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ABSTRACT. A collection of edge-disjoint triangle-factors on K3, is called maximal
if it cannot be extended by a further triangle-factor. It is well-known that a maximal
set must therefore contain at least 3 triangle factors. We consider the following

question: for which k with § <k < &;Q is there a maximal set of k triangle-
factors on K3,7

1. INTRODUCTION

A triangle-factor on Ka, is a vertex-disjoint union of n triangles (K3s). A collection
C of edge-disjoint triangle-factors is called marimal if any (further) triangle-factor in
K3, shares an edge with some triangle-factors in C, i.e., C cannot be extended by a

further triangle-factor. The following basic result is due to Corrddi and Hajnal, [CH].

Lemma 1.1. Let G be a graph on 3n vertices with §(G) > 2n. Then G has a

triangle-factor.

Corollary 1.2. IfC is a mazimal set of triangle-factors on 3n vertices, then |C| > 7.




Thus, a maximal set on 3n vertices must contain at least % triangle-factors. At the

other end of the spectrum, it is clear that a maximal set cannot contain more than

&‘3’?-9 triangle-factors.

Theorem 1.3. For every odd n there is a (mazimal) set of (3n — 1)/2 triangle-
factors on 3n vertices. For every even n > 6 there is a (mazimal) set of (3n — 2)/2

triangle-factors on 3n vertices.

Proof. These configurations are, respectively, Kirkman Triple Systems KTS (3r) and
Nearly Kirkman Triple Systems NKTS (3n). O

Throughout this paper we will use the notation F(3n) to represent the spectrum for
triangle-factors, by which we mean F(3n) = {35k< é&z:_l.; there exists a maximal
set of k triangle-factors on 3n vertices}. Our objective here is to study the behaviour
of the function F.

Analogous problems that have been considered and solved recently include deter-
mining the spectrum for maximal sets of one-factors [RW1], and for maximal sets of
two-factors and of Hamiltonian cycles [HRR]; see also [R6] for further problems of
similar kind.

Before proceeding we will introduce some terminology and notation which we shall
use throughout the paper. (For undefined design-theoretic terms, see, e.g. [DS].)
A TD(k,n) is a transversal design with k groups of size n. A restricted resolvable
design RRP(p, k) is a pairwise balanced design on p points, with block sizes two and
three, whose block set can be partitioned into k parallel classes; we call the design

';n.iform if it admits a partition so that each parallel class is either a one-factor or a

triangle-factor. The spectrum for RRPs was given in a series of papers by Rees (see A

[R1], [R2], [R3], [R4]):

Theorem 1.4. There ezists an RRP(p, k) if and only if lp/2] <k <p-1 and

p(k—p+1)=0 mod 3, with the following exceptions:
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() p=1 mod 6 and k= (p—=1)/2, or p is odd and k = p— 1
(i) p=3 mod 6,p#3 and k=p—2
(iii) p=3 mod 6,p £ 9 and k = p—3, and
(iv) (k) = (6,3) or (12,6)

Moreover, when p =0 mod 6 the RRP(p, k) may be taken to be uniform.

By a KTS(v) — KTS(w) we will mean a Kirkman Triple System of order v which
is ‘missing’ a subsystem of order w, that being a triple (X,Y, B) where X is a set of
v points, Y is a subset of X of size w (Y is called the ‘hole’) and B is a collection of
triples on X so that (i) (X, BU{Y}) is a pairwise balanced design and (ii) B admits
a partition into parallel classes and holey parallel classes (each holey parallel class
being a partition of X\Y). An NKTS(v) — NKTS(w) is defined similarly. The
spectrum for subsystems in Kirkman Triple Systems was determined by Rees and

Stinson (see [RS]).

Theorem 1.5. A KTS(v) — KTS(w) ezists if and only if v = w = 3 modulo 6 and

v 2> Jw.
As a useful application of Theorem 1.6 we have the following:

Corollary 1.6. Ifv=w=3 modulo 6, v > 3w and k € F(w) then Y(v —w) + ke
F(v).

Proof. From Theorem 1.6 we have a KT'S(v) — KTS(w). Now, in this design there
are 1(v — w) parallel classes and 3(w — 1) holey parallel classes. Thus, if we build a
maximal set of k triangle-factors on the hole (of size w) and throw away Jlw=1)—kof
the holey parallel classes we are left with a maximal set of Hv—w)+k triangle-factors

on v points. [J

We will begin in the next section by considering min F'(3n) and max F(3n) for each

n (i.e., the “extreme” values) and then in Section 3 we will consider the small values
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n = 1,2,...,10. For these values of n we will see that the only cases that we are
presently unable to settle are whether or not 5 € F (27) or 5 € F(30). Iﬁ Sections
4 and 5 we present some general results (see, e.g. Theorems 4.7 and 5.1), drawing
on some of the constructions used in previous sections as well as bringing in some
new ones. To this end, we will find the following result to be useful. If G is a graph
we denote by G I, the graph obtained by taking w copies z,,z,,...,2, of each

vertex z in G , where z; is adjacent to z; if and only if z is adjacent to z’ in G.

Theorem 1.7. (Rees, [R5]) If the graph G admits an edge-decomposition into an
even number k of triangle-factors, then the graph G ® I, admits an edge-decomposition

into 2k triangle-factors.

Corollary 1.8. If there is a mazimal set of an even number k of triangle-factors on
3n vertices whose leave graph contains a component on m vertices, m % 0 mod 3,

then there is a mazimal set of 2k triangle-factors on 6n vertices.

Proof. Apply Theorem 1.7. The set of 2k triangle-factors so produced will have a
leave graph with a component on 2m % 0 mod 3 vertices and so will form a maximal

set. [

We end this section with an observation which we shall take advantage of quite
frequently throughout the paper. If a graph G on 3n vertices has independence
number a(G) > n then G cannot contain a triangle-factor; consequently, if C is a
collection of triangle-factors whose leave graph contains a large independent set (i.e.,

on more than one-third the number of vertices) then C is maximal.

2. EXTREME VALUES OF F

In this section we consider max F(3n) and min F(3n). We have in fact already

determined max F(3n) in Theorem 1.3:
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Theorem 2.1. For any positive integer n # 2 or {, we have

(Bn—=1)/2 if n is odd
(Bn—2)/2 if n is even

Furthermore, max F(6) = 1 and max F(12) = 4.

max F(3n) = {

Proof. See Theorem 1.3. Now NKTS(6) and NKTS(12) do not exist (see [KR]),
whence max F(6) < 1 and max F(12) < 4. It is trivial to construct one triangle-
factor on 6 vertices, while to get four (disjoint) triangle-factors on 12 vertices we

consider the blocks in a resolvable TD(3,4). O

We turn out attention now to min F(3n). From Corollary 1.2 we know that

min F(3n) > 2.

Theorem 2.2. [fn =1,2 or 5 mod 6 and n # 5,11 then min F(3n) = [§]. Fur
thermore, min F'(15) = 4, while min F(33) =6 or 7.

Proof. If n =2 mod 6 we take as our vertex set AU B where |[A|=n+1 and |B| =
2n —1. From Theorem 2.1 we can construct 3 disjoint triangle-factors Ty,T5,... , T2
on A and a further § disjoint triangle-factors 77, T, . ... ,T'g on B. Then the collection

={TUT},TUT;...,To U T'%} is a maximal set on AU B as all pairs from A
are exhausted.

Ifn=1 mod 6 take as our vertex set AUB, where |A] =n+2 and |B| =2n—2.
Now we proceed as before, appealing to Theorem 2.1 to construct (n + 1)/2 disjoint
triangle-factors on each of A and B. Again all pairs from A are exhausted and so a
maximal set on AU B is obtained.

For n = 5 mod 6,n > 17, we take as our vertex set AU B where |A| = n +
1 and |B| = 2n — 1. Use Theorem 2.1 to construct (n — 1)/2 disjoint triangle-
factors on each of A and B. This time there remains on A a one-factor, call it
P, of pairs that are not covered by any triangle. We will construct one further

triangle-factor on A U B, exhausting these pairs, as follows. Theorem 2.1 assures

us that we can construct n — 1 disjoint triangle-factors on B; hence the (n — 1)/2
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triangle-factors on B previously referred to can be chosen so that there remains on
B a further (disjoint) triangle-factor T'. Let P = {aoal,ag_aa,k.. . 38n_18,} and let
T = {bobyby, babybs,. .. ban—aban-3bya_z}; then our extra triangle-factor on AU B is
{boacai, brazas, ..., b 1)2an-1a,, b(nt1)/28(n43)/2b(ns5)/21 - -+ s B2n—sbrn—abra_z}. The
result is a maximal set of (n + 1)/2 triangle-factors on AU B.

There remain the values n = 5,11 to be considered. It has been shown in [FMR]
that F(15) = {4,5,6,7}; in particular any set of three disjoint triangle-factors on
15 vertices can be extended to include a fourth triangle-factor. There are, in fact,
exactly 1409 nonisomerphic maximal sets of 4 disjoint triangle-factors on 15 vertices.

For n = 11, we do not yet know whether 6 € F(33). We can show that 7 € F(33),
as follows.

Points {1,2,...12} U (Z; x {1,2,3})

Triangle-Factors: Construct a uniform RRP(12,7)on A = {1,2,... , 12} with triangle-
factors 71, T3, T, Ty and one-factors Py, Py, P;. On the set B = Z,x {1,2,3} construct
the following KT S(21):

) = 4(E+1)(+3) 12(1 + 2)2(i + 6), i3( + 2)3(i + 3)s

(E+2)1(f +4)2(0+6)3 (E+4)(i+1)2(i+ 5)s (14 8)1(: +3)2(i 4+ 1)3
(E+6)1(i+5)2(i +4)3, i€Zy

J1j2ds, J € Zy

"
I

T = 5 +1):0+2), j€2Zs

i

Ty 317 +3)2(7 +6)3, €2,

We get four triangle-factors on AU B by taking T; U T! for1=1,2,3,4.
Now let the edges in P; be e, €2, ... , e, the remaining triangle-factors on AU B

are
{e1101, €1202, €1303, €141, 1512, 1613} U T3\ {0,0,03, 1;1515},
and

{2121, 2232, €233, e2441, €2552, €2663} U T\ {21343, 415263},
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and
{€3131, €3262, €3323, €3461, €3522, €3653} U T3\ {316223, 612253 }.

As all pairs in A are exhausted, we indeed have a maximal set of triangle-factors

on AU B.

This completes the proof of Theorem 2.2. O

Theorem 2.3. If n = 3,4 or 0 mod 6 and n # 3 then there is a mazimal set of

[5] + 1 triangle-factors on 3n vertices. Also, min F(9) = 4.

Proof. It n =0 mod 6 take the vertex set AUB where |A|=n+3 and |B| = 2n-3.
From Theorem 2.1 we can construct 3(n + 2) triangle-factors on each of A and B; in
this way we obtain a collection of %(n + 2) triangle-factors on AU B which forms a
maximal set, as all pairs from A are exhausted.

If n =3 mod 6 and n > 15 take the vertex set AU B where |A| = n + 3 and
|B| = 2n — 3. By Theorem 2.1 we can construct 3(n + 1) triangle-factors on A and
2(n+1)+1 triangle-factors on B, from which 3(n+1) triangle-factors on AU B can
be constructed. The pairs remaining on A form a one-factor; these together with the
extra triangle-factor on B can be used to create a further triangle-factor on AU B,
whereupon all pairs from A are exhausted (see the n = 5 mod 6 case in Theorem
2.2).

Now for n = 3 it is not difficult to see that a maximal set of triangle-factors on 9
vertices actually forms a KTS(9). For n = 9, we have the following construction for

a maximal set of 6 triangle-factors on 27 vertices:

Points {a,b,¢c,d,e, f,9,h,4,7} U {1,2,...,17}
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Triangle-Factors

ab2 ach agij adf bdj bfg
cd 16 bei cfi ehj ceg dhi
efl7 dg2 bh3 bed aib ael
gh7 fj11 del2 gil3 fhil4 cjl5
ij12 1617 1628 1639 16410 1656
1611 17612 17713 17814 17915 171011
3813 31415 41511 51112 11213 21314
4914 458 519 1210 236 347
51015 91013 10614 6715 7811 8912

Note that the triples induce an RRP(10,6) on the set A = {a,b,...,7} and so

exhaust the pairs on A.

Finally, we consider the case n =4 mod 6. If n > 16 take the vertex set AU B
where [A| = n + 2 and |B| = 2n — 2. By Theorem 2.1 we can construct 3 triangle-
factors on 4 and  + 1 triangle-factors on B, leaving on A4 a one-factor of uncovered
pairs; now continue as in the n =3 mod 6 case to get, in all, 2 + 1 triangle-factors
on AU B which form a maximal set. For n = 4 we have the following set of three
triangle-factors on 12 vertices which forms a maximal set:

159 1611 1710
2610 2712 2811

3711 389 3512
4812 4510 469

Finally, for n = 10 we take as our point set {a,b,c,... ], r}U{1,2,...,19} and take
the following triangle-factors:

abl8 ach adf bdj bfg ag]j
cd6 bei ehj ceg dhi cfi
efl2 dgx becx fhx aex bhj
ghl13 fjld gils ail6 cj17 del$
ijx 1713 2814 3915 41016 x1117
1815 2916 31017 41118 51213 6714
4914 51015 61116 11217 2718 3813
21011 31+12 4127 578 689 1910
3516 4617 5718 6813 1914 21015
19717 19818 19913 191014 191115 191216

The triples induce on RRP(10,6) on {a,b,c,... ,7}, and the point z meets with every
point in this set whence all pairs on {a,b,¢c,... ,7, 7} are exhausted.

This completes the proof of Theorem 2.3. [




We conclude this section with the remark.that we do not know of any examples for
n =3,40r 0 mod 6 where the Corradi-Hajnal bound of [2] is actually achieved.
It is easily seen that 2 ¢ F(9) and that 2 ¢ F(12), and exhaustive computer search
has shown that 3 ¢ F(18). Thus, the first case that arises is the question of whether
or not § € F(2T).

Basically, the algorithm employed to show that 3 ¢ F'(18) goes as follows:

Step 1. Compute all non-isomorphic ways to put two triangle-factors together;
Step 2. For each of the configurations in Step 1, compute all compatible third factors
(employing isomorph rejection);

Step 3. For each of the configurations in Step 2 search for a compatible fourth factor.
Note that if for some configuration C in Step 2 there is no compatible fourth factor,
then C is maximal and we would have 3 in F(18). What actually hap.pended, however,
was that every configuration from Step 2 was able to be extended by Step 3 with
a fourth factor, whence no collection of 3 disjoint triangle-factors on 18 vertices is
maximal, i.e., 3 € F(18).

3. SMALL VALUES OF n

In this section we consider the small cases n = 1,2,...,10; we will determine
F(3n) completely for each n # 9,10 (we still do not know whether 5 € F(27) or
5 € F(30)). So far we have F(3) = {1}, F(6) = {1}, F(9) = {4} and F(12) = {3,4}.

We now consider F'(15).
Lemma 3.1. F(13) = {4,5,6,7}
Proof. See [FMR]. O

Next we consider F'(18). From Theorem 2.1 we have max F/(18) = &; on the other

hand from Theorem 2.3 and the remark following it, we have min F(18) = 4.

Lemma 3.2. F(18) = {4,5,6,7,8}



Proof. From the foregoing we must show that 5,6 and 7 are in F(18). We start with
5 triangle-factors.

Points {a,b,¢,d,¢, f,g,h} U {1,2,...,10}

Triangle-Factors

def dhe¢ adg beh cf2
abc gbf ec?7 afl ah3
ghl10 aeld hf5 gc8 db7
123 147 b34 d49 ge6
456 258 168 267 159
789 369 2910 3510 4810

These triangle-factors do in fact form a maximal set, as all pairs from {a,b,c,d,e, f,g, Rk}
are exhausted (in fact, the design induced on these points can be obtained by deleting
a point from an RRP(9,5)).

For 6 triangle-factors take the point set Zs x {1,2,3} and develop each of the fol-
lowing sets of base blocks modulo six: {0,003}, {0,1,25}, {012,435}, {0:3215}, {0,4,33}
and {0,241, 022247,032345}.

Finally, for 7 triangle-factors we simply put a triangle-factor on tAhe ‘missing’ sub-

design in an NKTS(18) — NKTS(6) (this design is due to Brouwer [B]). [
We next determine F(21) and F(24).
Lemma 3.3. F(21) = {4,5,6,7,8,9,10}

Proof. From Theorem 2.1 and Theorem 2.2 we have max F(21) = 10 and min F(21) =
4. Thus, we must show that {5,6,7,8,9} C F(21).

For 5 triangle-factors we have the following solution on the point set {a,b,c,d e, f, g,
hiju{l,2,...,12):

abc aei adg - beh cfi
def dhc bi6 af4 ahb
ghi gbf ec9 di7 dbs
123 1711 hfl2 gcl0 gell
4710 259 145 189 11012
5811 3412 278 21112 246
6912 1086 31011 356 379




The triples induce an RRP(9,5) on {a,b,c,... ,i}.

For 6 triangle-factors we again use as our point set {a,b,c,... ,i} U {1,2,...,12}):

abc def ghi adg beh cfi
dh3 ch4 cd5 fhs dil ah2
eld ai6 ael ce?2 afd bd4
fgll bgl2 bf7 bi8 cg9 eglld
178 289 3910 41011 51112 6127
21012 3117 4128 579 6810 1911
469 5110 6211 1312 247 358

The triples include an RRP(9,6) on {a,b,c,...,i}.
To get 7 € F(21) we take as our triangles the blocks of a resolvable 7D(3, 7), while
to get 8 € F(21) we take as our point set (Zs x {1,2})U {a,b, ¢,d, e} and develop the

following triangle-factor modulo 8:

0:1,3 02123,
04172 64271
65162 d5261
62122

To see that we do indeed get a maximal set note that the leave graph contains a K
(on the vertices a, b,¢,d, e) as a component,

Finally, for 9 triangle-factors we take the point set (Zg x {1,2}) U {q,b,c} and

develop the following triangle-factor modulo 9:

0:1,3, 02153,
4,815 4,8,5;
2,6,a 2,615
71726

In this case the leave graph consists of a triangle and an 18-cycle. [J

Lemma 3.4. F(24) = {4,5,6,7,8,9,10,11}

Proof. By Theorems 2.1 and 2.2 we have max Fy(24) = 11 and min F'(24) = 4, and
so we must show that {5,6,7,8,9,10} C F(24).
We start with five triangle-factors. Take as our point set {a,b,c,d,e, f,g,k,i} U

{1,2,...15} and consider the following factors:
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abe ael

def dhec
ghi gbf
1611 1713
2712 2814
3813 3915

adg
bi?2

ecl0
hfl4
1312
467

4914 41011 5913
51015 58612 81115 91211 1013 12

Note that the triples induce an RRP(9,5) on {a,b,¢,...,7}.

beh
af3l
dié6
gcld
2413
578
11014

cfi
ahd4
db7
ge 1l
3514
189
26 15

We now construct a maximal set of 6 triangle-factors, again taking the point. set

{a,b,c,...,1}U{1,2,...,15}:
abc def

dh3 ch4 cdb

el d aib

fg8 bg9 bflo
1317 1328 1339
1429 14310 14411 14512
15412 1557 1568

ghi adg beh cfi
fheé dil ah?

ael ce? afl bd4
bill cgl2 eg7
13410 13511 13612

1467 14138

1519 15210 15311

378 489 5910

61011 11112 2127

Here the triples induce an RRP(9,6) on {a,b,¢,... ,7}.

For 7 triangle-factors we take as our point set Zg x {1,2,3} and develop each of the

base trlples 010203, 01 1223, 012243, 013263, 014213, 015233 a[ld 01 6253 modulo 8, while fOI‘

8 triangle-factors we take as our triangles the blocks of a resolvable TD(3,8). To get

a maximal set of 9 triangle-factors we take the point set (Zg x {1,2})U{e, b,¢c,d, e, f}

and develop the triangle-factor

01112
b3,7,
64162
d6.3,

67152
810,
0,2,5,
2,4,8,

~ modulo 9 (the only triangles in the leave are contained entirely within the vertex set

{a, b,c, d,e, f1).

Finally, for 10 triangle-factors we put a triangle factor on the ‘missing’ subdesign

in an NKTS(24) — NKTS(6) (see [R2]).

This completes the proof of Lemma 3.4. O

We complete this section by considering F(27) and F(30); in each case there re-
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mains one value of k which we are presently unable to include in or exclude from

F.
Lemma 3.5. F(27) 2 {6,7,8,9,10,11,12,13}.

Proof. By Theorem 2.1 we have max F(27) = 13, while we have 6 € F(27) by
Theorem 2.3 (we do not yet know whether 5 € F(27)), and so we must show that
{7,8,9,10,11,12} C F(27). We begin with seven triangle-factors. Our ingredients
will be a uniform RRP(12,7) (on the point set A = {a,b,c,...,l}) and a KT5(15)

(on the point set B = {1,2,...,14} U {oc}):

ab ac ad

aei afj agk ahl ¢d bd bec

bhk bgl bfi bej ef eg eh

cfl cek chj cgi gh fh fg

dgj dhi del dfk i1j 1k il

k1l j1 jk
018 029 0310 c0dll c©512 0613 ocoT 14
21112 31213 41314 5148 689 7910 11011
3914 4108 5119 61210 71311 11412 2813
467 571 612 723 134 245 356
51013 61114 7128 1139 21410 3811 4912

We pair off the first four triangle-factors in each design to yield four-triangle-factors
on AU B. The remaining three triangle-factors are obtained by dismantling two
triangles in each of the last three triangle-factors on B and assigning to each set of

six points so produced one of the one-factors on A:

oab ceg il
5cd 6ac Tad
12ef 13bd 1l4bec
6gh 2ik 1leh
81ij 4j1 -10fg
9kl 5fh 11jk

In this way a maximal set of 7 triangle-factors on AUB is obtained. The constructions
for 8 and 9 triangle-factors are similar to the foregoing. For 8 triangle-factors we
take a uniform RRP(12,8) which can be obtained from the foregoing RRP(12,7) by
arranging the pairs covered by the first triangle-factor and the first one-factor into
three one-factors:
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ab ef 1}

cd gh kil

el al ae

hk bk bh

fl ¢l cf

gj dj dg
Now take the KTS(15) given above and pair off the three triangle-factors in the
RRP(12,8) with the first three triangle-factors in the KTS(15). Of the triangles
that remain on the K'7T'5(15) we can pull out five disjoint subsets, each made up of

three disjoint triangles:
co41l 71311 7910 2813 723
5148 134 11412 356 1139
61210 21410 3811 4912 o512

In each case we extend the three disjoint triangles to a triangle-factor on AU B
by assigning to each point not covered by the three triangles an edge of one of the

one-factors on A:
7Tac ocoab owef ooij 1l4ad
2bd 5ei 6ai Tbh 4deh
Jeg 12fl 13gh 14cf 6bec
1fh 6hk 2¢l 1kl 8il
13ik 8gj 4bk 10ae 10fg
9j1 9cd 5dj 1ldg 1ljk

To get 9 triangle-factors we start with a uniform RRP(12,9) which we obtain from
the RRP(12,8) by arranging the pairs covered by the triangle-factor a f j, b gl cek,

d h i and the one-factorac,bd,eg, fh,ik,jlinto three one-factors:

ac eg ik

bd fh jl

fj aj af

gl bl bg

ek ck ce

hi di dh
Now take the KT'S(15) and pair off the first and third triangle-factors with the two
triangle-factors in the RRP(12,9); this gives two triangle-factors on AU B. From
the remaining triangles on the KT5(15) we extract seven disjoint subsets each made

up of three disjoint triangles:

0411 71311 7910 2813 723 0613 ocoT14
5148 134 11412 356 1139 245 689
61210 21410 3811 4912 oc0512 11011 31213

80




- As before we extend each subset to a triangle-factor on AU B by assigning to each

point not covered by the three triangles an edge from a one-factor on A.

7Tac ooab ooef oij 14ad 3bl 1lce
2bd 5ei 6ai 7bh 4eh T7di 10dh
3hi 12f1 13gh 14cf 6bc 8fh 1laf
1fj 6hk 2c¢l 1kl 8il 9aj 2ik
13ek 8zgj 4bk 10ae 10fg 12ck 4jl
9gl 9cd 5dj 11dg 11jk ldeg S5bg

We move now to 10 triangle-factors. Take as our point set (Z;0 x {1,2}) U
{001,002,... ,007} and develop the base triangle-factor c0y1,0;, 0022;72, 0030:62,
0045137, 0057185, 0068152, 079,92, 314:16;, 1,224, modulo 10. We get a maximal set,
as the leave contains a K;(on coy,...,007) as a component. The solution for 11
triangle-factors is similar, taking (Z;; x {1,2}) U {00y, 004,...,005} as our point set
and developing the base triangle-factor 006,22, 00,7142, 003867, 0049182, 00510;10;,
013151, 112132, 0212532, 4;7,9, modulo 11; the leave contains a K5 (on ooy, 002,... ,005)
as a component. Finally, to get a maximal set of 12 triangle-factors we take as
our point set (Z;z x {1,2}) U {001,002, 003} and develop the triangle-factor 002,32,
00210152, 0031172, 015121, 317162, 028291, 618,91, 429,114, 1210211, modulo 12. Note
that the leave graph here consists of a disjoint union of one triangle and six four-

cycles. This completes the proof of Lemma 3.5. O3
Lemma 3.6. F(30) 2 {6,7,8,9,10,11,12,13,14}.

Proof. From Theorem 2.1 we have max F(30) = 14, while 6 € F(30) by The
orem 2.3 (we do not know yet whether 5 € F(30)). Hence we must show that
{7,8,9,10,11,12, 13} C F(30).

For a maximal set of 7 triangle-factors we simply take two (disjoint) copies of a
KTS(15). From here we can easily get 9 triangle-factors, as follows. Let one of the

triangle-factors (of the set of 7) be

123 456 789 101112 131415
r2y 456 789 10011127 13714715

We dismantle this factor and create three new ones, viz:
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126" 459 7812 101115 13143
'2°6 459 7812 1001115 1314’3

135 468 7911 101214 13152

1’35 46’8 77911 1012’14 13'15°2

234 567 8910 111213 14151

234 56’7 8910 11’1213 14'15°1
For 8 triangle-factors we start with a uniform RRP(12,8) and the following collec-
tion of three triangle-factors and five partial triangle-factors on (Zs x {1,2,3}) U
{001, 02, 003}:

001000003 0010;1; 0013144
010205 ©c02122; 003023, 0,315
111213 0032333 0030343 N 0011203 mod 5
212723 213245 011,23 002412,
313233 314203 112,33 ©031,0,
414945 4,021 244,15

(For the RRP(12,8) we take the design constructed in Lemma 3.5.) We pair off the
three triangle-factors above with the three triangle-factors in the RRP(12,8). Now
extend each partial triangle-factor above by assigning to each pointlnot in the factor
an edge from a one-factor of the RRP(12,8):

21ac 31et 4ef 0,15 1,bc
316d 4;ab 0;cl lyae 27eh
2289 32f1 42ai Ogbh lgad
42 h 0,95 Lok 25¢f 35k
331k 43hk Oggh lgkl 231[
43]1 Ogcd lgd] 23dg 33fg

As all blocks from the RRP(12,8) are utilized, we get a maximal set of 8 triangle-
factors (on {a,b,¢,... , 1} U(Zs x {1,2,3}) U {o0,, 00,5, 003}).

We proceed now to 10 triangle-factors. A maximal set is obtained by taking as
triangles the blocks of a resolvable TD(3,10). For 11 triangle-factors we take as our
point set (Z1; x {1,2}) U {o01,002,... ,008} and we develop the base triangle-factor
0010192, 0020291, 003118z, 0041,8;, 0052,72, 0062,7;, 007314;, ©0g3,4;, 5:6,10;,

5,6,10, modulo 11; the leave contains a K3 (on 001,00, ... ,00s) as a component and

8o can not contain a triangle-factor.
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For 12 triangle-factors, we proceed as follows. We start with the maximal set of six
triangle-factors on 15 points given in Lemma 3.1. As the leave contains a component
on 4 vertices (i.e., a 4-cycle) we can apply Corollary 1.9 to get a maximal set of twelve
triangle-factors on 30 points, as desired. Similarly, if we start with a maximal set‘of
seven triangle-factors on 15 points (i.e. a KT'S(15)) and apply Theorem 1.8 to six of
these triangle-factors we get a resolvable group-divisible design, with blocks of size
three, having 5 groups of size 6. Building a triangle-factor on each group then yields
a maximal set of 13 triangle-factors on 30 points.

This completes the proof of Lemma 3.6. [
We summarize the results of the foregoing lemmas in the following:

Theorem 3.7. Let 5 < n < 10. Then F(3n) = {k : 2 < k < 281} with the

exception of (k,n) = (3,5) and (3,6) and the possible ezceptions of (k,n) = (5,9)
and (5,10).

Note that both possible exceptions in Theorem 3.7 are from the class {([}],n) :
n = 0,3 or 4 modulo 6}' (see Theorem 2.3 and the remark following it).

Many of the constructions in this and the previous section may be generalized; this

we will do in the next sections.

4. CONSTRUCTING MAXIMAL SETS FROM RESTRICTED RESOLVABLE DESIGNS

By far, the most common construction used in Sections 2 and 3 is where we parti-
tion our 3n points (on which the maximal set is to be constructed) into two subsets
A and B, where |A| > n, and then build the maximal set so that all pairs from A
are exhausted. Usually this will occur by constructing the triples so as to induce an

RRP(p,k) on A, k being the number of triangle-factors in the maximal set.

Lemma 4.1. Let C be a set of triangle-factors on AU B where |A] = p and |B| = ¢
and suppose that C induces an RRP(p,k) on A where k = |C|. Then either C is a

Kirkman Triple System, or ¢ > p.
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Proof. Suppose that in the RRP(p,k) there are k; classes each with ¢ pairs, § =
1,...,75. Then

J

Sk=k

i=1

and furthermore, since there are in all 1p(2k — p + 1) pairs (i.e. blocks of size two)

in an RRP(p, k), we have

d 1
E kie; = '2-p(2k —-p+ 1) .
i=1

Now a parallel class in the RRP containing e; pairs is induced by a triangle-factor

containing 1(q — ;) triples from B; hence

(;) > gk.-(q —e).

The three above equations now yield

q 1
<9) 2 kq—zp(2k—p+1),

from which we get the inequality

(1) (g=p)g—(2k+1-p))>0.

Now 2k+1—p<p(ask <p—1inan RRP(p,k)) and so from inequality (1) either
g2 por ¢ <2k+1 — p; but in this latter case we get k > Hg+p ——'1), which in fact
means k = (¢ +p — 1) and so C is a Kirkman Triple System KTS(q+ p) (having a
Steiner Subsystem ST'S(g) on B).

This completes the proof of Lemma 4.1 O

From Lemma 4.1 then we see that in order to take advantage of this construction
we must take p < ¢ < 2p where p > k. While it seems certain that such a construction
should apply whenever the numerical constraints are met we currently know of no
way to prove this. As a result, many of our maximal sets from Sections 2 and 3 which
are constructed using this technique are done on a case by case basis. NOnethéless,

we will be able to use this construction to determine the bottom quarter of the
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spectrum for F(v) (Theorem 4.7). We will first need the following result, which is a

direct consequence of Hall’s Theorem.

Lemma 4.2. Let G be a subgraph of the complete bipartite graph K., ,, with bipartition
(v1,v2) and suppose that & + 6; > n, where &; is the minimum degree of the vertices

in part v;. Then G has a one-factor.

We will use Lemma 4.2 as follows. If M is a matching in a graph H and S is a set
of | M| vertices of H none of which is covered by M, then we define G(M, S) to be the
graph whose vertex set is M U S and whose edge set is {((z,y),2): (z,y) e M,z € S
and z,y,z is a triangle in H}. Note that G(FM',S) is a subgraph of K., , where
m = |M|. We denote by éxr and és the minimum degrees, in G(M, S), of the vertices
in M and S respectively. Moreover, a one-factor in G(M, S) corresponds to a disjoint
set of triangles in H which cover the edges in M and the vertices in S. To facilitate
the use of this idea we will denote by L£(7") the leave graph of the collection 7 of
triangle-factors, that is, the subgraph (of K,) spanned by those edges which are not
covered by any triangle-factor in 7. We begin with the following lemma, which will

be central to the proof of Theorem 4.7.

Lemma 4.3. Let p =0 modulo 6, p > 18 and let v = p + ¢ where p < q < 2p. Then
{3p,3p+ 1,30 +2} C F(v).

Proof. We start with k = 1p. Construct an NKTS(p) on the p-set and either a
KTS(q) or an NKTS(q) on the g-set (depending on whether ¢ = 3 or 0 modulo 6).
Let {z172,23%4,... ,2,-17,} be the one-factor on the p-set and let {y,42y3, Ya¥s¥s,

- yYa-2Yq-1Y¢} be a triangle-factor on the g-set. We take as one triangle-factor the
triples z1x3y1, T3T4y2, .- -, Tp-1ZpYp/2y Yp/241 Ypl2+2 Yp/243+ - - -y Yq—2Yq-1Yq- Then we
pair off tﬁe 1p — 1 triangle-factors on the p-set with the same number of triangle-

factors on the g-set.

- 85



For k = 1p+ 1 we construct a uniform RRP(p, ip+1) on the p-set and either a
KTS(q) or an NKTS(q) on the g-set. There are 3 one-factors and 1p — 2 triangle-
factors in the RRP-pair off the triangle-factors with the same number of triangle-
factors on the g-set to obtain a collection 7 of triangle-factors on v points. Let
My, M2 and Mj; be the one-factors on the p-set; since ¢ > p there a.r.e (at least) three
triangle-factors T, T,, T; left on the ¢-set. We get three more triangle-factors (on v

points) as follows.

. e el l o111 = ylylyl 11 0 a1 1.

Factor I: Let M, = zjz;, 7}z, 1Zp1%p and T = yiy3y3, yiyivs, 1 Yg—2Yq1¥ys
. : 11,0 1.1 1 1 1 1 1 1

take the triangle-factor T = ziz}, yl 2}, z}yl, s Zp1Zpy Ypras Ypja1:Yp/2e2Yp/243

s 2 Ye_aYa_qYe-
Factor II: Let M, = z}z3, z3z%,--- |22 22, Th = y2ylyd, y2y2y2, - -- yYe_ay?l_ 1yl and
let S = {y},y3,-+ ,y5;2}. Then with respect to the graph £(7 U {T'}), G(M,, S)
is a subgraph of K}/3,/» with minimum degree §(G) > p/2 — 2. From Lemma 4.2 G
has a one-factor so that by relabelling if necessary, we get our second triangle-factor
T = 2ieayl, 250iYh T T Yo Vapaaa ¥y Y20yl 2.
Factor III: Let M3 = z{z3,23¢3,- - ,23_,2% and Ty = y3y3y3, v3ydd, - Ve V313,
and let S = {y},43,--- 1¥372}- Then, with respect to £(T U {T',T?}), the graph
G(Ms3, S) is a subgraph of K;/2,/2 having minimum degree §(G) > p/2 —4; since p>
18 we can apply Lemma 4.2 to construct a one-factor on G, from which we get our last
triangle-factor (again by relabelling if necessary) T° = z3z3y3, z323;3, .- | CAIREASTEN
y§/2+1y3/2+2y2/2+3a T ,yi_zyf—xy;’-

In all then we have a maximal set of (%p -2)+3 = %p + 1 triangle factors, as
desired.

Finally we consider k = %p + 2. We proceed as before, starting with a uniform
RRP(p, ;p+2) on the p-set and either a KT'S(q) or an NKT'S(q) on the g-set. Pair
off the %p — 3 triangle-factors in the RRP with the same number of triangle-factors

on the g-set to get a collection 7 of triangle-factors on v points. There remain on the
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p-set five one-factors My, My,--- , Ms and on the ¢-set at least four triangle-factors
Tl,Tg,T:;,T‘, with there being a fifth triangle-factor Ts if ¢ > p + 6. We want in all
five more triangle-factors on our v points. We consider two cases.
()g=p+3

We begin by constructing five partial triangle-factors, each with (g -+ 3) triangles,
from Ty, T3, T3, Ty (actually we will not need Ty). Let B be a fixed triangle of T,
and let B}, B, be fixed triangles of T3, both of which intersect B. Now let T be
any i(q+ 3) triangles of T} which cover the vertices of B and let T; be any Hqg-9)
triangles of Ty, none of which intersects Bj or Bj. Let T} be any £(¢+3) triangles from
T5\{B,.B,}. Our five partial triangle-factors are then 7, = T, =, = (T1\T}) U { B},
73 = T,\(T4 U {B}), 74 = T3 U { B}, By} and w5 = T5. Note that the triangle-factors
T, and T; have been exhausted and so each point y in the g-set is covered by at least
two of these partial triangle-factors. For each 7 let S; denote those points of the g-set
that are not covered by any triangle of 7;, where i = 1,--+ ;5. Then each point y is

covered by at most three of the Sis.

We can now construct our last five triangle-factors. We assume that the first
i — 1 factors T, - -- ,T"~! have been constructed; the it" factor goes as follows. Let
M; = zizh zizi - -r;_lz;, Si={yl,uh-- ,y;/g} and consider the graph G(M;, S;)
(with respect to E('T U {T',---,T""'})). From the foregoing each point y € S; is
contained in at most two of the S;s, 7 = 1,---,1 — 1, whence G has parameters
6s > ip—4 and 6y > 1p—8. By Lemma 4.2 G has a one-factor provided that
bs + 6;;; > %p, ie. p > 24. By felabelling if necessary we obtain the triangle-factor
Ti = m U {zizhyl, zhziyl, - ,z;_lz;y;/z}, as desired.

There remains p = 18 to be dealt with. This corresponds to a maximal set of
11 triangle-factors on 39 points. We will achieve this by writing 39 = 15 + 24
and utilizing an RRP(15,11) and a Kirkman frame of type 6* (see Stinson [S]).
Now the RRP(15,11) has ten parallel classes each with 6 pairs and a triple, and
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a further parallel class with 5 triples (see Theorem 3.5 in [RW?2]). One triangle
factor on 39 points is obtained by constructing a triangle-factor on the holes of the
frame and pairing this off with the triangle-factor on the RRP. The remaining ten
triangle-factors are obtained as follows. First of all we give the parallel classes of the

RRP(15,11), written on the point set Zs x {1,2,3}:

0:122; 012243

1102 1131 010203

2103 1232 111213

22 13 H 1333 H 212223 mod 5
3141 2102 313233

324, 4,05 414245

33ds 4,2,

Now let {a,b,¢c,d,e, f} be a hole in the frame, and let 7,7, and 73 be the holey
parallel classes corresponding to this hole. Three triangle-factors on our 39 points
are m; U {0,1523, al10z, 52,03, ¢2;13, d3,4;, 3,45, f334a}, m U {112233, a2;14, 3,15,
c3223, d420, e4303, f4,0:} and w3U {2:3243, a3,23, 54,23, c4,35, d0;13, e0,1;, f0,1,}.
The remaining triangle-factors are constructed analogously, using the remaining holes
in .the frame. A maximal set of 11 triangle-factors on 39 points results. This completes
the consideration of case (i).
(ii)g=>p+6

Our last five triangle-factors are constructed as follows. We will assume that
the first ¢ — 1 factors T%,---,T"! have been constructed. Then let M; = ziz}
2334+ 7p17) and let Si = {4}, -+ , ¥} /a}, where Th = yivivd, vivivh, - ,vi_oui_yvi.
Now in the graph G(M;, S;) we have §(G) > p/2~2(i—1) whence by Lemma 4.2 G will
have a one-factor if p—4:+4 > p/2; this occurs as long as p > 36, or when p=24,30
and ¢ ¥ 5, or when p = 18 and 7 # 4 or 5. By relabelling the ys if necessary our
i** triangle-factor becomes T = xizéyi,zgziy§,~ .- ,m;_lz;y;/z, y;/2+1y;/2+2y;/2+3,

eyl gyl
The foregoing settles things for p > 36. When p = 24 or 30 we do not get the last

triangle-factor. In order to do these orders we will have to be more discriminating in
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how we choose the S;s. We start with p = 30, constructing from Ty, T3, T, T4, T five
partial triangle-factors on the g-set, each with 1(¢q — 15) triangles, so that each point
y in the g-set is covered by at least one triangle. Take any }(¢q — 15) triangles from
T as the first partial triangle-factor m; let ¢y, ,¢5 be the remaining triangles of
T,. Now choose %(q —21) triangles from T3, none of which intersect with ¢; or ¢; and
form from these triangles (together with ¢, and {;) a second partial triangle-factor
3. Similarly we choose from each of T3, Ty and T (g — 18) triangles none of which
intersect with, respectively, ¢3, t4 and ts and so form three more partial factors s,
74, ms. Now take S; to be the set of points on the g-set which are nét covered by any
triangle in m;, 7 = 1,--- ,5. Then each point y is covered by at most four of the S;s:
this will insure that the last (fifth) triangle-factor can be constructed when we repeat
the foregoing construction using these new Sis (in G(Ms, S5) we will have 65(G) > 9
and 6p(G) 2 7).

Regarding p = 24, we will construct on the g-set a set of nine triangle-factors
together with five further partial triangle-factors, each with (g — 12) triangles, so
that each point y in the g-set is covered by at least two of the partial triangle-factors.
When ¢ = 3 mod 6 (ie. ¢ = 33, 39 or 45) we accomplish this by means of a
KTS(q) — KT5(9) (see Theorem 1.6). The partial triangle-factors are constructed
as follows. Let T} and T3 be two holey triangle-factors in the incomplete A'TS. (We
will take the hole to be {y,y2,---ys}.) Let t; € T; then our first partial triangle-
factor is 7y = T1\{t:}. Now let T, be any %(q — 21)-subset of T, which covers the
vertices of ¢y, and take my = Tj U {y1¥2¥3, Y4¥s¥s, y7¥sys}. Note that between them
7y and 7, cover all points in the g-set. Thus if we repeat the foregoing, starting with
the remaining two holey triangle-factors T5 and Ty we produce two further partial
triangle-factors w3 and 7, which between them cover all of the points in the g-set.
(Note that in constructing w4 we must of course take a second triangle-factor on
Y1, Y2, -+ ,Ye which is edge-disjoint from that chosen for 72.) Thus each point y in
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the g-set is covered by at least two of the partial triangle-factors xy, 7,5, 73, 7,. As our
fifth partial triangle-factor 75 we can therefore take any 1(¢-12)-subset of one of the
triangle-factors in the incomplete KTS. Note that there will remain at least eleven
triangle-factors in the incomplete KTS, nine of which will be used to pair off with
the nine triangle-factors in the uniform RRP (24, 14). Now, lettiné Si be the set of
points of the g-set which are not covered by any triangle in n;, { ='1,--- ,5, we see
that a given point y will be contained in at most three of the S;s. This then will
insure that the last (fifth) triangle-factor on our v points can be constructed, for in

G(Ms, Ss) we will have 65(G) > 8 and §,4(G) > 4.

For ¢ = 0 mod 6 (i.e. ¢ =30, 36, 42) proceed as follows. We start with ¢ = 30,
constructing on the g-set an NKTS5(30) — NKTS(6) (see [R2]) with {y1,y2,- - , ys}
as the hole. Let T} and T) be the two holey triangle-factors in the incomplete NK TS,
and let ¢, t; € T;. Take as the first partial triangléfactor = T1\{t1,t2}. Now let t3
and t4 be triangles in T, each of which is disjoint from ¢, and ¢,, and take as the second
partial triangle-factor w, = T;\{t3,4}. Let T3 be a triangle-factor on the incomplete
NKTS, ie. T3 = {By, - ,Bs, Br,Bs, By, Big} where B; intersects the hole in the
point y;, ¢ = 1,--- ,6. We take as our third and fourth partial triangle-factors 73 =
{Bi, B3, B3, B7, Bs} U {{ys,s,¥s}} and 74 = {By, Bs, Bs, Bs, B1o} U {{y1,v2,¥3}}.
Note that each point y in the ¢-set is covered by at least two of the partial triangle-
factors my, m;, 3, 74 and so we take as w5 any 6 triangles from a second triangle-factor
T, in the incomplete NKTS. There remain ten triangle-factors in the incomplete
NKTS, nine of which will be used to pair off with the nine triangle-factors in the
uniform RRP(24,14). For ¢ = 36 we construct on the g-set a resolvable TD(3,12).
On each group Gj, j = 1,2,3, construct a (maximal) set of four triangle-factors
7,7}, 73, 73, Then our five partial triangle-factors are m, = T Unl, m = wiUnd,
T3 = w Ul mg = alUnd 75 = 73 Urd. As desired each point y in the g-set
is contained in at least two (in fact, at least three) of my,m,, -+ ,m5. Nine of the
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parallel classes on the TD will be paired off with the nine triangle-factors in the
uniform RRP(24,14). Finally, for ¢ = 42 we start with a Kirkman Triple System
KTS(21) in which there are four triples abe, def, adg, beh where the first two triples
are in the same parallel class 7] and the remaining two triples are in the same
parallel class T;. By Theorem 1.8 we can apply weight 2 to the KT'S(21) to yield
an NKTS(42); furthermore (see Rees [R5]) this can be done so as to produce from
the above configuration of triples two such configurations, involving eight triples
and four parallel classes T1,T%,75,Ty on the NKTS(42>. We then obtain our five
partial parallel classes of triples on the g-set as follows. Consider the parallel classes
Ty, T, and the triples {yi1y2y3, ya¥sys} C T1 and {y1ysy7, Yoysys} C To. As our first
partial triangle-factor 7, we take 10 triangles from T}, each of which is disjoint from
y1y4y7 and yaysys. For our second partial factor w, we take Ti\m, together with six
triangles from 75, each of which is disjoint from each triangle in Ty\7,. Note that
each point y in the g¢-set is covered by at least one of m; or m2. Thus if we repeat the
foregoing construction with the parallel classes T3, T, and then take as 75 any subset
of ten triangles from a fifth parallel class Ts of triangles on the N KT S(42) we obtain
five partial triangle-factors on the ¢-set which between them cover each point at least
twice. There remain fifteen parallel classes of triples on the N K T'S(42), nine of which

will be used to pair off with the nine triangle-factors on the uniform RRP(24,14).

In each of the above cases where ¢ = 0 mod 6 we define, for each i = 1,---,5, 5;
to be the set of those points in the ¢-set which are not covered by any triangle in 7,
so that each point y in the ¢-set is covered by at most three of the S;s. Thus, as in the

= 3 mod 6 cases we will have §5(G(Ms,Ss)) > 8 and 8p (G(Ms, Ss)) > 4 whence

the last (fifth) triangle-factor on v points can be assembled. This settles p = 24.

There remains p = 18, corresponding to maximal sets of 11 triangle-factors on 42,
45, 48 and 51 points. We can construct these by writing v = 21+4¢/, ¢ = 21, 24,27, 30,
constructing an RRP(21,11) on the 21-set and then constructing either a KT5(21),
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NKTS(24), KTS(27) or resolvable TD(3,10) - haﬁng an orthogonal parallel class
O - on the ¢-set. Now in the RRP(21,11) we have seven parallel classes, each with
3 pairs and 5 triples, and four more parallel classes each with 7 triples {see Table I
in the Appendix). Thus if ¢ = 21 we can get our maximal set of 11 triangle-factors
by first pairing off the triangle-factors in the RRP(21,11) with the triangle-factor O
and the three triangle-factors on the KTS(21) that are disjoint from O, and then
constructing one-factors on each of the graphs G(M;, S;) where M; is the set of three
pairs in the i* parallel class on the RRP and S; is the set of points covered by the
" triangle in 0,1 =1,2,.--, 7. (The i** triangle-factor so produced consists of the
5 triples in the ¢** parallel class of the RRP together with the 6 triplés in P\O (P
being that parallel class in the KT'S which contains the i** triangle in 0O) and the 3
triples arising out of the one-factor on G(M;, S;).) The constructions for q = 24,27
are virtually identical to the foregoing. For ¢’ = 30 the four triangle-factors on the
q'-set to be paired off with those on the RRP are as follows: take Pg, Py and Py (P
being that parallel class in the TD which contains the ith triangle in O) and, finally,
extend the first seven triangles in O by three new triples, each triple being contained:
in some group of the T'D. The remaining seven triangle-factors on v = 51 points are
constructed as in the ¢’ = 21 case.

This completes the proof of Lemma 4.3. [

We need a few more results before proceeding to the main theorem of this section.
The first uses what is, strictly speaking, a variation on the RRP construction since we
do not quite exhaust all of the pairs on the A-set. Note that this Lemma corresponds

to the case where ¢ = p in Lemma 4.3.

Lemma 4.4. Ifv =0 mod 12 then {{v,3v+1, }v+2} C F(v), ezcept when v = 12
and k =5, and possibly when v =48 end k =14 orv =60 and k = 17.

Proof. We begin with k = %v. That 3 € F(12) and 6 € F(24) was determined
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in sections 2 and 3. Let v > 36 and write v = 2p where p = 0 mod 6 and p >
18. Construct an NKTS(p) on each of two disjoint sets of p points each. Pair off
1p — 2 triangle-factors on one NKTS with the same number of triangle-factors on
the other NKTS to yield a set 7 of tv — 2 triangle-factors on v points. There
remains on each p-set a one-factor and a triangle-factor, which we call, respectively,
zizh zizl, .- ,x;_lz; and yiybyd, vivivi, - ,y;_Qy;__xy;; for i = 1,2. Our remaining
two triangle-factors are constructed as follows. As our first triangle-factor we take
T = zizyy}, 2325y3, »I}»—x"’;yﬁ/z’ 3:’:/2+1y;2,/2+2y,3/2+3’ T yf,-zyg-lyf,- Now let M =
{zie}, 232%,-- -, 22 22} and S = {y1,¥}, ** ,¥;/2} Then with respect to the leave
graph £(T U{T}), the graph G(M,S) has minimum degree §(G) > p/2 —4 and since
p = 18 we can apply Lemma 4.2 to produce a one-factor in G(M, §) and so in turn (by
relabelling if necessary) our last triangle-factor 77 = z?z2y!, 2222yl ... | Th 1 ThYh 2
Yp/2+1Yp/242Yp/2430 "+ 2+ Up—2Up_1Yp- There remains on each of the p-sets p/6 vertex-

disjoint triangles. It is easy to see, therefore, that it is impossible to form a further

triangle-factor.

Consider now the case k = *v-+1. We know from sections 2 and 3 that 4¢F'(12) and
TeF'(24), and we may therefore assume that v > 36. As above we write v = 2p but
this time we construct a uniform RRP(p, %p+1) on one p-set and an VKT S(p) on the
other. Pair off p — 3 triangle-factors from each of these two designs to yield a set T
of 2v—3 triangle-factors on v points. Then construct the triangle-factors T and T as
above. There remain two one-factors on the RRP and a triangle-factor on the NKTS,
from which we will form two more triangle-factors as follows. Let the triangle-
factor on the NKTS be y1y2v3, ¥a¥sys, - Yp-2Up-1¥p- Let St = {y1,y2," ,yp/2}
and S; = {Ypr241:Yp/242,- " > Yp} and let M, = 2,29, 2324, -+ ,2p_17, and M; =
TyT5, T3y, 4 T,y T, be the two one-factors on the RRP. Then with respect to the
leave graph £(T U{T,T"}) the graph G(M;, S;) has minimum degrees 65,(G) > 1p—3
and 65, (G) > 3p — 6; since p > 18 Lemma 4.2 applies and so we can construct the
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- last two triangle-factors

T1ZT2Y1, TITAY2, "+ > Tpm1ZpYp/2 Yp/3+1Yp/242Yp/243, - - »Yp-2Yp—-1Yp and
T1TYp/24+1s T3T4Yp/242" Ty 1 ZyYps Y1¥2Ys® * Ypja-2Yp/2-1Yp/2-

Finally we let k = %v + 2. Here we will use a somewhat different idea. First of all
we already know from sections 3 and 4 that 5 ¢ F(12) and 8 € F(24). The following
construction shows 11 € F(36). On each of two disjoint sets construct an NKTS(18)
which has the triangle-factor T =147, 258, 369, 1013 16 , 111417, 121518
andtheone-factorlelo, 211,312, 413,514,615, 716, 817, 918
(see, e.g. Kotzig and Rosa [KR]). From T and its counterpart we construct three

triangle-factors on 36 points:

148 259 367 101317 11 14 18" 12 15 16’
1’4’8 2'5'9 36’7 1013’17 11’14’18 121516

175 286 394 101614 111715 1218 13
7Ts 28’6 394 1016'14 1171715 1271813

472 583 691 131611 141712 1518 1¢/
472 5'8'3 6’9’1 13'16'11 14’1712 151810

A fourth triangle-factor is constructed from (some of) the pairs in F and its counter-

part:

1107 2118 3129 41316 51417 6 1518
Ui’7 27118 3129 41316 514’17  6'15'18

Now pair off the remaining seven triangle-factors on each of the two NKTSs to
obtain, in all, 11 triangle-factors on 36 points. There remain three disjoint pairs on
each of the two NATSs, and so we clearly have a maximal set.

Now let v > 72. Our design will be constructed using the case v = 36 as a model.
Write v = 2p, p > 36, and construct an NKTS(p) on each of two disjoint p-sets. Pair
off 1p — 2 triangle-factors from each of the two NKTSs to yield a set 7 of w-2
triangle-factors on v points. There remains on each NKTS a triangle-factor and a

one-factor. Let the triangle-factors be

T1TaT3 T4T5Tg - Tp-2Tp-1Tp
and  yi1y2y3  Ya¥s¥s v Yp—2Yp-1Yp -
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We get three triangle-factors as follows.

T, = T1T2Ys T4Z5Y¥9 ' ZTam+1T3m+2Y3m46 ' Tp—2Tp—1¥Y3
YV1¥Y2Te Y4¥s5Zg - Yam+1¥Y3m4+2T3m+6 " Yp-2¥Yp-1T3
T, = T1Z3Ys T4TelYs " T3m+1T3m+3Y3m4s5 °° Tp-2TpY2
YV1Y3Ts  Ya¥YeTg ' Ysm+1¥3m43T3m45 °°°  Yp-2YpT2
T, = T2ZT3Ys4 TsTeY7 °° T3m+2T3m43Y3m44 *°° Yp-1ZpY1
Y2Y3ZTs YsYsZr - Yam+2Y3m43T3m44 0 Yp-1YpTi

To get the last triangle-factor, let M be a (p/3)-subset of the edge set of the one-
factor on one of the NKTSs and let S be a (p/3)-subset of points from the other
N KTS which is exactly covered by p/6 edges from the one-factor on that set. Then
with respect to the leave graph £L(7TU{T},T>,T5}) the graph G(M, S) has parameters
§34(G) > p/3—8 and 65(G) > p/3—4 whence by Lemma 4.2 G has a one-factor, since
p > 36. From this we obtain p/3 vertex-disjoint triangles on our v points, covering
2p/3 points from one of the NKTSs and p/3 points from the other NKTS. Now
repeat, choosing M’ from the edge set of the second NKTS (so that S does not
intersect the point set covered by M) and choosing S’ from the point set of the first
NKTS (so that S does not intersect the point set covered by M). In all we obtain
a triangle-factor on v points. What remains on each NRKTS is a set of p/6 mutually
disjoint edges, and so a further triangle-factor cannot be constructed. Hence our
iv + 2 triangle-factors so constructed form a maximal set.

This completes the proof of Lemma 4.4. O

The following result, which we state without proof, is a direct analogue to the

k= iv + 2 case of Lemma 4.4.

Lemma 4.4A. If v =6 mod 12 and v > 18 then (v + 6) € F(v).
Lemma 4.5. Ifv=3 or6 mod 18 and v > 21 then [£] +1 € F(v).

| Proof. If v = 21 or 24 apply Lemmas 3.3 and 3.4. Let v > 39 and writev=p+¢
where p = 2[%] +1; then p =3 mod 6, p > 15 and p < ¢ < 2p. Divide the v-set into
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a p-set and a g-set, and on the p-set construct an RRP(p,(p+1)) (Thmreﬁ 1.5).
On the g-set we construct either an NKTS(q) or a KTS(q). Now we will need to
examine how the pairs (blocks of size two) occur in the RRP. The information in Table
I (Appendix) can be obtained by analyzing the construction for these designs in [R3,
Lemma 2.7]. By the pair-type of the RRP we will mean the expression pUpR - Pl
where there are r; parallel classes each with p; pairs, i = 1,-- - , 8. We omit the term

with p; = 0.

Now let us suppose that the pair-type in the RRP is p}' or p'pP. To a parallel
class with p; pairs we associate the p;-set of points (in the g-set) covered by p;/3
triangles of some triangle-factor on the ¢-set. As usual we will so generate a triangle-
factor on our v-set provided that the graph G(M, S) has a one-factor, where M is the
pi-set of pairs on the p-set and S is the p;-set of points on the g-set (see, e.g. the case
p = 18 in Lemma 4.3). Now since the pairs in the RRP form a 2-regular graph, the
parameter 6yr(G) will always satisfy 6,/(G) > p; — 2, and so G will have a one-factor
provided that 6s5(G) > 2 (Lemma 4.2); this in turn will happen as long as p; > 2k,
where k — 1 is the maximum value, taken over all y € S, of the number of graphs
G;(M;, S;) considered prior to G(M,S) with y € S;. Furthermore if $' = Sn Y;S;)
and |S’| = 0 or 1 then &5(G) > p; — S|, so that we require only that 85(G) = |S'].
This is automatic when |S’| = 0, while if [$| = 1 we want p; > 2k — 1. In particular
when p; = 3 this allows one element y € S to have occurred in one of the preceding

Sjs.

Referring to Table I we see that the pairs fall into any of three, five or seven parallel
classes in the RRP. For those designs in which the pairs fall into three classes a graph
G(M, S) will, by the foregoing, have a one-factor provided that p; > 6 or, when pi =3,
that (at most) one element y € S has occurred in one of the prec'eding S;s. From
Table I we see that (for p > 15) this can be easily arranged; for those designs with a

3 in the pair-type there is only one such 3, and we simply use these three pairs to set
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up the first graph G(M, S). For those designs in which the pairs fall into five classes
a graph G(M, S) has a one-factor provided that p; > 12 or, when p; = 3, that at
most one element y € S has occurred in one of the preceding S;s. Now from Table I
the pair-type in these designs is either 3° (p = 15) or p?3® where p; > 21. Thus we
need consider only the graphs G(M, S) corresponding to p; = 3. When p = 15 we
have ¢ = 24 or ¢ = 27; then given |3(¢—1)] triangle-factors on ¢ po‘ints it is a simple
matter to choose, in turn, five triangles, at most one from each triangle-factor, so
that each triangle intersects at most one of its predecessors. This is precisely what
we seek, since each of these triangles then gives rise to an S; (i.e. S; = point set of
the j** triangle, j = 1,---,5). Similarly, for RRPs of pair-type p}3°> we choose, in
turn, three such triangles from the (N)KTS(q) on the corresponding g-set and so
form S;,S5, and S3. We then choose any p,/3 triangles from each of a fourth and
fifth triangle-factor on the ¢-set and so form S and Ss. Finally, for those designs
in which the pairs fall into seven classes a graph G(M, 5) will have a one-factor as
long as p; > 15 or, when p; = 3, as long as at most one element y € § has occurred
in one of the preceding S;s. From Table I the pair-type in these RRPs is either
37(p = 21), p?3° or p33* where p; > 21, whence again it suffices to consider graphs
G(M, S) corresponding to p; = 3; this can be done in similar fashion to the previous

case (note that when p = 21 we have ¢ = 36 or 39).

This completes the proof of Lemnma 4.5. [

The following result is proven similarly.
Lemma 4.6. If v =0 mod 18 then {42 € F(v).

Proof. If v = 18 we apply Lemma 3.2, For v > 36 write v = p + ¢ where p = % + 3.
Then we have p =3 mod 6, p > 15 and p < ¢ < 2p. Now proceed as in the proof
of Lemma 4.5. The only significant changes occur when p = 15 or 21, when we have,
respectively, ¢ = 21 or 33. On these g-sets construct a KT'S(21) and a resolvable
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TD(3,11), each of which has an orthogonal parallel class of blocks. In this way we
can extract the five (resp. seven) triangles on the g-set with the desired intersection

pattern. (O
We now proceed to the main result of the section.

Theorem 4.7. Let v =0 mod 3, v > 33. Then {[¥],[¢] + 1,---, (411} € F(v),
ezcept possibly that [2] € F(v) where either v = 0,9,12 mod 18 or v = 33.

Proof. If v =0 mod18and k =¥+ 1or ¥ + 2 apply, respectively, Theorem 2.3
or Lemma 4.6. If v = 3 or 6 mod 18 and k = [%] or [£] + 1 apply, respectively,
Theorem 2.2 or Lemma 4.5. For v = 33 we need only construct a maximal set of 8
triangle-factors (the case k = 7 is dealt with in Theorem 2.2). Take the point set
{1,2,--- ,12}U(Z-x {1,2,3}), and construct a uniform RRP(12,8) on {1,2,---,12}
with triangle-factors Ty, Ty, T3 and one-factors Py, - , Ps. On Z; x {1,2,3} construct
the KT S(21) given in the case v = 33 of Theorem 2.2. Our first three triangle-factors
are T; UT/, 1 = 1,2,3 and we get three more triangle-factors from P, P,, Py and
T{, T}, T3 in the same manner as that of Theorem 2.2. The last two triangle-factors
are obtained as follows. Let M = P, and S = {21,4,,63,6,,5,,43}; with respect
to the leave graph of the first six triangle-factors the graph G(M,S) has minimum
degree §(G) > 3 and so by Lemma 4.2 has a one-factor. By relabelling if necessary

we get our seventh triangle-factor

{e121, €242, €363, €46y, €55y, esds} U (Ty\{214263, 615545}) .
The eight triangle-factor is constructed analogously, using M = Ps and S =
{11,32,53,51,42,33}({113,53, 5,423, C T%). ,

Otherwise, let [¢] < k < [%1], p = 2k — (2k mod 6) and ¢ = v — p. Then
v=p+gq, where p=0 mod 6 and p < ¢ < 2p (with p = q occurring precisely when
v=0 mod 12 and k = %) and, furthermore, k = %p +1 where 7 = 0,1 or 2. Finally,
since v > 36 we have p > 18. Now apply Lemma 4.4 (p = ¢) or Lemma 4.3. O
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Theorem 4.7 gives the bottom quarter of the (anticipated) spectrum for F(v).
With regard to the values k = [£], v = 0,9 or 12 mod 18, it is not difficult to see
that the RRP construction, strictly employed, cannot work. For example, if v = 36,
k = 6 then we would have to have p > 12 whereupon no RRP(p,6) exists. We do
not know at present how to deal with these cases. In fact (as previously noted) we

do not know of a single value for v in these classes mod 18 for which [%] € F(v).

5. OTHER CONSTRUCTIONS FOR MAXIMAL SETS

In this section we will briefly indicate some further constructions which will prove
useful in studying this problem.

The first construction has already been given as Corollary 1.6 and, under optimum
conditions, will yield the ‘top one-third’ of the spectrum for F(v), where v = 3 mod
6. Thus given v = 3 mod 6 we write v as one of 3w, 3w + 6 or 3w + 12 where w =3
modulo 6. Then apply Corollary 1.6 over all values of k € F(w). For example, we
have F(13) = {4,5,6,7} (Lemma 3.1). We get therefore F(45) 2 {19,20,21,22},
F(51) 2 {22,23,24,25} and F(57) 2 {25,26,27,28}. For v = 63 we advance w to
21, employing Lemma 3.3 and so obtaining F(63) 2 {25,26,27,28,29,30,31}, and

so on. In general we have the following inductive construction.

Theorem 5.1. If w=3 mod 6, v=3wd6r(r =0,1 0r2) and k € F(w) fork > 1,

then w+ k' € F(v) for k' > 3r +t. In particular if t = (w+ 3)/6 then k" € F(v) for
all k" 2 7Ui?8i12r'

Note that (v—1)/2—(Tv+9+412r)/18 is roughly v/9, which represents one third of
the (anticipated) spectrum for F'(v). The net result of Theorems 4.7 and 5.1 is that
for v = 3 mod 6 we can limit our attention to values of k between v/4 and Tv/18.

In order to derive a result for v = 0 mod 6 analogous to Theorem 5.1 we would
need to know something about the spectrum for large ‘holes’ in Nearly Kirkman
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Triple Systems (i.e. an analogue to Theorem 1.6 for NKT'Ss, with w = 0 mod 6
and v = 3w, 3w + 6 or 3w + 12). |

The second construction, illustrated by the solutions for 10, 11 and 12 triangle-
factors on 27 points (Lemma 3.5) uses the observation that if C is a collection of
triangle-factors whose leave graph contains a component on m # 0 (mod 3) vertices,
then C is a maximal set. In the simplest case, where the component is a K,,, it is
easy to see that m < lv, where k > lv. This construction will be useful for those
cases k > % where the foregoing recursive construction does not apply. We will now

apply this construction to prove the following.

Theorem 5.2. Let v = 0 mod 3, 33 < v < 42, and suppose that <k < =1 and
k #0 mod3. Then k € F(v).

Proof. We begin with v = 33, constructing maximal sets for k = 11,13 and 14:

k =11 Take the blocks of a resolvable TD(3,11).

k = 13 Take the point set (Z;3x {1,2})U{oo;, 002, , 007} and develop the following
triangle-factor modulo 13:

012171 0013162 005101122
022272 0023261 00610‘2121
114151 0038192 007111112 .
124252 0048291

k = 14 Take the point set (Z14x {1,2})U{oco1, 00, - , 005} and develop the following

triangle-factor modulo 14:

91111121 21527) 00331132
92112122 225172 00432131
011261 00141102 0058182 .
021162 00242101

For k = 16, take a K'T'S(33). In each of the foregoing, the leave graph contains a
K, (m #£0 mod 3) as a component; where k = 13,14 it occurs on the ocos.
Now let v = 36, so that k =13, 14,16, or 17.
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k = 13 Take the point set (Z,3%{1,2})U{00;,003,+ - ,0050} and develop the following
triangle-factor modulo 13:

0 hL14 0032192 076,73
01242 ©0042:9; 00637,
00131122 00551102 00981112
00232121 00652101 001082111 .

k = 14 Here our point set is (Zy4 % {1,2})U{o0;,003,-++ ,008}. Develop the following
triangle-factor modulo 14:

012131 00171132 00511122
022232 00272131 00612121
415291 00361112 00781102
425192 00462111 00882101 .

For k = 16, construct a maximal set of 4 triangle-factors on each group in a
resolvable T'D(3,12), and for k = 17 take an NKTS(36).

We proceed now to v = 39, solving for k = 13,14,16,17, 19.
E =13 Take the blocks of a resolvable TD(3,13).

k = 14 Our point set is (Zy4 x {1,2}) U {oo1, 002, -+ ,001;}. Develop the following
triangle-factor modulo 14:

6171101 0031142 00781122 0011131132 .
6272102 (N41241 00382121

0010152 0052132 00991112‘

0020251 0052231 001092111

= 16 Take the point set (Z;s x {1,2}) U {c0;,004, -+ ,007}. Develop the following
triangle-factor modulo 16:

10‘121131 4191142 0031121 0075152 .
102122132 4292141 0041221
71111152 0010132 0058162
72112151 0020231 0038261

k = 17 Take the point set (Z;7x {1,2})U{o01, 00, -+ ,005}, and develop the following

triangle-factor modulo 17:

011182 216}121 0013142 0057172 .
021281 2262122 0023241

91111152 51101131 003141162

92112151 52102132 004142161

For k =19 we take a KT5(39).
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Finally, we consider v = 42, taking in turn k = 14, 16,17,19, 20.
k = 14 Take the blocks of a resolvable TD(3,14).
k =16 Our point set is (Z;s x {1,2}) U {00y, 004, -+ ,0010}. Develop the following
triangle-factor modulo 16:

013191 0011182 00551102 009131142
023292 0021281 00652101 0010132141 .
6]71111 0032142 007121152

6272112 0042241 003122151

k =17 Our point set is (Zy7 X {1,2})U {oo1,004,-+ ,008}. We develop the following
triangle-factor modulo 17:

012171 101161152 00331142 007111132
022272 102162151 00432141 003112131 .
516191 0011142 00581122
526292 0021241 00582121

For k = 19 we can construct a triangle-factor on each group in a resolvable 3—G DD
of type 67, while for k = 20 we take an NKTS(42).

This completes the proof of Theorem 5.2. OO

For the sake of completeness we will fill in some of the gaps left by Theorem 5.2.
We will apply the same type of construction as that used in Theorem 5.2 but we'll
have to be careful to ensure that the set of triangle-factors so produced really is a

maximal set.

Lemma 5.3. Let v = 0 modulo 3, 33 < v < 42, and suppose that %v <k< 1’—}5 and

k =0 modulo 8. Then k € F(v), except possibly for 12 € F(36).

Proof. We begin with v = 33, constructing maximal sets for k¥ = 12 and k = 15.
k = 12 Point set (Z13 x {1,2})U({a} X Z3) U({b} x Z;)U {coy, 00,3, 003,004 }. Develop
the following triangle-factor modulo 12 (subscripts on as are developed modulo 3 and

subscripts on bs are developed modulo 2).

011151 00101102 0023281
025292 (114262 00371112
b06191 (122141 00472111
b11222 0013182
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Consider now the leave graph. On Z;; x {1,2} there remains pure difference 6
and mixed differences +1,+2,4+3 and 6. The edges of pure difference 6 and mixed
differences 3 form a K-factor (on Z;; x {1,2}) and, furthermore, any triangle on
Z,; x {1,2} is contained in one of these K,s. Hence there is no triangle-factor on the
leave graph and so our 12 triangle-factors form a maximal set.

k =15 Point set (Z;5 x {1,2})U {001, 004, 003}. Develop the following triangle-factor

modulo 15.
011151 319102 00111112
426292 13152132 0024182
21112122 7110132 00314‘22
12,10,14, 6,87,

The leave graph consists of a triangle, three pentagons (pure difference 6 on Z;5x {2})
and a 15-cycle (pure difference 7 on Z;5 x {1}).

Now consider v = 36, with k = 15 (we do not yet have a construction for k = 12);
here we simply construct a maximal set of 3 triangle-factors on each group of a
resolvable T'D(3,12).

For v = 39 we have k =15 and k = 18.
k=15 We take as our point set (Z;s x {1,2}) U {o0;,004,-+- ,009}. Develop the

following triangle-factor modulo 15.

014191 0021221 007111142
024292 0033172 003112141
516181 0043271 009131132
526282 005101122
0011122 005102121

On Z;5 x {1,2} there remain pure difference 7 and mixed differences 5, +6, +7. It
is easy to see therefore that the leave contains no triangle-factor.
k =18 Our point set is (Zys x {1,2})}U{c01, 002,003} Develop the following triangle-

factor modulo 18.

011181 711252 00151122
11113x173 1013292 00221172
316272 12115122 003141142
4,9,0, 1614511,

618,16, 10213,15,
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The leave graph consists of a triangle and nine 4-cycles.

Finally, we consider v = 42, constructing maximal sets for k = 15 and k = 18.
k =15 Our point set is (Z;5 x {1,2}) U ({a} x Z5) U ({b} x Z3) U ({c} x Z5) U {c0}.
Develop the following triangle-factor modulo 15 (subscripts on as and bs are developed
modulo 3 and subscripts on cs are developed modulo 5):

6181111 b161142 C3112122
(1012142 b251131 C414101
0192132 609122 5282102
a23171 611272 002132 .
501102 6241101

As all pure differences in Z;5 x {1,2} are exhausted, we clearly have a maximal
set.
k = 18 Take the point set (Z;5 x {1,2}) U {00,004, ,006}. Develop the following
triangle-factor modulo 18. }

01'8162 3252102 00391132
028261 121151161 00492131
117122 122152162 005141172
12722} 00141112 005142171
315}101 00242111

There remain on Z;s x {1,2} pure difference 9 and mixed differences 0, 8, 9 and 10.
Now the edges of pure difference 9 and mixed differences 0 and 9 form a K,-factor
(on Zyg x {1,2}) and, furthermore, any triangle on Z,3 x {1,2} is contained in one
of these Kys. Hence the leave graph contains no triangle-factor.

This completes the proof of Lemma 5.3. O

Theorem 5.2 and Lemma 5.3 together give the top half of the spéctrum for F(v),
v = 33,36,39,42. Indeed it seems quite reasonable to suggest that the recursive con-
struction presented earlier in this section, together with the construction illustrated
by the two foregoing results, will lead to an algorithm for the general construction of
maximal sets of size k for k in the interval v/3 < k < (v —1)/2. Many of the details

~ remain to be worked out, however, and this we defer to a later study. (One such
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“detail” which is of interest in its own right is the construction of Nearly Kirkman
Triple Systems with large holes (see the remarks following Theorem 5.1).)
We conclude this section by collecting what we have proven in regards to the

spectrum F(v) for v = 33,36, 39, 42.

Theorem 5.4. Letv=0mod 3,33 <v <42, Thenk € F(v) forall[4] <k < L‘*_;_l_l
with the possible ezceptions of v =33 and k =6,9,10; v = 36 and k =6,12; v = 39
and k = 12; and v = 42 and k = 13.

Proof. For [¥] < k < [4] see Theorem 4.7, and for § < k < %31 see Theorem 5.2

3
and Lemma 5.3. For v = 36 and k& = 10,11 see Lemma 4.4. For v = 39 and k = 11
use Lemma 4.3 (with p = 18 and ¢ = 21) and, finally, for v = 42 and k = 12 apply

Lemma 4.4A. [

6. CONCLUSION

In this paper we have initiated the study of the problem of determining the spec-
trum for maximal sets of triangle-factors on v points. The authors are certain that
this spectrum will contain the interval [¥] < k < L’f—;—ll Indeed we have proven this
for [¢] < k < ¥ and we have given good grounds for believing this to be true for
1<k < 1%—9 There remains the interval ¥ < k < %, for which a new idea appears
to be needed. Additionally, there remains k = [%], v = 0,9 or 12 mod 18; we know of
not a single example of such a maximal set, nor do we know of any good reason why

such a maximal set should not exist. We do know only that [¥] ¢ F(v) for v = 9,12

and 18. Whether or not 6 € F(33) also remains as an interesting open problem.
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APPENDIX
Pair-types of Restricted Resolvable Designs RRP(p, :(p+ 1))

The following table is used in the proof of Lemma 4.5. The parameter ¢ here is

(p—3)/6.

Table I .
t —4( mod 12) ¢ Pair-Type of RRP(p,X(p+ 1))
0 >4 (p/3)°
1 >5 ((p—3)/2)%3"
) 6 18231
> 18 ((r-9)/2)%3°
3 7 153
>19 ((p—15)/2)*3°
4 8 21233
> 20 ((p—9)/2)%9
5 9 24233
. 21 63231
>33 ((p—3)/2)*3"
6 10 213
22 63233
>34 ((p—3)/2)%3!
7 11 27235
23 63235
> 35 ((p—15)/2)%15"
8 12 21334
24 £929!
> 36 ((p—9)/2)%3°
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Table I (continued)

t —4( mod 12) t Pair-Type of RRP(p, 1(p +1))
9 1 3
13 273
25 7523}
37 111231
>49 ((p—9)/2)*3°
10 2 35
14 39233
26 75233
38 111233
> 50 ((p—21)/2)%21
11 3 37
15 27334
27 75235
39 111238
> 51 ((p—15)/2)*3°
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