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Abstract

Originally introduced by Duffy et al. in 2018, diffusion is a variant of
chip-firing in which chips flow from places of high concentration to places
of low concentration. In the variant, perturbation diffusion, the first
step involves a “perturbation” in which some number of vertices send
chips to each of their respective neighbours, regardless of relative stack
size, then standard diffusion rules are followed thereafter. In this paper,
we ask the question “Given an initial configuration, which vertices, when
perturbed, will return the initial configuration after some number of steps
in diffusion?” For graphs with an equal number of chips on each vertex,
we characterize subsets of vertices such that when perturbed, this initial
configuration is eventually obtained and show in such cases it must occur
after two time steps of the diffusion process. We provide results for
general graphs, and then explore the family of paths in detail.

1 Introduction

Consider a scenario where resources (we will call them chips) are initially distributed
in a network and then are shared over time, with those who have more sending chips
to those who have less. That is, the chips are ‘diffused’ throughout the network. In
[3] the process of diffusion on graphs was introduced by Duffy et al. We will expand
on the work of Duffy et al. by introducing a variant in which a vertex will send chips
to a neighbour that is neither poorer nor richer than itself.
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Diffusion is a process defined on a simple finite graph, G, in which each vertex
is assigned an integer to represent the size of a stack of chips. At each time step,
the vertices of GG all fire simultaneously, which is how the chips are redistributed. If
adjacent vertices have the same stack sizes, there is no exchange of chips between
them. Otherwise, when a vertex fires, the chips are redistributed via the following
rules: If a vertex v is adjacent to a vertex u with fewer chips, v takes a chip from
its stack and adds it to the stack of u. We say that v sends a chip and u receives
a chip. Note that it is possible for a stack size to become negative if a vertex sends
more chips than it has. An example of diffusion is provided in Figure 1. In Figure 1,
we see at each time step, the vertices of P5 have a stack size. This assignment of
stack sizes to the vertices of a graph is referred to as a configuration. Each step of
the diffusion process yields a configuration.

0
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VUs | V4 | V3 | Vg | V1
Step0| 0 (2|0 |41
Stepl | 1 [0 ] 2] 2]2
Step2 | 0 |2 |1 ]2]2
Step3| 1|03 ]1]2
Stepd | 0 |2 |1 ]3]1
Stepb | 1 |0 |3 ] 1|2
Step6 | 0 [ 2|13 ]1

Figure 1: Stack sizes during several steps in a diffusion process on Ps.

In this paper we define and analyze the diffusion variant, Perturbation Diffusion.
We refer to the configuration in which every vertex has 0 chips as the 0-configuration.
Note that in [3] any configuration in which every stack size is equal is referred to as
“fixed.” Let G be a graph with the 0-configuration and H be a subset of V(G). A
perturbation of H is when the vertices in H send a chip to each of their respective
neighbours in G. In this case, we call H a perturbation subset (an example of a
perturbation is shown in Figure 2).

We define Perturbation Diffusion on a graph G as the variant of diffusion where
the first firing (which takes place at time step 0 and is referred to as the initial firing)
is such that for some H C V(G), H is a perturbation subset. After the initial firing,
so time steps t > 1, Perturbation Diffusion follows the standard diffusion rules.
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Figure 2: Perturbation of the subset H (marked with black vertices) of V(Fgs) with
directed edges depicting the flow of chips: first from vertices of H to vertices of
V(Ps) \ H, and then from richer vertices to poorer vertices.

Let Seq(Cy) = (Cp, C1,Cs, . ..) be the configuration sequence on a graph G with
initial configuration Cj (so Cy yields C1, which yields Cy, etc.). The positive integer
p is a period length it C, = Cyy, for all t > N for some N. In this case, N is a
preperiod length. For such a value, N, if K > N, then we say that the configuration,
Cy, is inside the period. For the purposes of this paper, all references to period
length will refer to the minimum period length p in a given configuration sequence.
Also, all references to preperiod length will refer to the least preperiod length that
yields that minimum period length p in a given configuration sequence.

The assigned value of a vertex v in a configuration C' is its stack size in C' and is
denoted |v|“. We omit the superscript when the configuration is clear from context.
A vertex v is said to be richer than another vertex u in configuration C'if |v|® > |u|°.
In this instance, u is said to be poorer than v in C. If |v| < 0, we say v is in debt in
C. In diffusion, the stack size of a vertex, v, at step t, is referred to as its stack size
at time t. If the initial configuration is C', then the stack size of v at time ¢ is denoted
|v|¢. This implies that |v|° = |v]S. We omit the superscript when the configuration
is clear from context. Given a vertex v, N(v) is the open neighbourhood of v. Given
a set of vertices A C V(G), N(A) is the open neighourhood of A and the subgraph
induced by A will be denoted as G| 4.

Long and Narayanan [4] showed that given any configuration on any graph, the
minimum period length is always either 1 or 2. In [5], it is shown that only configu-
rations in which every stack size is equal exist inside periods of length 1. It is worth
noting that the total number of chips on the graph is a constant. That is to say,
during the (Perturbation) Diffusion process, the total number of chips remains the
same at each time step. If the number of chips distributed throughout the graph is
divisible by the number of vertices, then it is unknown whether the period length
will be 1 or 2, but if the number of chips is not divisible by the number of vertices,
then the period length must be 2.

Perturbation Diffusion starting with the O-configuration on our graph can result in
different periodic behaviours based on the perturbation subset. For example, consider
the cycle on four vertices. If our perturbation subset is a single vertex, we obtain the
configuration sequence Seq(Cp) = (Cy, C1, Ca, Cs, . . .) where Cj is the 0-configuration
and C7 = (5 and we have period 2. To contrast, if two antipodal vertices are in the
perturbation subset we obtain the configuration sequence Seq(Cy) = (Cy, Cy, Cs, .. .)
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where () is the 0-configuration and Cy = Cy = Cy,t > 3. We note that adding a
constant to every stack size does not change the behaviour of the model at any future
step [3, 5].

Definition 1.1. Let G be a graph and let H be a subset of V(G).

e H is 0-tnvoking in G if a perturbation of H from an initial 0-configuration
on G results in the 0-configuration on G after a finite number of firings.

e H is 0y tnvoking in G if perturbing H from an initial 0-configuration and
then firing once results in the 0-configuration on G.

e The perturbation quiescent number of a graph G, denoted PQ(G), is
the size of the smallest nontrivial 0-invoking subset of V(G). So, PQ(G) =
min{|H|: H # 0 is 0-invoking in G}.

o The 2-perturbation quiescent number or PQs(G) is the size of the small-
est nontrivial 0y-invoking subset of V(G). So, PQo(G) = min{|H| : H # 0 is
09-invoking in G}.

Note that PQ(G) and PQy(G) are well-defined because V(G) is itself both a
0-invoking subset and a 0s-invoking subset of V' (G).

In this paper, we study the following question: Which perturbation subsets will
yield a period of length 17 We characterize all 0o-invoking subsets on all graphs
in Theorem 2.2 and in Theorem 2.9 we show that all O-invoking subsets are 0s-
invoking. We then turn our attention to paths in particular. In Theorem 3.3, we
show that PQs(P,) = [%], the same as the domination number, for all n > 1 and
in Theorem 3.7, we count the number of 0,-invoking subsets that exist on P, for all
n > 1.

2 0o-invoking Sets

In this section, we characterize the 0,-invoking subsets of all finite, simple graphs and
highlight a relationship with dominating sets. We begin by defining a new concept,
a complementary component dominant subset and then show, with Theorem 2.2,
that a subset of vertices in a graph is 0,-invoking if and only if it is complementary
component dominant.

Definition 2.1. Given a graph G, a subset H of V(G) is Complementary Com-
ponent Dominant or CCD if both the following conditions hold:

(i) For all adjacent pairs of vertices, x,y € H, the number of neighbours of x in
V(G)\ H is equal to the number of neighbours of y in V(G) \ H.

(i1) For all adjacent pairs of vertices, u,v € V(G)\ H, the number of neighbours of
u in H is equal to the number of neighbours of v in H.
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Note that this definition implies that if H is complementary component dominant
in G, then so is V(G) \ H.

Theorem 2.2. Let G be a graph. A subset H of V(G) is Oy-invoking in G if and
only if H is CCD.

Proof. (Necessity) Let a graph G have the 0-configuration. Suppose H C V(G) is
CCD. In Figure 3, we see G|y and G|y )\ separated into their respective connected
components.

H V(G)\ H

Figure 3: Graph, G, with 0s-invoking subset, H, of V(G)

Remember that when H is perturbed, the edges that have both endpoints in H
will have chips travelling along them both ways. We can equivalently view these
edges as not having any chips travelling along them. For all vertices h in H, let
degy gy g (h) be the number of vertices in V(G) \ H that are adjacent to h, and
for all vertices g in V(G) \ H, let degy(g) be the number of vertices in H that are
adjacent to g. Thus, when every vertex in H sends a chip to each of its neighbours as
a result of the perturbation, the resulting configuration (at step ¢t = 1) leaves every
vertex, h, in H with a number of chips equal to 0 —degy ),y (h). Every vertex, g, in
V(G)\ H would be left with 0+ degy(g) chips. We know from the definition of CCD
that every pair of adjacent vertices in H must be adjacent to the same number of
vertices in V(G)\ H. By transitivity, this will extend to entire connected components
within G|g.
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Since the definition of CCD also states that the vertices of V(G) \ H follow the
same rule with every adjacent pair of vertices being adjacent to the same number
of vertices in the complement, we get, by transitivity, that this extends to entire
connected components in G|y )yu. Thus at step 1, each connected component of
G| will have the same stack size and each connected component of G|y (gyu will
have the same stack size.

At step 1, every vertex in H has a negative stack size and each vertex in the
complement has a positive stack size. So, when the vertices fire at step 1, every
vertex in H will receive from each of its neighbours in V(G) \ H and will not send
to or receive from any vertices in H. Likewise, every vertex in V(G) \ H will send
to each of its neighbours in H and will not send to or receive from any vertices in

V(G)\ H. So for each h € H, we get that

|hly = [h|y + degy gy u(h)

= —degy ) m(h) + degyepu(h)
=0

and for all g € V(G) \ H,

l9l2 = |gl1 — degy(g)

= degy(g) — degy(9)
=0.

Thus, the 0-configuration is restored in the first two steps.

(Sufficiency) Let H be a perturbation subset of V(G), suppose H is 0y-invoking, and
suppose that at step 0, every vertex in GG has 0 chips. If H is perturbed, then the
configuration at step 2 is again, the 0-configuration. This implies that the net effect
of two steps of firings on each vertex is +0. Every vertex in H will necessarily send a
chip to each of its neighbours in V(G) \ H as a result of the perturbation (at step 0)
and will receive from those same vertices in the firing at step 1. Thus for all vertices
h in H, if h receives a chip from a vertex in H during the firing at step 1, then h
must also send a chip to a vertex in H at step 1 as well. However following the
perturbation, for each connected component H; in H, there must exist some vertex
in H; that has no poorer neighbours in H;. So if any chip is sent from a vertex in H
to another vertex in H during the firing at step 1, then there will exist at least one
vertex h; that received a chip from a neighbour in H, but did not send a chip to a
neighbour in H. This implies that h; will have a positive stack size at step 2, having
received more chips in the firing at step 1 than it sent in the initial firing. This,
however, contradicts our assumption that H is 0s-invoking. Thus, we can conclude
that every vertex in a connected component in G|y has a common stack size after
the initial firing. So each vertex belonging to the same connected component in G|y
shares the same number of neighbours in V(G)\ H. A similar argument will show the
result for vertices in V(G) \ H. Thus, we can conclude that all 0s-invoking subsets
are CCD. O
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Corollary 2.3. If H is 0s-invoking in G, then so is V(G) \ H.

Note that not all graphs have a proper non-trivial 0,-invoking subset. In Figure 4,
we see such a graph. This can be justified by first supposing, by way of contradiction,
that vy were in a such a subset. Note that either vs or v must be in such a subset. If
this subset contains both vy and vg, then v5 is adjacent to two vertices in H and vg is
adjacent to only one vertex in H. So, vs must be in H. Now, vy must be in H since
it is adjacent to only one vertex in H while v5 is adjacent to 3 vertices in H. Also, v,
must be in H because vy is adjacent to 2 vertices in H while v3 is only adjacent to 1.
Finally we have reached a contradiction as v; is adjacent to no vertices in V(G) \ H.
The other cases follow similarly.

Figure 4: Graph with no proper nontrivial Os-invoking subsets

We now provide some results relating dominating sets to 0-invoking sets. Given
a graph G, a dominating set is a subset D of V(G) such that every vertex in V(G)
is either in D or adjacent to a vertex in D. The domination number of a graph G,
7(G), is the size of the smallest dominating set in G. A minimal dominating set is a
dominating set M such that if any vertex were removed from M, then the resulting
set would not be dominating.

Corollary 2.4. For all connected graphs G, all nontrivial Os-invoking subsets of
V(G) are also dominating sets.

Proof. Let G be a graph and let H C V(G) be a nontrivial 0s-invoking subset. By
Theorem 2.2, H is CCD. By the definition of CCD, every vertex in the complement
of H must be adjacent to at least one vertex in H unless H is empty. Since H is
nontrivial, A is dominating. O

Note that the graph in Figure 4 has a domination number of 2, while the size of
the smallest nontrivial Os-invoking subset of its vertices is 6. This shows us that the
2-perturbation quiescent number of a graph G, PQs(G), is not necessarily equal to
the domination number v(G). So for an arbitrary graph, a minimal dominating set
may not be 0g-invoking, but for paths they are.

Lemma 2.5. Every minimal dominating set of P,, n > 2, is CCD and thus, 0y-
mwvoking.

Proof. Let H be a minimal dominating set of P,, n > 2. We will show that H
is CCD. Since H is a minimal dominating set, every pair of adjacent vertices in
V(P,) \ H are adjacent to exactly one vertex in H each. Similarly, every pair of
adjacent vertices in H are adjacent to exactly one vertex in V(P,) \ H each, since
H is a minimal dominating set. Thus, H is CCD. O]
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Given a graph G, an independent set is a subset I of V(G) such that no two
vertices in [ are adjacent in G. From [1], an efficient dominating set, or perfect code,
is an independent subset, A, of the vertex set of a graph, GG, such that every vertex
in V(G) \ A is adjacent to exactly one vertex in A. Thus from the definition of CCD
and Theorem 2.2 we obtain the following result.

Corollary 2.6. Efficient dominating sets (or perfect codes) are CCD and thus 0z-
invoking.

Question 2.7. Is there a characterization of minimal dominating sets that are also
0z-tnvoking subsets?

We will now briefly look at an approach to this problem for graphs with small
domination numbers. If 4(G) = 1, then there must be a dominating vertex. A single
vertex in G is itself a 0p-invoking set. If v(G) = 2, with dominating set {z,y},
then the solution is not so simple. We will break the problem into two cases: = not
adjacent to y, and x adjacent to y. Suppose first that  and y are not adjacent. For
this pair of vertices to also be a 0g-invoking set, it must be true that the set {z,y}
is also complementary component dominant.

So, every vertex in a given connected component in G'\ {z, y} must be adjacent to
the same number of vertices in {z,y} (either 1 or 2). Consider the subset of vertices
adjacent to z and not adjacent to y, call it V., and the subset of vertices adjacent
to y and not adjacent to z, call it V},, and the subset of vertices adjacent to both z
and y, call it V,,. In order for {z,y} to be complementary component dominant, it
must be true that no edges exist between V,, and V, UV,,.

Now, if  and y are adjacent, we must also have an additional rule that |V,| = |V,
since both x and y must be adjacent to the same number of vertices. Moving to
dominating sets of size 3 or greater appears to be much more difficult.

In K, n > 1, minimal dominating sets come in two forms: either one vertex
from each partition, or an entire partition. In both instances, these sets are CCD
and thus, 0s-invoking.

In complete multi-partite graphs, minimal dominating sets come in two forms:
either one vertex from two different partitions, or an entire partition. The former is
not necessarily CCD, while the latter is necessarily CCD.

Question 2.8. Is there a graph G such that some subset of V(G) is 0-invoking but
not 0y-invoking?

We now show the answer to this question is no. In [4], Long and Narayanan
introduced a potential function, which we will make use of in the next result. Let G
be a graph on n vertices labelled {vy, vs,..,v,}. They define the define the potential
function P(t) by:

Pt)= Y [l x [v]e1- (1)
veV(Q)
Theorem 2.9. Let G be a finite simple graph with the 0-configuration and H C V (G)
a perturbation subset. If H is O-invoking, then H 1is O0y-invoking.
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Proof. Let G be a finite simple graph with the O-configuration and let H C V(G) be
a 0-invoking perturbation subset.

Let t = 0 be the perturbation of H and t = 1 be the time step where the standard
diffusion rules are thereafter followed. P(0) = 0 since every vertex of G begins with
a stack size of 0. H is a 0-invoking set, therefore at some time ¢/, P(t') = 0. From

[4] it is known that Equation 1 is non-increasing with time, therefore P(¢) > 0 for
all t > 1.

At time ¢ = 1, consider the stack size of a vertex, v. If v is in H, then |v]; =
—degy(y(v). If vis in N(H), then |v]; = degy(v). Otherwise, |v]; = 0.

We will show that if H is 0-invoking, but not 0y-invoking, then P(1) < 0. To do
so, we will ‘partially’ fire each vertex, to incrementally update the potential function.
We will look at how the potential function changes as chips move along the edges of
the graph one by one. Order the edges of G as ey, e, ..., e, and let |v]; be the
stack size of vertex v at time t after chips were moved along the first ¢ edges in our
ordering (note it is possible for an edge to experience no chips transferred along it
if the endpoints have the same stack size, or equivalently that each endpoint sends
and received a chip from each other). Thus for all v € V(G), [v|@gm) = |v](+1), since
after all m edges have experienced the transfer of chips, we obtain the stack sizes for
each vertex at time ¢ + 1. We will show that as ¢ increases, the potential function
decreases after each of these incremental updates, and conclude that P(1) < 0, a
contradiction.

Order the edges of G as {eq,...€r,€41,...€0,€041,...€n}, Where e1,... e, are
the edges that exist between vertices of H and N(H), and e,41,...,e, are edges
within the subgraph induced by H, and ey, ...,e,, are the remaining edges of G.

Consider Equation 1 rewritten to represent the incremental updates to the po-
tential function. We start at time ¢ = 1 and take into account the firing process
as a chip moves along each edge of the graph. We let P(1,7) denote the potential
function value after the first 7 edges of our edge ordering have had chips travel along
them,

P(1i)= Y |vh x|vlaa, (2)

veV(G)
with |v|; representing the stack size of v at ¢ = 1 as no vertices have fired.

It should be noted that for all vertices |v|n,y = 0. This is because the vertices
of N(H) send back the chips they received from each neighbour in H during the
perturbation at ¢ = 0, and any vertex not in H U N(H) has stack size 0 at t = 1,
thus P(1,r) = 0.

If » = m, then H is O-invoking and 0s-invoking. We are assuming that H is
not Os-invoking. Thus, there is some edge in either the subgraph induced by H or
the subgraph induced by N(H) or between a vertex in N(H) and one in V(G) \
(H U N(H)) that must experience a chip transfer. Note: no chips are transferred
along edges in the subgraph induced by V(G) \ (H U N(H)) since the stack size of
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each vertex in that subgraph is 0 at ¢ = 1. Suppose some edge, e;, which does not
have both an endpoint in H and an endpoint in N(H), has a chip move along it.
Thus the first j edges have experienced a transfer of chips, for r < 7 < m. Let
e; = uv and without loss of generality, assume the chip was transferred from u to v,
thus |ul; > |v];. We will compare P(1,j) and P(1,j — 1) to see how the potential
function has incrementally changed.

Pj)=PLj—1) = > [olixlay=— > [vhxlay

veV(Q) veV(G)
= > h(olay = vlai-n)
veV(Q)
= Juh(lulay = lula-n) + [vl(lvlay = [vla-1)

= |uf1(=1) + [v[1(1)
= \Uh—|uh
< 0.

As the potential function at ¢ = 1 is incrementally updated, after the first r edges
have fired, the potential function is 0. Each incremental update thereafter obtained
by transferring chips along the remaining edges of the graph result in a decrease of
the potential function, hence resulting in a negative potential function at P(1). This
is a contradiction, so any 0-invoking set of vertices is also 0s-invoking. ]

3 Paths

With a general result characterizing 0,-invoking subsets on all graphs, we now focus
on paths to show PQy(F,) = [5], for all n > 1 (Theorem 3.3), and we determine
the number of 0,-invoking subsets on a path (Theorem 3.7).

3.1 Path Introduction

Before our results on counting 0p-invoking subsets and calculating PQy(P,), we must
introduce some definitions and lemmas regarding diffusion on paths.

Let G be a finite simple undirected graph with vertex set V(G) and edge set
E(G). Let A C E(G). A graph orientation of a graph G is a mixed graph obtained
from G by choosing an orientation (x — y or y — x) for each edge zy in A C E(G).
We refer to the edges that are in F(G) \A as flat. We refer to the assignment of
either x — y, y — x, or flat to an edge xy as zy’s edge orientation. On a path drawn
on a horizontal axis, two directed edges in a graph orientation agree if they either
both point left or both point right.

Let R be a graph orientation of a graph G. A suborientation R' of R is a graph
orientation of some subgraph G’ of G such that every edge xy in G’ is assigned the
same edge orientation as in R.
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Given two configurations, C' and D, of a graph G, in which the vertices are
labelled, C' and D are equal if [v|¢ = |v|P for all v € V(G).

In Figure 1, the period length is 2 and the preperiod length is 3.

Lemma 3.1. In diffusion, every configuration induces a graph orientation.

Proof. Let G be a graph and C} a configuration on G. For all pairs of adjacent
vertices u, v in G at step t, exactly one of the following holds: u gives a chip to v, v
gives a chip to u, or the stack sizes of u and v are equal in C;. Let uv be an edge.
Assign directions as follows:

o If u gives a chip to v at time ¢, assign uv the edge orientation u — v.
e If v gives a chip to u at time ¢, assign uv the edge orientation v — wu.
e [f the stack sizes of u and v are equal at time ¢, do not direct the edge uv.

Thus, a graph orientation on G results. [l

We say that this graph orientation is induced by Cy, the configuration of G at
time t. We see an example of a graph orientation induced by a configuration in
diffusion in Figure 5.

59 &8 2 12

Figure 5: Configuration on P; and its induced graph orientation.

Let Seq(Cy) = {C}, Cis1, ..., Crip-1} be the ordered set of configurations con-
tained within the period of a configuration sequence Seq(Cp), where p is the length
of the shortest period, and the period begins at step t. A configuration D on a graph
G is a period configuration if D € Seq(C) for some configuration C. A configuration
D on a graph G is a py-configuration if D € Seq(C) for some configuration C' and
Seq(C) has exactly 2 elements. A period orientation is a graph orientation that is
induced by a period configuration. A py-orientation is a graph orientation that is
induced by a py-configuration. A 0-orientation is a graph orientation that is induced
by a 0-configuration.

A configuration at step ¢ in a configuration sequence is a 0-preposition if the
configuration at step t 4+ 1 is the 0-configuration. The underlying orientation, R, of
a configuration is a 0-preorientation if there exists a O-preposition which has R as
its underlying orientation.

Lemma 3.2. Given a graph, G, and an orientation R, there is at most one config-
uration which both induces R and is a 0-preposition.
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Proof. Let G be a graph and R an orientation of G. The orientation R dictates
the number of chips that each vertex will give and receive at the next firing. Thus,
for each vertex v in G, the stack size of v, following the next firing is equal to the
current stack size of vy, plus the number of edges directed toward vy, A,, , minus the
number of edges directed away from vy, B,,. So, if we have that |vg|+ A,, — By, = 0,
then the stack size of v, can be determined because it is the only unknown in the
equation. O

3.2 Results on Paths

Now, with sufficient background information, we introduce our two main results on
paths with Theorems 3.3 and 3.7.

Theorem 3.3. PQ,(P,) = [%], n> 1.

Proof. We will first prove that PQy(F,) > [5] and then prove that PQ»(P,) < [%].

From [2], the domination number of a path P, is [§], n > 1. By Corollary 2.4,
we know that every nontrivial Os-invoking subset of a graph is also a dominating set.
Thus, PQ»(P,) > [5].

Next, by Lemma 2.5, we know that every minimal dominating set of a path, P,
is also a Op-invoking subset of V(). Therefore, PQ2(F,) < [5]. O

Let J, represent the number of Os-invoking subsets that exist on P,. We now
count all 0o-invoking subsets on a path with n > 2 vertices. Label the vertices vy,
V2, ..., Up.

Lemma 3.4. Let H C V(P,) = {v1,v2,...,0n_1,U}, n > 2, be proper, non-trivial,
and Og-invoking. Then v, € H if and only if v, € V(G) \ H.

Proof. Let H C V(P,) = {v1,v9,...0,_1,0,} be 0y-invoking, proper and nontrivial.

(Sufficiency) Suppose first that v, € H. We know that v,_; is the only neighbour
of v, in P,. If v,_1 € H, then v, would be adjacent to 0 vertices in V(P,) \ V(H)
and thus, since H is 0o-invoking, every vertex in the same connected component as
v, in G|y would be adjacent to no vertices in V(G) \ H. Since P, is connected, this
implies that H is not a proper subset of V(P,) which is a contradiction. Thus, if
v, € H, then v,,_1 € V(G) \ H.

(Necessity) Suppose now that v, € V(G) \ H. Then if v,, € V(G) \ H, it would be
adjacent to 0 vertices in H and thus, since H is 0s-invoking, every vertex in the same
connected component as v, in G|y would be adjacent to 0 vertices in H. Since P, is

connected, this implies that H is the trivial subset of V(G) which is a contradiction.
Thus, if v,—1 € V(G) \ H, then v,, € H. O

Corollary 3.5. Let H C V(P,) = {v1,v2,...,05_1,0,}, n > 2, be proper, non-
trivial, and Og-invoking. Then vy € H if and only if v, € V(G) \ H.

Let F;, represent the n-th Fibonacci number.
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Lemma 3.6. The number of binary sequences of length n without three consecutive
0’s or three consecutive 1°s is 2F,, 1.

Proof. We will prove this by induction, beginning with base cases of lengthn =1, 2, 3.
There are two binary sequences of length 1 and 2F;,; = 2F, = 2. There are four
binary sequences of length 2 and 2F5,; = 2F3 = 4. There are 23 = 8 binary sequences
of length 3, and two of these have three consecutive 0’s or three consecutive 1’s. The
resulting value, 6, is equal to 2 x 3 = 2 X F; = 2 x F3,1. Now suppose that there
exist 2F,1 binary sequences of length k& which do not have three consecutive 0’s
or three consecutive 1’s. We will call all such binary sequences satisfactory. Every
satisfactory binary sequence of length k£ 4+ 1 must begin with either 01, 001, 10, or
110. Since every satisfactory sequence of length & must begin with either a 0 or a
1, we can conclude that the number of satisfactory sequences of length k + 1 that
begins with either 01 or 10 is equal to the number of satisfactory sequences of length
k, 2F}.1. This is because we append a 1 to the start of the sequence if it starts with
a 0 and append a 1 otherwise. Similarly, the number of satisfactory sequences of
length k+ 1 that begins with either 001 or 110 is equal to the number of satisfactory
sequences of length k£ — 1, 2F}). So, by induction, the number of satisfactory binary
sequences of length k + 1 is 2F), + 2F)y1 = 2(Fy + Fry1) = 2Fj10. O

Theorem 3.7. J, = J,_1+ J,_2 — 2, forn > 3, with J, =2 and J, = 4.

Proof. Note first that we are including the trivial and improper cases, so as to count
every (o-invoking set on P,. We begin with the initial values. The path with only
one vertex cannot send chips because it has no edges. Thus, whether the lone vertex
is in the perturbation subset or not, the chosen set is 0s-invoking. So, P; has two
0o-invoking subsets: () and V(Py). On Py, a perturbation of any subgraph will return
to the fixed configuration after another step. Thus, P, has four 0,-invoking subsets.

Trivially, the empty subset and the entire vertex set are Os-invoking in P,. We
will take note of this and move forward counting the 0,-invoking subgraphs that are
both nonempty and have nonempty complement.

Suppose we have P, partitioned in such a way that H (and thus also, V/(G) \ H)
is a 0y-invoking subset of vertices, where H # () and H # V(P,). We will now count
all such possible subsets.

By Lemma 3.4 and Corollary 3.5, we know that v, and v,_; must be in different
partitions and similarly for v; and vs. Note, since H is non-empty, for H to be
0,-invoking the subgraph it induces cannot contain a path of length 3, as the center
vertex of this subpath is not adjacent to any vertices in the other partition, and by
Theorem 2.2 would mean H = V(G), a contradiction.

By Lemma 3.6, and remembering to account for the trivial and improper cases,
we know that this means that the number of 0,-invoking sets of P, is 2F,, 11 o+ 2 =
2Fn—1 + 2. SO, Jn = 2Fn—1 + 2.

Jn = 2Fn71 + 2
= Q(Fn—Q + Fn—3) +2
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=2F, 5+ 2F,_3+2
= Jp-1+ 2Fn73
= Jp-1+ Jn—2 -2

4 Conclusion

The results in this paper revolve around the broad question “How can we categorize
those perturbation subsets that lead to the 0-configuration being eventually restored
after some amount of steps?” We proved that all 0-invoking subsets are indeed 0-
invoking and then characterized all Og-invoking subsets as CCD (Theorem 2.2). The
study of CCD in families of graphs would be an avenue for future research, such as
counting the number of such sets, as was done for paths in this work.

In its most general form, a perturbation is a kind of disruption to the stack
sizes of a configuration. In this paper, we analyzed when a perturbation of the 0-
configuration eventually returned to the O-configuration. However, a more general
question would be “Which initial configurations can return after being perturbed?”
Does it matter how many vertices are in a perturbation set when answering this
question? Starting from the O-configuration, what configurations can exist within
the period of perturbation diffusion?
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