition 3.9 are

satisfied. Hence, the restriction of ϕ to G is either an automorphism of
−→
X or an

isomorphism from
−→
X to

−→
X−.

Since ϕ conjugates M × AR × BR to ĜR = GR × AR × BR, and we now know
that ϕ(G) = G, we can conclude that

the restriction ϕ|G conjugates M to GR.

This contradicts (∗∗) if ϕ|G is an automorphism of
−→
X .

Therefore, ϕ|G must be an isomorphism from
−→
X to

−→
X−. Then

−→
X ∼=

−→
X−, so, by

assumption, there is an automorphism α of G, such that α(S) = S−1, so α is an

isomorphism from
−→
X to

−→
X−. Also, α normalizes GR (since α is a group automor-

phism). Then the composition α ◦ ϕ|G is an automorphism of
−→
X that conjugates M

to GR. This is again a contradiction to (∗∗).
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