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ABSTRACT. A collection of edge-disjoint triangle-factors on K3n is called maximal 
if it cannot be extended by a further triangle-factor. It is well-known that a maximal 
set must therefore contain at least % triangle factors. We consider the following 

question: for which k with % :::; k :::; (3n;1) is there a maximal set of k triangle­
factors on K3n? 

1. INTRODUCTION 

A triangle-factor on J{3n is a vertex-disjoint union of n triangles (J{3S). A collection 

C of edge-disjoint triangle-factors is called maximal if any (further) triangle-factor in 

K3n shares an edge with some triangle-factors in C, i.e., C cannot be extended by a 

further triangle-fador. The following basic result is due to Corradi and Hajnal, [CH]. 

Lemma 1.1. Let G be a graph on 3n vertices with 8(G) 2: 2n. Then G has a 

triangle-factor. 

Corollary 1.2. If C is a maximal set of triangle-factors on 3nvertices, then lei 2: ~. 



Thus, a maximal set on 3n vertices must contain at least i triangle-fadors. At the 

other end of the spectrum, it is clear that a maximal set cannot contain more than 

(3n;1) triangle-factors. 

Theorem 1.3. For every odd n there is a (maximal) set of (3n - 1)/2 lriangle­

factors on 3n vertices. For every even n ~ 6 there is a (maximal) set of (3n - 2)/2 

triangle-factors on 3n vertices. 

Proof. These configurations are, respectively, Kirkman Triple Systems KTS (3n) and 

Nearly Kirkman Triple Systems NKTS (3n). 0 

Throughout this paper we will use the notation F(3n) to represent the spectru.m for 

triangle-factors, by which we mean F(3n) = {I ~ k ~ 3n;1: there exists a maximal 

set of k triangle-factors on 3n vertices}. Our objective here is to study the behaviour 

of the function F. 

Analogous problems that have been considered and solved recently include deter­

mining the spectrum for maximal sets of one-factors (R\V1J, and for maximal sets of 

two-factors and of Hamiltonian cycles [HRR]; see also [R6] for further problems of 

similar kind. 

Before proceeding we will introduce some terminology and notation which we shall 

use throughout the paper. (For undefined design-theoretic terms, see, e.g. [DS].) 

A T D( k, n) is a transversal design with k groups of size n. A restricted resolvable 

design RRP(p, k) is a pairwise balanced design on p points, with block sizes two and 

three, whose block set can be partitioned into k parallel classes; we call the design 

uniform if it admits a partition so that each parallel class is either a one-factor or a 

triangle-factor. The spectrum for RRPs was given in a series of papers by Rees (see 

(RIJ, [R2J, [R3], [R4]): 

Theorem 1.4. There exists an RRP(p,k) if and only if lp/2J ~ k ~ p - 1 and 

p( k - p + 1) == 0 mod 3, with the following exceptions: 
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(i) p == 1 mod 6 and k = (p - 1)/2, or p is odd and k = p - 1 

(ii) p == 3 mod 6, p "# 3 and k = p - 2 

(iii) p==3 mod6,p"#9 andk=p-3, and 

(iv) (p,k) = (6,3) or (12,6) 

fit/oreover, when p == 0 mod 6 the RRP(p, k) may be taken to be uniform. 

By a KTS(v) KTS(w) we will mean a Kirkman Triple System of order v which 

is 'missing' a subsystem of order w, that being a triple (X, Y, B) where X is a set of 

v points, Y is a subset of X of size w (Y is called the 'hole') and B is a collection of 

triples on X so that (i) (X, B U {Y}) is a pairwise balanced design and (ii) B admits 

a partition into parallel classes and holey parallel classes (each holey parallel class 

being a partition of X\Y). An N KTS(v) - N KTS(w) is defined similarly. The 

spectrum for subsystems in Kirkman Triple Systems was determined by Rees and 

Stinson (see [RS]). 

Theorem 1.5. A KTS(v) - KTS(w) exists if and only if v == w == 3 modulo 6 and 

v 2:: 3w. 

As a useful application of Theorem 1.6 we have the following: 

Corollary 1.6. If v == w == 3 modulo 6, v 2:: 3w and k E F( w) then ~(v - w) + k E 

F(v). 

Proof. From Theorem 1.6 we have a KTS(v) - KTS(w). Now, in this design there 

are H v - w) parallel classes and H w - 1) holey parallel classes. Thus, if we build a 

maximal set of k triangle-fadors on the hole (of size w) and throwaway H w-l)-k of 

the holey parallel classes we are left with a maximal set of !(v-w)+k triangle-factors 

on v points. 0 

vVe will begin in the next section by considering minP(3n) and max F(3n) for each 

n (i.e., the "extreme" values) and then in Section 3 we will conside~ the small values 
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n = 1,2, ... ,10. For these values of n we will see that the only cases that we are 

presently unable to settle are whether or not 5 E F(27) or 5 E F(30). In Sections 

4 and 5 we present some general results (see, e.g. Theorems 4.7 and 5.1), drawing 

on some of the constructions used in previous sections as well as bringing in some 

new ones. To this end, we will find the following result to be useful. If G is a graph 

we denote by G ® Iw the graph obtained by taking w copies Xlt X2,'" ,Xw of each 

vertex x in G , where Xi is adjacent to xj if a.nd only if x is adjacent to x' in G. 

Theorem 1.7. (Rees) [RS}) If the graph G admits an edge-dec01T!position into an 

even number k of triangle-factors} then the graph G ® 12 admits an edge-decomposition 

into 2ktriangle-factors. 

Corollary 1.8. If there is a maximal set of an even number k of triangle-factors on 

3n vertices whose leave graph contains a component on m vertices} m ¢. 0 mod 3, 

then there is a maximal set of 2k triangle-factors on 6n vertices. 

Proof. Apply Theorem 1.7. The set of 2k triangle-factors so produced will have a 

leave graph with a component on 2m ¢. 0 mod 3 vertices and so will form a maximal 

set. 0 

We end this section with an observation which we shall take advantage of quite 

frequently throughout the paper. If a graph G on 3n vertices has independence 

number a( G) > n then G cannot contain a triangle-factor; consequently, if C is a 

collection of triangle-factors whose leave graph contains a large independent set (i.e., 

on more than one-third the number of vertices) then C is maximal. 

2. EXTREME VALUES OF F 

In this section we consider max F(3n) and min F(3n). We have in fact already 

determined max F(3n) in Theorem 1.3: 
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Theorem 2.1. For any positive integer n '/:: 2 or../, we have 

{ 
(3n - 1)/2 if n is odd 

max F(3n) = (3n _ 2)/2 if n is even 

Furthermore, max F(6) = 1 and max F(12) = 4. 

Proof. See Theorem 1.3. Now NKTS(6) and NKTS(12) do not exist (see [KR]) , 

whence max F(6) ::; 1 and max F(12) ::; 4. It is trivial to construct one triangle­

factor on 6 vertices, while to get four (disjoint) triangle-factors on 12 vertices we 

consider the blocks in a resolvable T D(3, 4). 0 

\Ve turn out attention now to min F(3n). From Corollary 1.2 we know that 

min F(3n) ~ ~. 

Theorem 2.2. If n == 1,2 or 5 mod 6 and n '/:: 5,11 then min F(3n) = r~l. Fur­

thermore, min F(15) = 4, while min F(33) = 6 or 7. 

Proof. If n == 2 mod 6 we take as our vertex set AU B where IAI = n + 1 and IBI = 

2n - 1. From Theorem 2.1 we can construct I disjoint triangle-factors T1 , T2 , •• • ,T'f 

on A and a further ~ disjoint triangle-factors T{, T~, ... ,T~ on B. T~en the collection 

C = {Tl U T{ I T2 U T~, ... ,T 'f U T~} is a maximal set on A U B as all pairs from A 

are exhausted. 

If n == 1 mod 6 take as our vertex set Au B, where IAI = n + 2 and IBI = 2n - 2. 

Now we proceed as before, appealing to Theorem 2.1 to construct (n + 1)/2 disjoint 

triangle-factors on each of A and B. Again all pairs from A are exhausted and so a 

maximal set on A U B is obtained. 

For n == 5 mod 6, n ~ 17, we take as our vertex set A U B where IAI = n + 
1 and IBI = 2n - 1. Use Theorem 2.1 to construct (n - 1)/2 disjoint triangle-

factors on each of A and B. This time there remains on A a one-factor, call it 

P, of pairs that are not covered by any triangle. \Ve will construct one further 

triangle-factor on A U B, exhausting these pairs, as follows. Theorem 2.1 assures 

us that we can construct n - 1 disjoint triangle-factors on Bj hence the (n - 1 )/2 
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triangle-factors on B previously referred to can be chosen so that there remains on 

B a further (disjoint) triangle-factor T. Let P = {aoat,a2a3,'" ,an-tan} and let 

T = {bobl~) b:Jb"bs, ... ~n-4~n-3~n-2}; then our extra triangle-factor on AU B is 

{boaOaI) b1 a2a31'" ,b(n-l)/2an-l anl b(n+1)/2 b(n+3)/2 b(n+5)/2)'" '~n-4b:zn-3b:zn-2}' The 

result is a maximal set of (n + 1)/2 triangle-factors on AU B. 

There remain the values n = 5, 11 to be considered. It has been shown in [FMR] 

that pel5) = {4, 5, 6, 7}; in particular any set of three disjoint triangle-factors on 

15 vertices can be extended to include a fourth triangle-factor. There are, in fact, 

exactly 1409 nonisomorphic maximal sets of 4 disjoint triangle-factors on 15 vertices. 

For n = 11, we do not yet know whether 6 E F(33). "Ve can show that 7 E F(33), 

as follows. 

Points {I, 2, ... 12} U (Z7 x {I, 2, 3}) 

Triangle-Factors: Construct a uniform RRP(12, 7) on A = {I, 2, ... , I2} with triangle­

factors TIl T2 , T3 ) T4 and one-factors PI, P21 P3 • On the set B = Z7X {I, 2, 3} construct 

the following KTS(21): 

T! = i1(i + Ih(i + 3)1 i2(i + 2h(i + 6h i3(i + 2hU + 3h 
(i+2h(i+4h(i+6h (i+4h(i+Ih(i+5h (i+5)1(i+3h(i+lh 
(i + 6)rU + 5h(i + 4h, i E Z7 

T;' jlj2j31 j E Z7 

T~' jlU + I)2(j + 2h, j E Z7 

T~' jl U + 3hU + 6h, jE Z7 

We get four triangle-factors on AU B by taking Ti U T/ for i = 1,2,3,4. 

Now let the edges in Pi be eill ei2, ... ,ei6; the remaining triangle-factors on Au B 

are 

and 
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and 

As all pairs in A are exhausted, we indeed have a maximal set of triangle-factors 

on AU B. 

This completes the proof of Theorem 2.2. 0 

Theorem 2.3. If n == 3,4 or 0 mod 6 and n f:. 3 then there %s a maximal set of 

r~l + 1 triangle-factors on 3n vertices. Also, min F(9) = 4. 

Proof. Ifn == 0 mod 6 take the vertex set AuB where IAI = n+3 and IBI = 2n-3. 

From Theorem 2.1 we can construct ~(n + 2) triangle-factors on each of A and Bj in 

this way we obtain a collection of H n + 2) triangle-factors on AU B which forms a 

maximal set, as all pairs from A are exhausted. 

If n == 3 mod 6 and n ~ 15 take the vertex set A U B where IAI = n + 3 and 

IBI = 2n - 3. By Theorem 2.1 we can construct Hn + 1) triangle-factors on A and 

~ (n + 1) + 1 triangle-factors on B, from w hich ~ (n + 1) triangle-factors on AU B can 

be constructed. The pairs remaining on A form a one-factor; these together with the 

extra triangle-factor on B can be used to create a further triangle-factor on AU B, 

whereupon all pairs from A are exhausted (see the n == 5 mod 6 case in Theorem 

2.2). 

Now for n = 3 it is not difficult to see that a maximal set of triangle-fadors on 9 

vertices actually forms a KT S(9). For n = 9, we have the following construction for 

a maximal set of 6 triangle-fadors on 27 vertices: 

Points {a,b,c,d,e,f,g,h,i,j} U {1,2, ... ,17} 
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Triangle-Factors 

ab2 ach a g j adf b d j bfg 
cd 16 b e i c f i e h j ceg d h i 
e f 17 dg2 bh3 bc4 ai5 a e 1 
gh7 f j 11 de 12 g i 13 f h 14 c j 15 
i j 12 1 6 17 1628 1639 16 4 10 1656 

1 6 11 17612 17713 17 8 14 17 9 15 17 10 11 
3 8 13 3 14 15 4 15 11 5 11 12 1 12 13 2 13 14 
4 9 14 458 519 1 2 10 236 347 

5 10 15 9 10 13 10 6 14 6 7 15 7811 8 9 12 
Note that the triples induce an RRP(10,6) on the set A {a,b, ... ,j} and so 

exhaust the pairs on A. 

Finally, we consider the ease n == 4 mod 6. If n ~ 16 take the vertex set AU E 

where IAI = n + 2 and lEI = 2n - 2. By Theorem 2.1 we can construct ~ triangle­

factors on A and ~ + 1 triangle-factors on E, leaving on A a one-factor of uncovered 

pairs; now continue as in the n == 3 mod 6 ease to get, in all, I + 1 triangle-factors 

on A U B which form a maximal set. For n = 4 we have the following set of three 

triangle-factors on 12 vertices which forms a maximal set: 

1 5 9 1 6 11 1 7 10 
261027122811 
3711 389 3512 
4 8 12 4 5 10 4 6 9 

Finally, for n = 10 v·;e take as our point set {a, b, c, ... ,j, x} U {I, 2, ... ,19} and take 

the following triangle-factors: 

a b 18 a c h ad f b d j bfg a gj 
c d 6 be i e h j eeg d h i c f i 
e f 12 dgx bex f h x aex bh5 
g h 13 f j 14 g i 15 a i 16 c j 17 d e 18 
i j x 1 7 13 2 8 14 3 9 15 4 10 16 x 11 17 

1 8 15 2 9 16 3 10 17 4 11 18 5 12 13 6 7 14 
4 9 14 5 10 15 6 11 16 1 12 17 2 7 18 3 8 13 
2 10 11 3 11-12 4 1 27 578 689 1 9 10 
3 5 16 4 6 17 5 7 18 6 8 13 1 9 14 2 10 15 
19 7 17 19 8 18 19 9 13 19 10 14' 19 11 15 19 12 16 

The triples induce on RRP(10, 6) on {a, b, c, ... ,j}, and the point x meets with.every 

point in this set whence all pairs on {a, b, c, .. , , j, x} are exhausted. 

This completes the proof of Theorem 2.3. 0 



We conclude this section with the remark.that we do not know of any examples for 

n == 3,4 or 0 mod 6 where the Corradi-Hajnal bound of r~l is actually achieved. 

It is easily seen that 2 rt F(9) and that 2 f/. F(12), and exhaustive computer search 

has shown that 3 f/. F(lS). Thus, the first case that arises is the question of whether 

or not 5 E F(27). 

Basically, the algorithm employed to show that 3 rt F(lS) goes as follows: 

Step 1. Compute all non-isomorphic ways to put two triangle-factors together; 

Step 2. For each of the configurations in Step 1, compute all compatible third factors 

(employing isomorph rejection); 

Step 3. For each of the configurations in Step 2 search for a compatible fourth factor. 

Note that if for some configuration C in Step 2 there is no compatible fourth factor, 

then C is maximal and we would have 3 in F(18). What actually happended, however, 

was that every configuration from Step 2 was able to be extended by Step 3 with 

a fourth factor, whence no collection of 3 disjoint triangle-factors on 18 vertices is 

maximal, i.e., 3 rf. F(lS). 

3. SMALL VALUES OF n 

In this section we consider the small cases n = 1,2, ... 110; we will determine 

F(3n) completely for each n =I- 9,10 (we still do not know whether 5 E F(27) or 

5 E F(30)). So far we have F(3) = {1},F(6) = {1},F(9) = {4} and F(12) = {3,4}. 

'vVe now consider F(15). 

Lemma 3.1. F(15) = {4,5,6,7} 

Proof. See [F..0{R]. 0 

Next we consider F(lS). From Theorem 2.1 we have max F(lS) = Sj on the other 

hand from Theorem 2.3 and the remark following it, we have min F(18) = 4. 

Lemma 3.2. P(lS) = {4,5,6, 7,8} 



Proof. From the foregoing we must show that 5,6 and 7 are in F(18). We start with 

5 triangle-factors. 

Points {a,b,c,d,e,f,g,h} U {1,2, ... ,1O} 

Triangle-Factors 

def dhc adg beh cf2 
abc gbf ec7 a.fl ah3 

g h 10 a e 10 hf5 gc8 db7 
123 147 b34 d49 ge6 
456 258 1 6 S 267 159 
789 369 2 9 10 3 5 10 4 S 10 

These triangle-fadors do in fact form a maximal set, as all pairs from {a, b, c, d, e, I, g, h} 

are exhausted (in fact, the design induced on these points can be obtained by deleting 

a point from an RRP(9,5)). 

For 6 triangle-factors take the point set Z6 x {I, 2, 3} and develop each of the fol­

lowing sets of base blocks modulo six: {010203}, {011223}, {012243}' {013213}, {014233} 

and {012141,022242,032343}' 

Finally, for 7 triangle-factors we simply put a triangle-factor on the 'missing' sub-

design in an N KTS(1S) - N KTS(6) (this design is due to Brouwer [B]). 0 

We next determine F(21) and F(24). 

Lemma 3.3. F(21) = {4,5,6, 7,S,9,1O} 

Proof. From Theorem 2.1 and Theorem 2.2 we have max F(21) = 10 and min F(21) = 

4. Thus, we must show that {5,6, 7,S,9} ~ F(21). 

For 5 triangle-factors we have the following solution on the point set {a, b, c, d, e, I,g, 

h,i}U{I,2, ... ,12}: 

abc 
de f 
g h i 
123 
4710 
5811 
6912 

a e i 
dhc 
gbf 

1 7 11 
259 
3412 
10 S 6 

adg 
bi6 
ec9 
h f 12 
145 
278 

3 10 11 

beh 
af4 
d i 7 

g c 10 
189 

21112 
356 

c f i 
ah5 
db8 
g ell 
1 10 1.2 
246 
379 



The triples induce an RRP(9,5) on {a, b, c, ... ,i}. 

For 6 triangle-factors we again use as our point set {a,b,c, ... ,i} U {1,2, ... ,12}: 

abc def g hi adg beh c f i 
dh3 ch4 cd5 f h 6 d i 1 ah2 
ei5 ai6 ae1 ce2 af3 bd4 

f g 11 b g 12 bf7 bi8 cg9 e g 10 
178 289 3910 4 10 11 5 11 12 6 12 7 

2 10 12 3117 4 12 8 579 6810 1 9 11 
469 5 1 10 6211 1 3 12 247 358 

The triples include an RRP(9,6) on {a, b, c, ... 1 i}. 

To get 7 E F(21) we take as our triangles the blocks of a resolvable T D(3, 7), while 

to get 8 E F(21) we take as our point set (Zs x {1,2})U {a,b,c,d,e} and develop the 

following triangle-factor modulo 8: 

011131 

a4 172 

c5 162 

e2 122 

To see that we do indeed get a maximal set note that the leave graph contains a Ks 

(on the vertices a, b, c, d, e) as a component. 

Finally, for 9 triangle-factors we take the point set (Zg X {I, 2}) U {a, b, c} and 

develop the following triangle-fador modulo 9: 

011131 

4181 52 

2162 a 

7172c 

021232 

428251 

2261b 

In this case the leave graph consists of a triangle and an IS-cycle. 0 

Lemma 3.4. F(24) {4, 5, 6, 7,8,9,10, Il} 

Proof. By Theorems 2.1 and 2.2 we have max F(24) = 11 and min F(24) = 4, and 

so we must show that {5, 6, 7, 8, 9, IO} ~ F(24). 

We start with five triangle-fadors. Take as our point set {a, b, c, d, e, j, g, h, i} U 

{I, 2, ... I5} and consider the following factors: 
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abc ae i adg beh c f i 
de f dhc bi2 af3 a h 4 
g h i gbf e c 10 d i 6 db7 

1611 1 7 13 h f 14 g c 15 g e 11 
2712 2814 13 1 2 2413 3 5 14 
3813 3 9 15 467 578 189 
4914 4 10 11 5913 1 10 14 26 15 

5 10 15 5 6 12 8 11 15 9 12 11 10 13 12 

Note that the triples induce an RRP(9,5) on {a,b,c, ... ,i}. 

We now construct a maximal set of 6 triangle-factors, again taking the point set 

{a,b,c, ... ,i} U {1,2, ... ,15}: 

abc def g h i adg beh c f i 
dh3 ch4 cd5 f h 6 d i 1 ah2 
ei5 ai6 a e 1 ce2 af3 bd4 
f g 8 bg9 b f 10 bill c g 12 eg7 

13 1 7 1328 1339 13 4 10 13 5 11 13 6 12 
1429 14 3 10 14 4 11 14 5 12 14 6 7 14 1 8 
15 4 12 15 5 7 15 6 8 15 1 9 15 2 10 15 3 11 
6 10 11 11 1 12 2 12 7 378 489 5 9 10 

Here the triples induce an RRP(9,6) on {a,b,c, ... ,i}. 

For 7 triangle-fadors we take as our point set Z8 x {l, 2, 3} and develop each of the 

base triples 010203,0112231012243,01326310142 b, 015233 and 01 6253 modulo 8, while for 

8 triangle-factors we take as our triangles the blocks of a resolvable T D(3, 8). To get 

a maximal set of 9 triangle-factors we take the point set (Zs x {I, 2})U {a, b, c, d, e,f} 

and develop the triangle-factor 

a1112 
b3 172 

c4 162 

d6 132 

e7152 

18102 

012151 

224282 

_modulo 9 (the only triangles in the leave are contained entirely within the vertex set 

{a, b, c, d, e, f}). 

Finally, for 10 triangle-factors we put a triangle factor on the 'missing' sub design 

in an N KT 5(24) - N KT 5(6) (see [R2]). 

This completes the proof of Lemma 3.4. 0 

We complete this section by considering F(27) and F(30); in each case there re-
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mains one value of k which we are presently unable to include in or exclude from 

F. 

Lemma 3.5. F(27);2 {6,7,8,9,10,1l,12,13}. 

Proof. By Theorem 2.1 we have max F(27) = 13, while we have 6 E F(27) by 

Theorem 2.3 (we do not yet know whether 5 E F(27)), and so we must show that 

{7,8, 9,10,11, 12} ~ F(27). We begin with seven triangle-factors. Our ingredients 

will be a uniform RRP( 12, 7) (on the point set A = {a, b, c, ... , I}) and a KT S( 15) 

(on the point set B = {1,2, ... ,14} U {oo}): 

ab ac ad 
a e 1 a f j agk a h 1 cd b d be 
bhk b g 1 b f i be j e f eg eh 
c f 1 cek c h j cgi gh fh fg 
d g j d hi del dfk i j i k i I 

k 1 j 1 j k 

00 1 8 00 2 9 00 3 10 00411 00512 00 6 13 00 7 14 
2 11 12 3 12 13 4 13 14 5 14 8 689 7 9 10 1 10 11 
3 9 14 4 10 8 5119 6 12 10 7 13 11 1 14 12 2813 
467 571 612 723 1 3 4 245 356 

5 10 13 6 11 14 7 12 8 1 13 9 2 14 10 3811 4 9 12 

'vVe pair off the first four triangle-factors in each design to yield four-triangle-factors 

on A U B. The remaining three triangle-factors are obtained by dismantling two 

triangles in each of the last three triangle-factors on B and assigning to each set of 

six points so produced one of the one-factors on A: 

ooab ooeg ooil 
5cd 6ac 7ad 
12ef 13bd 14bc 
6gh 2ik leh 
8ij 4jl -10fg 
9kl 5fh lljk 

In this way a maximal set of 7 triangle-factors on Au B is obtained. The constructions 

for 8 and 9 triangle-factors are similar to the foregoing. For 8 triangle-factors we 

take a uniform RRP(12, 8) which can be obtained from the foregoing RRP(12, 7) by 

arranging the pairs covered by the first triangle-factor and the first one-factor into 

three one-factors: 
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ab ef i j 
cd gh k 1 
e i a i ae 
hk bk bh 
f 1 c 1 c f 
gj dj dg 

Now take the KTS(15) given above and pair off the three triangle-factors in the 

RRP(12,8) with the first three triangle-fadors in the KTS(15). Of the triangles 

that remain on the KTS(15) we can pull out five disjoint subsets, each made up of 

three disjoint triangles: 

00 4 11 7 13 11 7 9 10 2 8 13 7 2 3 
5 14 8 1 3 4 1 14 12 3 5 6 1 13 9 

6 12 10 2 14 10 3 8 11 491200512 

In each case we extend the three disjoint triangles to a triangle-factor on A U B 

by assigning to each point not covered by the three triangles an edge of one of the 

one-fadors on A: 
7ac 
2 b d 
3eg 
1 f h 
13 i k 
9 j 1 

00 a b 
5 e i 
12 f 1 
6 hk 
8 g j 
9 c d 

00 e f 
6 a i 

13 g h 
2 c 1 
4bk 
5 d j 

00 i j 
7bh 
14 c f 
1 k I 

10 a e 
11 d g 

14 ad 
4eh 
6 b c 
8 i 1 

10 f g 
11 j k 

To get 9 triangle-factors we start with a uniform RRP(12, 9) which we obtain from 

the RRP(12, 8) by arranging the pairs covered by the triangle-factor a f j, b g 1, c e k, 

d h i and the one-factor a c, b d, e g, f h, i k, j I into three one-factors: 

ac eg ik 
bd fh jl 
fj aj af 
gl bi bg 
ek ck ce 
hid i d h 

Now take the KT S( 15) and pair off the first and third triangle-factors with the two 

triangle-factors in the RRP(12,9); this gives two triangle-factors on AU B. From 

the remaining triangles on the KTS(15) we extract seven disjoint subsets each made 

up of three disjoint triangles: 

00 4 11 7 13 11 7 9 10 2 8 13 7 2 3 00 6 13 00 7 14 
5 14 8 1 3 4 1 14 12 356 1 13 9 2 4 5 6 8 9 
6 12 10 2 14 10 3811 4912 00 5 12 1 10 11 3 12 13 
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As before we extend each subset to a triangle-factor on AU B by assigning to each 

point not covered by the three triangles an edge from a one-factor on A. 

7 a c 00 a b 00 e f 00 i j 14 a d 3 b 1 1 c e 
2 b d 5 e i 6 a i 7b h 4 e h 7 d i 10 d h 
3 h i 12 f 1 13 g h 14 c f 6 b c 8 f h 11 a f 
Ifj 6hk 2cl lkl 8il 9aj 2ik 

13 e k 8g j 4 b k 10 a e 10 f g 12 c k 4 fl 
9 g 1 9 c d 5 d j 11 d g 11 j k 14 e g 5 b g 

We move now to 10 triangle-factors. Take as our point set (ZIO x {I, 2}) U 

0045132, ooS7 182, CXJ68152, 00791921 314161,122242 modulo 10. "Ve get a maximal set, 

as the leave contains a K7 ( on 001, ... ,007) as a component. The solution for 11 

triangle-factors is similar, taking (211 x {1,2})U {OOl,002,'" ,oos} as our point set 

0131.51,112132,021252,417292 modulo 11; the leave contains a Ks (on 001,002, ... ,oos) 

as a component. Finally, to get a maximal set of 12 triangle-factors we take as 

that the leave graph here consists of a disjoint union of one triangle and six four-

cycles. This completes the proof of Lemma 3.5. 0 

Lemma 3.6. F(30) 2 {6, 7,8, 9,10,11,12,13, 14}. 

Proof. From Theorem 2.1 we have max F(30) = 14, while 6 E F(30) by The­

orem 2.3 (we do not know yet whether 5 E F(30)). Hence we must show that 

{7,8,9, 10; 11, 12, 13} ~ F(30). 

For a maximal set of 7 triangle-factors we simply take two (disjoint) copies of a 

KT S(15). From here we can easily get 9 triangle-factors, as follows. Let one of the 

triangle-factors (of the set of 7) be 

123 456 789 10 11 12 13 14 15 
l' 2' 3' 4' 5' 6' 7' 8' 9' 10' 11' 12' 13' 14' 15' 

\Ve dismantle this factor and create three new ones, viz: 
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1 26' 459' 7812' 10 11 15' 13 14 3' 
l' 2' 6 4' 5' 9 7' 8' 12 10' 11' 15 13' 14' 3 

1 3 5' 468' 7911' 10 12 14' 13 15 2' 
l' 3' 5 4' 6' 8 7' 9' 11 10' 12' 14 13' 15' 2 

234' 567' 8910' 11 12 13' 14 15 l' 
2' 3'4 5' 6' 7 8' 9' 10 11' 12' 13 14' 15' 1 

For 8 triangle-fadors we start with a uniform RRP(12,8) and the following collec-

tion of three triangle-factors and five partial triangle-factors on (Zs x {I, 2, 3}) U 

001 002003 
010203 

111213 

212223 

313233 

414243 

001 0111 

002 1222 

00323 33 

213243 

314203 

4102 h 

001 3141 

0020232 

0030343 

01 1223 

112233 

2142 13 

01 32h 
; 001 1203 
00241 23 
003 1102 

mod 5 

(For the RRP(12, 8) we take the design constructed in Lemma 3.5.) We pair off the 

three triangle-fadors above with the three triangle-fadors in the RRP(12,8). Now 

extend each partial triangle-fador above by assigning to each point not in the factor 

an edge from a one-factor of the RRP(12,8): 

21 a c 
31 b d 
22 e 9 
42 f h 
33 i k 
43 j I 

31 e i 41 e f 
41 a b 01 C I 
32 f I 42 a i 
O2 9 j 12 b k 
43 h k 03 9 h 
03 cd h d j 

01 i j 
11 a e 
O2 b h 
22 C f 
13 k I 
23 d 9 

11 be 
21 e h 
12 a d 
32 j k 
23 i I 
33 f 9 

As all blocks from the RRP(12,8) are utilized, we get a maximal set of 8 triangle­

factors (on {a,b,c, ... ,I} U (Z5 x {1,2,3}) U {00I,002,003})' 

We proceed now to 10 triangle-factors. A maximal set is obtained by taking as 

triangles the blocks of a resolvable T D(3, 10). For 11 triangle-factors we take as our 

point set (Zll x {I, 2}) U {0011 002,'" ,oos} and we develop the base triangle-factor 

0010192,0020291,00311821004128110052172100622711 00731421 0083241,5161101, 

5
2
6210

2 
modulo 11; the leave contains a Ks (on 001,002, ... ,oos) as a component and 

so can not contain a triangle-factor. 
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For 12 triangle-factors, we proceed as follows. We start with the maximal set of six 

triangle-factors on 15 points given in Lemma 3.1. As the leave contains a. component 

on 4 vertices (i.e., a 4-cycle) we can apply Corollary 1.9 to get a maximal set of twelve 

triangle-factors on 30 points, as desired. Similarly, if we start with a maximal set of 

seven triangle-factors on 15 points (i.e. a KTS(15)) and apply Theorem 1.8 to six of 

these triangle-factors we get a resolvable group-divisible design, with blocks of size 

three, having 5 groups of size 6. Building a triangle-factor on each group then yields 

a maximal set of 13 triangle-factors on 30 points. 

This completes the proof of Lemma 3.6. 0 

We summarize the results of the foregoing lemmas in the following: 

Theorem 3.7. Let 5 _< n < 10. Then F(3n) = {k : .!!. < k < 3n-l} with the 
- 2 - - 2 J 

exception of (k,n) = (3,5) and (3,6) and the possible exceptions of (k,n) = (5,9) 

and(5,10). 

Note that both possible exceptions in Theorem 3.7 are from the class {(r~l,n) : 

n == 0,3 or 4 modulo 6} (see Theorem 2.3 and the remark following it). 

Many of the constructions in this and the previous section may be generalized; this 

we will do in the next sections. 

4. CONSTRUCTING MAXL\iAL SETS FROM RESTRICTED RESOLVABLE DESIGNS 

By far, the most common construction used in Sections 2 and 3 is where we parti-

tion our 3n points (on which the maximal set is to be constructed) into two subsets 

A and B, where IAI > n, and then build the maximal set so that all pairs from A 

are exhausted. Usually this will occur by constructing the triples so as to induce an 

RRP(p, k) on A, k being the number of triangle-factors in the maximal set. 

Lemma 4.1. Let C be a set of triangle-factors on Au B where IAI = p and IBI = q 

and suppose that C induces an RRP(p, k) on A where k = ICI. Then either C is a 

Kirkman Triple System, or q ~ p. 
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Proof. Suppose that in the RRP(p, k) there are k; classes each with ew pairs, i = 

1, ... ,j. Then 

and furthermore, since there are in all ~p(2k - p + 1) pairs (i.e. blocks of size two) 

in an RRP(p, k), we have 

j 1 ?: kjej = 2"P(2k - p + 1) . 
1=1 

Now a parallel class in the RRP containing ej pairs is induced by a triangle-fador 

containing 3( q - ei) triples from Bj hence 

W ~~k;(g-e;). 
The three above equations now yield 

m ~ kg - ~P(2k - P + 1) , 

from which we get the inequality 

(1) (q - p)(q - (2k + 1 - p)) ~ 0 . 

Now 2k + 1 - p < P (as k ::; p - 1 in an RRP(p, k)) and so from inequality (1) either 

q ~ p or q ::; 2k + 1 - p; but in this latter case we get k ~ H q + p - 1), which in fact 

means k = !(q + p - 1) and so C is a Kirkman Triple System KTS(q + p) (having a 

Steiner Subsystem STS(q) on B). 

This completes the proof of Lemma 4.1 0 

From Lemma 4.1 then we see that in order to take advantage of this construction 

we must take p ::; q < 2p where p > k. \Vhile it seems certain that such a construction 

should apply whenever the numerical constraints are met we currently know of no 

way to prove this. As a result, many of our maximal sets from Sections 2 and 3 which 

are constructed using this technique are done on a case by case basis. Nonetheless, 

we will be able to use this construction to determine the bottom quarter of the 
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spectrum for F(u) (Theorem 4.7). We will first need the following result, which is a. 

direct consequence of Hall's Theorem. 

Lemma. 4.2. Let G be a subgraph of the complete bi]Xlrtite graph K n •n with bi]Xlrtition 

(VI, V2) and suppose that 81 + 82 2:: n, where 8i is the minimum deg~e of the vertices 

in part Vi. Then G has a one-factor. 

vVe will use Lemma 4.2 as follows. If AI is a matching in a graph Hand S is a set 

of INII vertices of H none of which is covered by lvI, then we define GUyI, S) to be the 

graph whose vertex set is MuS and whose edge set is {((x,y),z): (x,y) E lvI,z E 5 

and x, y, z is a triangle in H}. Note that G(AI,S) is a subgraph of Km,m where 

m = IMI. We denote by 8 .. ,,[ and 8s the minimum degrees, in G(AI, S), of the vertices 

in M and S respectively. Moreover, a one-factor in G(AI, S) corresponds to a disjoint 

set of triangles in H which cover the edges in M and the vertices in S. To facilitate 

the use of this idea we will denote by £(7) the leave graph of the collection 7 of 

triangle-factors, that is, the subgraph (of Kv) spanned by those edges which are not 

covered by any triangle-factor in 7. We begin with the following lemma, which will 

be central to the proof of Theorem 4.7. 

Lemma 4.3. Let p == 0 modulo 6, p 2:: 18 and let V = p + q where p < q < 2p. Then 

{~p,~p+ 1,~p+2} ~ F(v). 

Proof. ,\Ve start with k = ~p. Construct an N KTS(p) on the p-set and either a 

KTS(q) or an N KTS(q) on the q-set (depending on whether q == 3 or 0 modulo 6). 

Let {XIX2,X3X4,'" lXp-IXp} be the one-factor on the p-set and let {YIY2Y3, Y4YSYS, 

... ,Yq-2Yq-lYq} be a triangle-factor on the q-set. ,\Ve take as one triangle-factor the 

triples XIX2Yll X3 X 4Y2, ... , Xp-lXpYp/2, Yp/2+1 Yp/2+2 Yp/2+3, ... , Yq-2Yq-lYq' Then we 

pair off the ~p - 1 triangle-factors on the p-set with the same number of triangle­

factors on the q-set. 
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For k = !p + 1 we construct a uniform RRP(p, !p + 1) on the p-set and either a 

KTS(q) or an N KTS(q) on the q-set. There are 3 one-factors and ~p - 2 triangle­

factors in the RRP-pair off the triangle-factors with the same number of triangle­

factors on the q-set to obtain a collection T of triangle-fadors on v points. Let 

M 1 , M'}, and M3 be the one-factors on the p-setj since q > p there are (at least) three 

triangle-factors T1 , T'}" T3 left on the q-set. We get three more triangle-factors (on v 

points) as follows. 

Factor I: Let Ml = xix~, x5x!,· .. ,X;_IX; and TI = Y:Y~Y5, y!y~yJ, ... 'Y:-ZY!-lY~; 

take the triangle-factor TI = xi x~, y~ X5, x!y~, ... ,X;_l x;, Y!/2' Y;/2+1 1Y!/2+ZY;/2+3 

1 1 1 , ... 'Yq-2Yq-lYq' 

F t II ' L t ~'1 - 2 Z Z 2 Z 2 T - Z 2 2 2 2 Z Z Z Z d ac or . e lY·Z - XIX Z, X3X 4 ,'" ,Xp_IXp ' Z - YIYZY3'Y4YSYS,'" 'Yq-ZYq-lYq an 

let S = {yi,yi,'" ,Y;/z}. Then with respect to the graph £(TU {TI}), G(Afz,S) 

is a subgraph of K p / 2 ,p/z with minimum degree b( G) 2:: p/2 - 2. From Lemma 4.2 G 

has a one-factor so that by relabelling if necessary, we get our second triangle-factor 

and let S = {Yr,Y~,'" ,Y;/z}. Then, with respect to C(T U {TI,TZ}), the graph 

G(AI3, S) is a subgraph of Kp/z,p/z having minimum degree 5( G) 2:: p/2 - 4; since p 2:: 

18 we can apply Lemma 4.2 to construct a one-factor on G, from which we get our last 

t · I f ( . bIb 11"f ) T3 3 3 3 3 3 3 3 3 3 nang e- actor agam y re a e mg 1 necessary = Xl XZYI' x3X4YZ,'" ,Xp_l XpYp/Z' 

3 3 3 3 3 3 
Yp/2+IYp/2+ZYp/2+3"" 'Yq-ZYq-IYq' 

In all then we have a maximal set of (tp - 2) + 3 

desired. 

!p + 1 triangle factors, as 

Finally we consider k = ~p + 2. "We proceed as before, starting with a uniform 

RRP(p, ~p + 2) on the p-set and either a KT S( q) or an N KT S( q) on the q-set. Pair 

off the ~p - 3 triangle-factors in the RRP with the same number qf triangle-factors 

on the q-set to get a collection T of triangle-factors on v points. There remain on the 

86 



p-set five one-factors M 1 , M'}" ... '~[5 and on the q-set at least four triangle-factors 

TI, T'}" 1'31 T41 with there being a fifth triangle-factor if q ~ p + 6. We want in all 

five more triangle-fadors on our v points. We consider two cases. 

(i) q = p + 3 

We begin by constructing five partial triangle-fadors, each with ~(q + 3) triangles, 

from T1,T'}"T3 ,T4 (actually we will not need T4)' Let B be a fixed triangle of T'}, 

and let B~, B~ be fixed triangles of T3 , both of which intersect B. Now let T{ be 

any ~(q + 3) triangles of Tl which cover the vertices of B and let T~ be any ~(q - 9) 

triangles of T21 none of which intersects B~ or B~. Let T~ be any H q+3) triangles from 

T3 \ {B~ .B;}. Our five partial triangle-factors are then 7rl = T{, 7r2 = (Tl \T{) U {B}, 

7r3 = T2\(T~ U {B}), 7r4 = T~ U {B~,B~} and 7rs = T~. Note that the triangle-factors 

Tl and T2 have been exhausted and so each point y in the q-set is covered by at least 

two of these partial triangle-factors. For each i let Sj denote those points of the q-set 

that are not covered by any triangle of 7rj, where i = 1,' .. ,5. Then each point y is 

covered by at most three of the SiS. 

vVe can now construct our last five triangle-factors. vVe assume that the first 

i-I factors Tl, ... ,Ti-l have been constructed; the ith factor goes as follows. Let 

A{ x~x~ x1x~"'X~_lX~, Sj = {YLY~'" ,Y;/2} and consider the graph G(Afj,Si) 

(with respect to £(7 U {T I
, • •• , T i

-
1
})). From the foregoing each point Y E Sj is 

contained in at most two of the SjS, j = 1"" ,i 1, whence G has parameters 

85 2:: ~p - 4 and 8.H 2:: ~p - 8. By Lemma 4.2 G has a one-factor provided that 

85 + 8M 2:: ~P, i.e. p 2:: 24. By relabelling if necessary we obtain the triangle-factor 

There remains p = 18 to be dealt with. This corresponds to a maximal set of 

11 triangle-factors on 39 points. vVe will achieve this by writing 39 = 15 + 24 

and utilizing an RRP(15,11) and a Kirkman frame of type 64 (see Stinson [S]). 

Now the RRP(15,ll) has ten parallel classes each with 6 pairs and a triple, and 
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a further parallel class with 5 triples (see Theorem 3.5 in [RW2]). One triangle 

factor on 39 points is obtained by constructing a triangle-factor on the holes of the 

frame and pairing this off with the triangle-factor on the RRP. The remaining ten 

triangle-factors are obtained as follows. First of all we give the parallel classes of the 

RRP(15, 11), written on the point set Zs x {I, 2, 3}: 

01lz23 0122'h 
110Z h31 010203 
2103 1232 111213 
22 13 1333 212223 mod 5 
3141 2102 313233 
3242 4103 414243 

3343 4223 
Now let {a, b, c, d, e, j} be a hole in the frame, and let 1I"b 11"2 and' 11"3 be the holey 

parallel classes corresponding to this hole. Three triangle-factors on our 39 points 

are 11"1 U {01h231 al 1 021 b2 103 , c22 b, d3 141 , e3242, j3343 }, 11"2 U {11223J1 a2tl2, b31 13 , 

c32231 d4z02 , e4J OJ , j4 10d and 1I"3U {213243, a3 1221 b41231 c42331 d03 b, eOI11, j02h}. 

The remaining triangle-factors are constructed analogously, using the remaining holes 

in the frame. A maximal set of 11 triangle-factors on 39 points results. This completes 

the consideration of case (i). 

(ii) q ~ p + 6 

Our last five triangle-factors are constructed as follows. We will assume that 

the first i-I factors Tl I ••• I T i
- 1 have been constructed. Then let !vIi = x~ x~ 

Now in the graph G(!vlj1 Si) we have 5(G) ~ p/2-2(i-l) whence by Lemma 4.2 G will 

have a one-factor if p - 4i + 4 ~ p/2j this occurs as long as p ~ 36, or when p = 24,30 

and i =f 5, or when p = 18 and i -I 4.0!.5. By relabelling the ys if necessary our 

The foregoing settles things for p ~ 36. When p = 24 or 30 we do not get the last 

triangle-factor. In order to do these orders we will have to be more discriminating in 

88 



how we choose the SiS. We start with p = 30, constructing from T17 T1 , T3 , T .. , Ts five 

partial triangle-factors on the q-set, each with Hq - 15) triangles, so that each point 

y in the q-set is covered by at least one triangle. Take any ~(q - 15) triangles from 

Tl as the first partial triangle-factor irl; let tt,'" ,ts be the remaining triangles of 

TI . Now choose ~(q - 21) triangles from Tll none of which intersect with tl or t'l and 

form from these triangles (together with tl and t2 ) a second partial triangle-factor 

ir2' Similarly we choose from each of T3 , T4 and Ts Hq - 18) triangles none of which 

intersect with, respectively, t3! t4 and is and so form three more partial factors ir3, 

ir4, Irs. Now take Sj to be the set of points on the q-set which are not covered by any 

triangle in Iri, i = 1"" ,5. Then each point Y is covered by at most four of the SiS; 

this will insure that the last (fifth) triangle-factor can be constructed when we repeat 

the foregoing construction using these new SiS (in GUI-I5, S5) we will have 6s{ G) 2: 9 

and 6M( G) 2: 7). 

Regarding p = 24, we will construct on the q-set a set of nine triangle-factors 

together with five further partial triangle-factors, each with H q - 12) triangles, so 

that each point Y in the q-set is covered by at least two of the partial triangle-factors. 

\Vhen q == 3 mod 6 (i.e. q = 33, 39 or 45) we accomplish this by means of a 

KT S( q) - KT S(9) (see Theorem 1.6). The partial triangle-factors are constructed 

as follows. Let Tl and T2 be two holey triangle-factors in the incomplete KTS. (\Ve 

will take the hole to be {Yl,Y2,"'Y9}') Let tl E T1; then our first partial triangle­

factor is Irl = Tl \ {td. Now let T~ be any ~(q - 21)-subset of T2 which covers the 

vertices of t l , and take 1r2 = T~ U {YIY2Y3, Y4YSY6, Y7YSY9}' Note that between them 

Irl and 7r2 cover all points in the q-set. Thus if we repeat the foregoing, starting with 

the remaining two holey triangle-factors T3 and T4 we produce two further partial 

triangle-factors 113 and 1r4 which between them cover all of the points in the q-set. 

(Note that in constructing 1r4 we must of course take a second triangle-factor on 

Yl, Y2, ... ,Y9 which is edge-disjoint from that chosen for 11"2.) Thus each point Y in 
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the q-set is covered by at least two of the partial triangle-factors 1f'b 11'"2, 11'"3, 1f'". As our 

fifth partial triangle-factor 1I'"s we can therefore take any l(q-12)-subset of one of the 

triangle-factors in the incomplete KTS. Note that there will remain at least eleven 

triangle-factors in the incomplete KTS, nine of which will be used to pair off with 

the nine triangle-factors in the uniform RRP (24, 14). Now, letting S, be the set of 

points of the q-set which are not covered by any triangle in 11'"" i = 1"" ,5, we see 

that a given point y will be contained in at most three of the SiS. This then will 

insure that the last (fifth) triangle-factor on our v points can be ~onstructed, for in 

G(A1s, Ss) we will have bs( G) ~ 8 and bM( G) ~ 4. 

For q == 0 mod 6 (i.e. q = 30, 36, 42) proceed as follows. We start with q = 30, 

constructing on the q-set an N KTS(30) - N KT S(6) (see [R2]) with {Yl, Y2,'" ,Y6} 

as the hole. Let Tl and T2 be the two holey triangle-factors in the incomplete N KTS, 

and let t l , t2 E T1. Take as the first partial triangle-factor 7rl = Tl \{tl' t2}' Now let t3 

and t4 be triangles in T2 each of which is disjoint from il and t2 , and take as the second 

partial triangle-factor 7r2 = T2 \ {t31 t4 }. Let T3 be a triangle-factor on the incomplete 

N KTS, i.e. T3 = {B I ,'" ,B6 , Bi , Bs, Bg , B lO } where Bi intersects the hole in the 

point Yi, i = 1" ., ,6. vVe take as our third and fourth partial triangle-factors 7r3 = 

Note that each point Y in the q-set is covered by at least two of the partial triangle-

factors 7rl, 7r2, 7r3, 7r 4 and so we take as 7rs any 6 triangles from a second triangle-factor 

T4 in the incomplete N KTS. There remain ten triangle-factors in the incomplete 

N KT 5, nine of which will be used to pair off with the nine triangle-factors in the 

uniform RRP(24, 14). For q = 36 we construct on the q-set a resolvable T D(3, 12). 

On each group Gj , j = 1,2,3, construct a (maximal) set of four triangle-factors 

7r{,~, 7r~, 7r~. Then our five partial triangle-factors are 7rl = 7ri u 7r~, 7r2 = 7r; U 7r~, 

7r3 = 7rr U 7r~, 7r" = 7r~ U 7rl, 7rs = 7r5 U 7rl. As desired each poipt Y in the q-set 

is contained in at least two (in fact, at least three) of 7rl, 11"'2,'" ,7rs. Nine of the 
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parallel classes on the T D will be paired off with the nine triangle-factors in the 

uniform RRP(24,14). Finally, for q = 42 we start with a Kirkman Triple System 

KTS(21). in which there are four triples abc, del, adg , beh where the first two triples 

are in the same parallel class T{ and the remaining two triples are in the same 

parallel class T~. By Theorem 1.8 we can apply weight 2 to the KT 5(21) to yield 

an N KT S( 42); furthermore (see Rees [R5]) this can be done so as to produce from 

the above configuration of triples two such configurations, involving eight triples 

and four parallel classes TIl T2 , T3 , T4 on the N KTS(42). We then obtain our five 

partial parallel classes of triples on the q-set as follows. Consider the parallel classes 

TIl T2 and the triples {YIY2Y3, Y4YSY6} ~ Tl and {YIY4Y7, Y2YsYS} ~ T2. As our first 

partial triangle-factor 7rl we take 10 triangles from TlI each of which is disjoint from 

YIY4Y7 and Y2YSY8. For our second partial factor 7r2 we take Tl \7rl together with six 

triangles from T21 each of which is disjoint from each triangle in Tl \71"1' Note that 

each point Y in the q-set is covered by at least one of 71"1 or 7r2. Thus if we repeat the 

foregoing construction with the parallel classes T3 , T4 and then take as 71"5 any subset 

of ten triangles from a fifth parallel class T5 of triangles on the N KT S( 42) we obtain 

five partial triangle-factors on the q-set which between them cover each point at least 

twice. There remain fifteen parallel classes of triples on the N KT 5( 42), nine of which 

will be used to pair off with the nine triangle-factors on the uniform RRP(24, 14). 

In each of the above cases where q == 0 mod 6 we define, for each i = 1" .. ,5, 5 j 

to be the set of those points in the q-set which are not covered by any triangle in 71"il 

so that each point Y in the q-set is covered by at most three of the SiS. Thus, as in the 

q == 3 mod 6 cases we will have os(G(lvf5, S5)) ~ 8 and OAf (G(Af5! 55)) ~ 4 whence 

the last (fifth) triangle-factor on v points can be assembled. This settles p = 24. 

There remains p = 18, corresponding to maximal sets of 11 triangle-factors on 42, 

45, 48 and 51 points. vVe can construct these by writing v = 21 +q', q' = 21,24,27,30, 

constructing an RRP(21, 11) on the 21-set and then constructing either a KT5(21), 
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N KTS(24), KTS(27) or resolvable TD(3, 10) - having an orthogonal parallel class 

o - on the q'-set. Now in the RRP(21, 11) we have seven parallel classes, each with 

3 pairs and 5 triples, and four more parallel classes each with 7 triples (see Table I 

in the Appendix). Thus if q' = 21 we can get our maximal set of 11 triangle-factors 

by first pairing off the triangle-factors in the RRP(21, 11) with the triangle-fador 0 

and the three triangle-factors on the KTS(21) that are disjoint from 0, and then 

constructing one-factors on each of the graphs G(Mj1 Si) where Mi is the set of three 

pairs in the ith parallel class on the RRP and Si is the set of points· covered by the 

ith triangle in 0, i = 1,2,'" ,7. (The ith triangle-factor so produced consists of the 

5 triples in the ith parallel class of the RRP together with the 6 triples in Pi\O (Pi 

being that parallel class in the KT S which contains the ith triangle in 0) and the 3 

triples arising out of the one-factor on G(l\[j, Sj).) The constructions for q' = 24,27 

are virtually identical to the foregoing. For q' = 30 the four triangle-factors on the 

q'-set to be paired off with those on the RRP are as follows: take Ps, Pg and PlO (Pi 

being that parallel class in the T D which contains the ith triangle in 0) and, finally, 

extend the first seven triangles in 0 by three new triples, each triple being contained· 

in some group of the T D. The remaining seven triangle-factors on v = 51 points are 

constructed as in the q' = 21 case. 

This completes the proof of Lemma 4.3. 0 

vVe need a few more results before proceeding to the main theorem of this section. 

The first uses what is, strictly speaking, a variation on the RRP construction since we 

do not quite exhaust all of the pairs on the A-set. Note that this Lemma corresponds 

to the case where q = p in Lemma 4.3. 

Lemma 4.4. Ilv == 0 mod 12 then {~v, ~v+ 1, ~v+2} ~ F(v), except when v = 12 

and k = 5, and possibly when v = 48 and k = 14 or v = 60 and k = 17. 

Proof. We begin with k = ~v. That 3 E F(12) and 6 E F(24) was determined 
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in sections 2 and 3. Let v 2:: 36 and write v = 2p where p == 0 mod 6 and p 2:: 

18. Construct an N KTS(p) on each of two disjoint sets of p points each. Pair off 

!p - 2 triangle-factors on one N KTS with the same number of tr:iang1e-factors on 

the other N KT S to yield a set T of *v - 2 triangle-factors on v points. There 

remains on each p-set a one-factor and a triangle-factor, which we call, respectively, 

two triangle-factors are construded as follows. As our first triangle-fador we take 

T l12 112 1 12 2 2 2 2 2 2 N ItM­= Xl X2Yl' X3X4 Y2"" ,Xp_1 XpYp/2' Yp/HIYp/H2Yp/2+31'" , Yp-2Yp-lYp' ow e -

{xix~, x~x~,,·· ,X;_lX;} and S = {yi,yL'" 'Y;/2}' Then with respect to the leave 

graph £(TU{T}), the graph G(Af,S) has minimum degree o(G) 2: p/2-4 and since 

p 2: 18 we can apply Lemma 4.2 to produce a one-factor in G(Af, S) and so in turn (by 

relabelling if necessary) our last triangle-factor T' = xrx~YL x~x~YL' .. ,X;_l x;Y;/2' 

Y~/2+1Y;/2+2Y;/2+3' ... ,Y;-2Y;-lY;' There remains on each of the p-sets p/6 vertex­

disjoint triangles. It is easy to see, therefore, that it is impossible to form a further 

triangle-fador. 

Consider now the case k = ~v+l. vVe know from sections 2 and 3 that 4EF(12) and 

7 EF(24), and we may therefore assume that v 2:: 36. As above we write v = 2p but 

this time we construct a uniform RRP(p, !p+l) on one p-set and an N KTS(p) on the 

other. Pair off ~p - 3 triangle-fadors from each of these two designs to yield a set T 

of ~v - 3 triangle-factors on v points. Then construct the triangle-factors T and T' as 

above. There remain two one-fadors on the RRP and a triangle-fador on the N KTS, 

from which we will form two more triangle-fadors as follows. Let the triangle­

factor on the N KT S be YIY2Y3, Y4Y5Y6,'" Yp-2Yp-lYp' Let S1 = {Yl, Y2,' .. ,Yp/2} 

x~ x~, x~x~,,·· ,X~_l x~ be the two one-factors on the RRP. Then with respect to the 

leave graph £(TU {T, T'}) the graph G(Mjl Sd has minimum degrees os,(G) ~ !p-3 

and OM; (G) ~ tP - 6; since p ~ 18 Lemma 4.2 applies and so we can construct the 
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last two triangle-factors 

XIX2Yh X3 X"Y2,'" ,Xp-lXpYp/2, Yp/2+IYp/2+2Yp/2+3,'" ,fJp-2Yp-lYp and 

x~ X;Yp/2+h x~X~Yp/2+2'" X~_l x~YP' YIY2Y3'" Yp/2-2Yp/'l-lYp/'l' 

Finally we let k == ~v + 2. Here we will use a somewhat different idea. First of all 

we already know from sections 3 and 4 that 5 rI: F(12) and S E F(24). The following 

construction shows 11 E F(36). On each of two disjoint sets construct an N KTS(lS) 

which has the triangle-factor T == 1 47, 25 S, 369, 10 13 16, 11 1417, 12151S 

and the one-factor F == 1 10, 2 11 , 3 12, 4 13, 5 14, 6 15, 7 16 , 8 17 , 9 18 

(see, e.g. Kotzig and Rosa [KR]). From T and its counterpart we construct three 

triangle-factors on 36 points: 

1 4 8' 259' 367' 10 13 17' 11 14 18' 12 15 16' 
1'4'8 2'5'9 3'6'7 10'13'17 11'14'18 12'15'16 

1 7 5' 286' 394' 10 16 14' 11 17 15' 12 18 13' 
1'7'5 2'8'6 3'9'4 10'16'14 11'17'15 12'18'13 

472' 583' 691' 13 16 11' 14 17 12' 15 18 10' 
4'7'2 5'8'3 6'9'1 13'16'11 14'17'12 15'18'10 

A fourth triangle-factor is constructed from (some of) the pairs in F and its counter-

part: 

1 10 7' 2 11 8' 3 12 9' 4 13 16' 5 14 17' 6 15 18' 
1'10'7 2'11'8 3'12'9 4'13'16 5'14'17 6'1.5'18 

Now pair off the remaining seven triangle-factors on each of the two N KT Ss to 

obtain, in all, 11 triangle-factors on 36 points. There remain three disjoint pairs on 

each of the two N KTSs, and so we clearly have a maximal set. 

Now let v 2:: 72. Our design will be constructed using the case v = 36 as a model. 

\tYrite v = 2p, p 2:: 36, and construct an N KTS(p) on each of two disjoint p-sets. Pair 

off tp - 2 triangle-factors from each of the two N KT Ss to yield a set T of ~v - 2 

triangle~fadors on v points. There remains on each N KT S a triangle-factor and a 

one-factor. Let the triangle-factors be 

XIX2 X 3 X4 X SX6 

and YIY2Y3 Y4YSY6 
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We get three triangle-fadors as follows. 

T - Xt X 2Y6 X4 X SY9 ••• X3m+l X 3m+2Y3m+6 

1 - YIY2 X 6 Y4YSX9 • • • Y3m+lY3m+2 X 3m+6 

T2 = XIX3YS X4 X 6YS X3m+ 1 X3m+3Y3m+S 

YIY3 X S Y4Y6 X S Y3m+lY3m+3 X 3m+S 

T3 = X2 X 3Y4 XSX6Y7 X3m+2 X 3m+3Y3m+-4 

Y2Y3 X 4 YSY6 X 7 Y3m+2Y3m+3 X 3m+4 

X p-2X p-lY3 

Yp-2Yp-lX3 

Xp -2 X pY2 

Yp-2Yp X 2 

Yp-lXpYl 

Yp-lYpXl 

To get the last triangle-fador, let M be a (p/3)-subset of the edge set of the one-

factor on one of the N KT 5s and let 5 be a (p/3)-subset of points from the other 

N KT 5 which is exadly covered by p/6 edges from the one-fador on that set. Then 

with respect to the leave graph £(TU {TIl T'}., T3 }) the graph G(M, 5) has parameters 

b.\{(G) 2: p/3-8 and bs(G) ~ p/3-4 whence by Lemma 4.2 G has a one-factor, since 

p ~ 36. From this we obtain p/3 vertex-disjoint triangles on our v points, covering 

2p/3 points from one of the N KT5s and p/3 points from the other N KT5. Now 

repeat, choosing kI' from the edge set of the second N KT5 (so that 5 does not 

intersect the point set covered by AI') and choosing 5 f from th~ point set of the first 

N KT 5 (so that 5 f does not intersed the point set covered by kI). In all we obtain 

a triangle-fador on v points. vVhat remains on each N KT5 is a set of p/6 mutually 

disjoint edges, and so a further triangle-factor cannot be constructed. Hence our 

{v + 2 triangle-factors so constructed form a maximal set. 

This completes the proof of Lemma 4.4. 0 

The following result, which we state without proof, is a direct analogue to the 

k = {v + 2 case of Lemma 4.4. 

Lemma 4.4A. If v == 6 mod 12 and v 2:: 18 then ~(v + 6) E F(v). 

Lemma 4.5. If v == 3 or 6 mod 18 and v ~ 21 then r*l + 1 E F(v). 

Proof. If v = 21 or 24 apply Lemmas 3.3 and 3.4. Let v ~ 39 and write v = p + q 

where p = 2 r~l + 1; then p == 3 mod 6, p ~ 15 and p < q < 2p. Divide the v-set into 
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a p-set and a q-set, and on the p-set construct an RRP(p, ~(p + 1)) (Theorem 1.5). 

On the q-set we construct either an N KTS(q) or a KTS(q). Now we will need to 

examine how the pairs (blocks of size two) occur in the RRP. The information in Table 

I (Appendix) can be obtained by analyzing the construction for these designs in [R3, 

Lemma 2.7]. By the pair-type of the RRP we will mean the expression p~l pi ... P:' 

where there are rj parallel classes each with Pi pairs, i = 1, ... ,8. \Ve omit the term 

with Pi = O. 

N ow let us suppose that the pair-type in the RRP is p~l or p~l p;2. To a parallel 

class with Pi pairs we associate the pi-set of points (in the q-set) covered by pd3 

triangles of some triangle-factor on theq-set. As usual we will so generate a triangle­

factor on our v-set provided that the graph G(j\I, 5) has a one-factor, where Al is the 

pi-set of pairs on the p-set and 5 is the Pi-set of points on the q-set (see, e.g. the case 

P = 18 in Lemma 4.3). Now since the pairs in the RRP form a 2-regular graph, the 

parameter o,\.{( G) will always satisfy O,'vf( G) ;::: Pi - 2, and so G will have a one-factor 

provided that os( G) ;::: 2 (Lemma 4.2); this in turn will happen as long as Pi ;::: 2k, 

where k - 1 is the maximum value, taken over all YES, of the number of graphs 

Gj(lv!j,Sj) considered prior to G(A!,5) with y E 5j . Furthermore if 5' = 5n(Uj 5j ) 

and 15'1 = 0 or 1 then OM(G) ~ Pi -15'1, so that we require only that os(G) ~ 15'1. 

This is automatic \.,.hen 15'1 = 0, while if 15'1 = 1 we want Pi 2:: 2k - 1. In particular 

when Pi = 3 this allov,s one element y E 5 to have occurred in one of the preceding 

Sjs. 

Referring to Table I we see that the pairs fall into any of three, five or seven parallel 

classes in the RRP. For those designs in which the pairs fall into three classes a graph 

GUv!, 5) will, by the foregoing, have a one-factor provided that Pi ;::: 6 or, when Pi = 3, 

that (at most) one element yES has occurred in one of the preceding Sjs. From 

Table I we see that (for p ;::: 15) this can be easily arranged; for those designs ,',lith a 

3 in the pair-type there is only one such 3, and we simply use these three pairs to set 

96 



up the first graph G(M,S). For those designs in which the pairs faU into five classes 

a graph G(M,5) has a one-factor provided that Pi 2:: 12 Of, when Pi = 3, that at 

most one element yES has occurred in one of the preceding Sjs, Now from Table I 

the pair-type in these designs is either 35 (p = 15) or pi33 where PI 2:: 21. Thus we 

need consider only the graphs G(M,S) corresponding to Pi = 3. When P = 15 we 

have q = 24 or q = 27; then given L1(q-l)J triangle-factors on q points it is a simple 

matter to choose, in turn, five triangles, at most one from each triangle-factor, so 

that each triangle intersects at most one of its predecessors. This is precisely what 

we seek, since each of these triangles then gives rise to an Sj (i.e. Sj = point set of 

the ph triangle, j = 1"" ,5). Similarly, for RRPs of pair-type pi33 we choose, in 

turn, three such triangles from the (N)KT S( q) on the corresponding q-set and so 

form 51,52 and 53' \Ve then choose any pd3 triangles from each of a fourth and 

fifth triangle-factor on the q-set and so form 54 and Finally, for those designs 

in which the pairs fall into seven classes a graph GO\;!,5) will have a one-fador as 

long as Pi 2:: 15 or, when Pi = 3, as long as at most one element yES has occurred 

in one of the preceding Sjs. From Table I the pair-type in these RRP s is either 

37(p = 21), pr35 or p{3 4 where PI 2:: 21, whence again it suffices to consider graphs 

G(lH, S) corresponding to Pi = 3; this can be done in similar fashion to the previous 

case (note that when P = 21 we have q = 36 or 39). 

This completes the proof of Lemma 4.5. 0 

The following result is proven similarly. 

Lemma 4.6. If v == 0 mod IS then ~ + 2 E F(v). 

Proof. If v = IS we apply Lemma 3.2. For v 2:: 36 write v = P + q where P = ~ + 3. 

Then we have P == 3 mod 6, p ~ 15 and p < q < 2p. Now proceed as in the proof 

of Lemma 4.5. The only significant changes occur when p = 15 or 21, when we have, 

respectively, q = 21 or 33. On these q-sets construct a KTS(21) .and a resolvable 
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TD(3, 11), each of which has an orthogonal parallel class of blocks. In this way we 

can extract the five (resp. seven) triangles on the q-set with the desired intersection 

pattern. 0 

We now proceed to the main result of the section. 

Theorem 4.7. Let v == 0 mod 3, v ~ 33. Then {r~l, r~l + 1"" , rV~11} ~ F(v), 

except possibly that r~l rt F( v) where either v == 0,9,12 mod 18 or v = 33. 

Proof. If v == 0 mod 18 and k = ~ + 1 or ~ + 2 apply, respectively, Theorem 2.3 

or Lemma 4.6. If v == 3 or 6 mod 18 and' k = r~l or r~l + 1 apply, respectively, 

Theorem 2.2 or Lemma 4.5. For v = 33 we need only construct a maximal set of 8 

triangle-factors (the case k = 7 is dealt with in Theorem 2.2). Take the point set 

{1, 2, ... , 12} U (Z7 x {I, 2, 3}), and construct a uniform RRP( 12,8) on {I, 2, ... ,12} 

with triangle-factors T1 , T2 , T3 and one-factors P l ,' .. ,Ps. On Z7 x {I, 2, 3} construct 

the KT S(21) given in the case v = 33 of Theorem 2.2. Our first three triangle-factors 

are Ti U T:, i = 1,2,3 and we get three more triangle-factors from PI, P2 , P3 and 

T{', T~/, T~' in the same manner as that of Theorem 2.2. The last two triangle-factors 

are obtained as follows. Let !vI = P4 and S = {21,42,63,61,52,43}; with respect 

to the leave graph of the first six triangle-factors the graph C(lt!, S) has minimum 

degree 8( G) ~ 3 and so by Lemma 4.2 has a one-factor. By relabelling if necessary 

we get our seventh triangle-factor 

The eight triangle-factor is constructed analogously, using !v! = Ps and S = 

{11,32,53,51,42,33}({1132531 5 I 4233} ~ T~). 

Otherwise, let r~l ~ k ~ rV~ll, p = 2k - (2k mod 6) and q = v - p. Then 

v = p + q, where p == 0 mod 6 and p ~ q < 2p (with p = q occurring precisely when 

v == 0 mod 12 and k = ~) and, furthermore, k = !p + i where i= 0,1 or 2. Finally, 

since v ~ 36 we have p ~ 18. Now apply Lemma 4.4 (p = q) or Lemma 4.3. 0 
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Theorem 4.7 gives the bottom quarter of the (anticipated) spectrum for F(v). 

With regard to the values k = r~l, v == 0,9 or 12 mod 18, it is not difficult to see 

that. the RRP construction, strictly employed, cannot work. For example, if v = 36, 

k = 6 then we would have to have p > 12 whereupon no RRP(p,?) exists. We do 

not know at present how to deal with these cases. In fact (as previously noted) we 

do not know of a single value for v in these classes mod 18 for which r~l E F( v). 

5. OTHER CONSTRUCTIONS FOR MAXIMAL SETS 

In this section we will briefly indicate some further constructions which will prove 

useful in studying this problem. 

The first construction has already been given as Corollary 1.6 and, under optimum 

conditions~ will yield the 'top one-third' of the spectrum for F( v), where v == 3 mod 

6. Thus given v == 3 mod 6 we write v as one of 3w, 3w + 6 or 3w + 12 where w == 3 

modulo 6. Then apply Corollary 1.6 over all values of k E F( w). For example, we 

have F(15) = {4,5,6,7} (Lemma 3.1). vVe thereforeF(45) 2 {19,20,21,22}, 

F(51) ;;2 {22, 25} and F(57) 2 {25, 26, 27, 28}. For v = 63 we advance w to 

21, employing Lemma 3.3 and so obtaining F(63);;2 {25,26,27,28,29,30,31}, and 

so on. In we have the following inductive construction.' 

Theorem 5.1. If w == 3 mod 6, v = 3w + 61'(1' 0,1 or 2) and k E F( w) for k 2: t, 

then w+k' E F(v) for k'2: 3r+t. In particular ift = (w+3)/6 then kif E F(v) for 

all kif ? -'-"-'-"-'-""-"-'-

Note that (v 1)/2-(7v+9+12r)/18 is roughly v/9, which represents one third of 

the (anticipated) spectrum for F(v). The net result of Theorems 4.7 and 5.1 is that 

for v == 3 mod 6 we can limit our attention to values of k between v / 4 and 7v /18. 

In order to derive a result for v == 0 mod 6 analogous to Theorem 5.1 we would 

need to know something about the spectrum for large 'holes' in Nearly Kirkman 
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Triple Systems (i.e. an analogue to Theorem 1.6 for N KTSs, with w == ° mod 6 

and v = 3w, 3w + 6 or 3w + 12). 

The second construction, illustrated by the solutions for 10, 11 and 12 triangle­

factors on 27 points (Lemma 3.5) uses the observation that if C is a collection of 

triangle-factors whose leave graph contains a component on m ¢. ° (mod 3) vertices, 

then C is a maximal set. In the simplest case, where the component is a K m , it is 

easy to see that m ~ ~v, where k 2:: ~v. This construction will be useful for those 

cases k 2': ~ where the foregoing recursive construction does not apply. We will now 

apply this construction to prove the following. 

Theorem 5.2. Let v == 0 mod 3, 33 :::; v ::; 42, and suppose that ~v ~ k ~ V;l and 

k ¢. 0 mod 3. Then k E F(v). 

Proof. We begin with v = 33, constructing maximal sets for k = 11,13 and 14: 

k = 11 Take the blocks of a resolvable T D(3, 11). 

k = 13 Take the point set (Z13X {I, 2} )U{OOI' 002,'" ,007} and develop the following 

triangle-factor modulo 13: 

012171 0013162 005101122 
022272 0023261 006102121 

114151 0038192 00711 1112. 
124252 0048291 

k = 14 Take the point set (Z14 x {I, 2} ) U {001' 002, ... ,005} and develop the following 

triangle-factor modulo 14: 

9111t121 215271 00331132 

92112122 225172 00432131 

011261 001 41102 0058182' 
021162 00242101 

For k = 16, take a KTS(33). In each of the foregoing, the leave graph contains a 

Km (m ¢. 0 mod 3) as a component; where k = 13,14 it occurs on the OOS. 

Now let v = 36, so that k = 13,14,16, or 17. 
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k = 13 Take the point set (Z13X {I, 2} )U{OOl) 002,'" , OOlO} and develop the following 

triangle-factor modulo 13: 

011141 0032192 0076172 

02 1242 0042291 0086271 

00131122 00551102 00981112 

00232121 00652101 001082111' 

k = 14 Here our point set is (Z14 x {I, 2}) U {00l! 002,'" ,oos}. Develop the following 

triangle-factor modulo 14: 

012131 001 71132 005 11122 
022232 00272131 00612121 
415291 00361 11 2 00781102 
425192 00462111 00882101' 

For k = 16, construct a maximal set of 4 triangle-factors on each group in a 

resolvable T D(3, 12), and for k = 17 take an N KT5(36). 

vVe proceed now to v = 39, solving for k = 13,14,16,17,19. 

Take the blocks of a resolvable T D(3, 13). 

Our point set is (Z14 X {I, 2}) U {OOh 002, ... ,0011}' Develop the following 

triangle-factor modulo 14: 

6171101 003lt42 0078d22 001l13d32 . 
6272102 004 1241 00882121 

0010152 0052132 0099111 2 

0020251 0062231 00109211 1 

Take the point set (ZI6 x {1,2}) U {001,002,'" ,007}' Develop the following 

triangle-factor modulo 16: 

10,121131 4191142 0031121 007')152 , 
102122 132 4292141 0041221 
7111 1 152 0010132 0058162 

7211 2151 0020231 0068261 

Take the point set (Z17X {1, 2} )u{ 001,002, ... ,005}, and develop the following 

triangle-factor modulo 17: 

011182 216d21 001 3142 0057172 . 
021281 2262122 0023241 

9111 1152 51101 131 003141162 

9211 2151 52102132 004142161 

For k = 19 we take a KT 5(39). 
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Finally, we consider v = 42, taking in turn k = 14,16,17,19,20. 

k-=-l.4. Take the blocks of a resolvable T D(3, 14). 

k = 16 Our point set is (Z16 x {1,2}) U {oo},ooa,'" ,00lO}. Develop the following 

triangle-factor modulo 16: 

013191 

023292 
617111 1 

627211 2 

0011182 oo55110a 
0021281 00652101 

0032142 001121152 

0042241 oos122151 

009131142 

0010 132141 • 

k = 17 Our point set is (2:17 x {1,2})U {001,0021'" ,00s}. vVe develop the following 

triangle-factor modulo 17: 

012171 10116d52 003 31142 007111132 
0222 72 10216 2 151 00432141 oos11 213 1 • 

516191 001 1142 00581 122 
526292 0021241 006 82121 

For k = 19 we can construct a triangle-factor on each group in a resolvable 3-GDD 

of type 67
, while for k = 20 we take an N KT S( 42). 

This completes the proof of Theorem 5.2. 0 

For the sake of completeness we will fill in some of the gaps left by Theorem 5.2. 

vVe will apply the same type of construction as that used in Theorem 5.2 but we'll 

have to be careful to ensure that the set of triangle-fadors so produced really is a 

maxi mal set. 

Lemma 5.3. Let v == 0 modulo 3, 33 .::; v .::; 42, and suppose that ~v .::; k .::; V;l and 

k == 0 modulo 3. Then k E F(v), except possibly for 12 E F(36). 

Proof. \Ve begin with v = 33, constructing maximal sets for k = 12 and k = 15. 

the following triangle-factor modulo 12 (subscripts on as are developed modulo 3 and 

subscripts onbs are developed modulo 2). 

011151 aol01102 

025292 a 14262 

bo6191 a22141 

b11:z22 00 13182 

102 

0023281 

00371112 
0047211 1 



Consider now the leave graph. On Z12 X {I,2} there remains pure difference 6 

and mixed differences ±l, ±2, ±3 and 6. The edges of pure difference 6 and mixed 

differences ±3 form a K4-factor (on Z12 x {I, 2}) and, furthermore, any triangle on 

Z12 x {I, 2} is contained in one of these K 48. Hence there is no triangle-factor on the 

leave graph and so our 12 triangle-factors form a maximal set. 

k = 15 Point set (Z15 x {I, 2}) U {001' 002, 003}' Develop the following triangle-factor 

modulo 15. 
011151 319102 001 11 112 

426292 13152132 0024182 
21112122 7110132 00314122 
121102142 618172 

The leave graph consists of a triangle, three pentagons (pure difference 6 on Z15 x {2}) 

and a 15-cycle (pure difference 7 on Z15 x {I}). 

Now consider v = 36, with k = 15 (we do not yet have a construction for k = 12); 

here we simply construct a maximal set of 3 triangle-factors on each group of a 

resolvable T D(3, 12). 

For v = 39 we have k = 15 and k = 18. 

k = 15 We take as our point set (Z15 x {I, 2}) U {001' 002, ... ,009}' Develop the 

following triangle-factor modulo 15. 

014191 002 1221 

024292 0033172 
516181 0043271 

526282 005 101122 
0011122 006102 121 

007 11 1142 
00811 2141 
00913 1132 

On ZlS x {I, 2} there remain pure difference 7 and mixed differences ±5, ±6, ±7. It 

is easy to see therefore that the leave contains no triangle-factor. 

k = 18 Our point set is (ZlSX {1,2})U{001,002,003}' Develop the following triangle­

factor modulo 18. 
011181 

11 1131 17 t 
316272 

419102 

6182162 

71 1252 

10132~ 
12115122 

16142112 

102132152 

103 

001 51122 

00221172 

003141142 



The leave graph consists of a triangle and nine 4-cycles. 

Finally, we consider v = 42, constructing maxima.l sets for k = 15 and k = 18. 

k = 15 OUf point set is (ZIS x {1,2}) U ({a} x~) U ({b} x~) U ({c} x Zs) U {oo}. 

Develop the following triangle-factor modulo 15 (subscripts on as and bs are developed 

modulo 3 and subscripts on cs are developed modulo 5): 

618111 1 

ao12142 
a 192132 

a23171 

bo1 102 

b161142 

~51131 
eo9122 

c1 1272 

C2 41101 

c3 112122 
c4 14101 

5282102 

002 132 • 

As all pure differences in Zl5 x {1,2} are exhausted, we clearly have a maximal 

set. 

k = 18 Take the point set (ZI8 x {l,2}) U {001,0021'" ,oos}. Develop the following 

triangle-factor modulo 18. 

018162 

028261 

117122 
127221 
3151101 

3252102 

121 151161 

122 152162 

001 4111 2 

0024211 1 

00391132 

00492 131 

005 141172 
006142171 

There remain on ZI8 x {1,2} pure difference 9 and mixed differences 0, 8, 9 and 10. 

Now the edges of pure difference 9 and mixed differences 0 and 9 form a K4-factor 

(on ZI8 x {I, 2}) and, furthermore, any triangle on Z18 x {I, 2} is contained in one 

of these K 4s. Hence the leave graph contains no triangle-factor. 

This completes the proof of Lemma 5.3. 0 

Theorem 5.2 and Lemma 5.3 together give the top half of the spectrum for F(v), 

v = 33,36,39,42. Indeed it seems quite reasonable to suggest that the recursive con­

struction presented earlier in this section, together with the construction illustrated 

by the two foregoing results, will lead to an algorithm for the general construction of 

maximal sets of size k for k in the interval v/3 ~ k ~ (v -1)/2. Many of the details 

remain to be worked out, however, and this we defer to a later study. (One such 
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"detail" which is of interest in its own right is the construction of Nearly Kirkman 

Triple Systems with large holes (see the remarks following Theorem 5.1).) 

We conclude this section by collecting what we have proven in regards to the 

spectrum F( v) for v = 33,36,39,42. 

Theorem 5.4. Let v == 0 mod 3, 33 ~ v ~ 42. Then k E F( v) for all r~l ::; k :::; 

with the possible exceptions of v = 33 and k = 6,9,10; v = 36 and k = 6, 12; v = 39 

and k 12; and v = 42 and k = 13. 

Proof. For r~l :::; k:::; rv~11 see Theorem 4.7, and for ~:::; k:::; see Theorem 5.2 

and Lemma 5.3. For v = 36 and k = 10,11 see Lemma 4.4. For v = 39 and k = 11 

use Lemma 4.3 (with p = 18 and q = 21) and, finally, for v = 42 and k = 12 apply 

Lemma 4.4A. 0 

6. CONCLUSIO~ 

In this paper we have initiated the study of the problem of determining the spec­

trum for maximal sets of triangle-factors on v points. The authors are certain that 

this spectrum will contain the interval r~l < k :::; Indeed we have proven this 

for r~l < k :::; * and we have given good grounds for believing this to be true for 

Y..<k< 
3- - There remains the interval * < k < ~, for which a new idea appears 

to be needed. Additionally, there remains k = r~l, v 0,9 or 12 mod 18; we know of 

not a single example of such a maximal set, nor do we know of any good reason why 

such a maximal set should not exist. We do know only that r~l t/:. F( v) for v = 9,12 

and 18. vVhether or not 6 E F(33) also remains as an interesting open problem. 
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ApPENDIX 

Pair-types of Restricted Resolvable Designs RRP(p, Hp + 1)) 

The following table is used in the proof of Lemma 4.5. The parameter t here is 

(p- 3)/6. 
Table I 

0 :2:4 (p/3)3 
1 :2:5 ((p - 3)/2)231 

2 6 18231 

:2: 18 ((p 9)/2)233 

3 7 153 

:2: 19 ((p - 15)/2)235 

4 8 '" 21 233 ' 

:2: 20 ((p - 9)/2r~91 

5 9 2-1233 

21 63231 

~ 33 ((p - 3)/2)231 

6 10 21 3 

22 63233 

~ 34 ((p - 3)/2)231 

7 11 27235 

23 63235 

:2: 35 ((p - 15)/2)2151. 

8 12 21 334 

24 69291 

36 
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Table I (continued) 
t - 4( mod 12) t Pair-Type of RRP(p, Hp + 1)) 

9 1 33 

13 273 

25 75231 

37 111231 
~ 49 ((p - 9)/2)233 

10 2 35 

14 39233 

26 75233 

38 111233 

~ 50 ((p - 21)/2)2211 
11 3 37 

15 27334 

27 75235 

39 111235 

> 51 ((p - 15)/2)235 

(Received 9/6/93) 
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