
















There is also another special point, N (0,0,1,0,0) of PG( 4,9), associated 
with JC. In this section we investigate the quadrics that contain JC. 

Some of the properties, as proved in [8], were: 

Theorem 4.1. 

(1) The full group of collineations fixing the 10-arc is isomorphic to PGL(2, 9), 
and acts sharply 3-transitively on the 10 points. (Thus the group has order 
10.9.8 720.) This group fixes the special point N. 

(2) The projection of the arc from N is ~n elliptic quadric embedded in a Baer 
subgeometry PG(3, 3) of PG(3, 9). 

Now we can show more. 

Theorem 4.2. The space of quadrics passing through JC is generated by 

Qo : nx~ + x~ - X2X4 = 0, 

Ql : X2 X g - nXOXl XIX4 0, 

Q2 : XlXg - XOX4 0, 

Qg : XIX2 XOX3 - nXgX4 0, 

Q4: xi +nx~ XOX2 = 0. 

Thus it is a Q4 [4]. Each of these quadrics also passes through the special point N. 

Proof. Let (xo, .•. , X4) be in the intersection of the Q4[4] above. If Xo = 0, we have 
from Q2 that 

Xl Xg = ° =} Xl ° or Xg = 0. 

From Q4 we have that both Xl and Xg are zero, and then Qo implies that X2X4 = 0. 
This gives us the two points (0,0,0,0,1) and (0,0,1,0,0). Now suppose Xo = 1. 
Then Q2 implies that X4 Xl Xg, while Q4 implies that X2 = x~ + nx~. Substituting 
these into the other three equations implies that 

(1) 

(2) 

(3) 

nx~ + x~ - X~X3 - nXlx~ = 0, 

x~xg + nx~ - nXI - xixg 0, 

xi + nXlx~ - Xg nXlx; = 0. 

Since (1)+Xl(2) =} x~ -X~Xg = 0; and (1)+xg(3) =} nx~ nXlx~ 0, then either 
Xl = X3 0, or else Xl = X;, Xg = x~ =} Xl x~. Hence Xl E GF(9). This soon 
gives the other nine points of JC. 

Consider the equation of a general quadric Q with coefficients (aij) (0 ::; i ::; j ::; 
4) passing through JC. The point (0,0,0,0,1) implies that a44 = 0, while the other 
points of JC imply the equations Q(Pz ) = 0, Vx E F. Hence 

Q(Pz ) aoo + aOlX + ... + a22(x2 
+ nx6? + ... + a44x8 0 (mod X9 - x). 

The coefficient of X8 in Q(Pz ) is2na22 + a44. Thus a22 is zero and Q also passes 
through N. Notice that the equations arising from the condition that Q passes 
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through JC are independent - there are 10 of them. Hence the dimension of the 
space of quadrics through JC is 

(
4+2) 2 -1 -10 = 4. 

Thus the above quadrics do generate all the quadrics passing through JC. 0 

Any quadric not passing through N contains a term :z:~, and in particular 

does not contain N. However, it can be checked that this latter quadric contains the 
9 points of JC \ {(O, 0, 0, 0, 1 n. Let S be the Q4[5] generated by all six of the quadrics 
Qo, .. , , Qs above. Then nS is the 9-arc that is JC \ {(O, 0, 0, 0, In (which spans 
[4]). This intersection cannot contain more points because, by Theorem 3.1, if it 
did nS would be a 10-arc, which would be either a normal rational curve, or of non
classical type. However, the non-classical 9-arc of PG( 4,9) can only be extended to 
a non-classical 10-arc (its orthogonal dual is the complete 9-arc of PG(3, 9)), while 
the non-classical 10-arc is not in the intersection of a Q4[5]. 

Now S does not contain any prime-pairs - note that 9 = 2.4 + 1, and use 
Theorem 3.1; or one can prove it directly. In any case Theorem 3.1 applies to S, 
verifying that nS is a 9-arc. The automorphism group of JC is sharply 3-transitive 
by Theorem 4.1 and hence transitive on the 10 points. Since any subset of 5 points 
of the above 9-arc is independent, one can use the group to shift any subset T of 5 
points of JC to a subset of the 9-arc. (Just map the complement of T to a subset 
containing (0,0,0,0,1).) Thus the group can be used to prove that JC is a 10-arc. 
In any case, it is interesting that the 9-arc of PG( 4,9) that is the intersection of the 
Q4[5] of quadrics above, is the orthogonal dual of the complete 9-arc of PG(3, 9). 
Thus a construction of this complete 9-arc from quadrics is obtained. 

Next we consider the implications of Theorem 3.4 with respect to the quadric 
space S = Q4[4] through JC U {N}. Let P be any point of JC U {N}. Then there is 
a [0] of cones (a unique cone) of Sp. Thus the four conditions for a quadric of S to 
be a cone with vertex P are independent. In the case of P = N, the cone of Sp is 

which is hyperbolic, while if P is any point of the 10-arc, say (0,0,0,0,1), the cone 
of Sp is 

which is elliptic. 
The cones contained in the Q4[4] actually correspond to the quintic primal which 

is the intersection of the quintic primal !J. of §3 with Q4[4]. This contains a con
figuration isomorphic to JC U {N}. In fact, we have defined Qo, ... , Q4 so that the 
collineation from the point [4] to Q4[4] mapping (Ao, ... ,A4) f--+ E~=o AiQi takes a 
point of JC U {N} to the cone with that point as vertex; see Theorem 4.6. Thus JC 

12 



could be constructed from the elliptic cones of a Q4[4] and/or the above quadratic 
mapping. 

The non-classical la-arc JC of PG( 4,9) has many other interesting properties 
that can be deduced principally from the [4] of quadrics passing through JC and the 
special point N. Before we start this consider the following. 

Definition 4.3. A derived point of a primal f(x) = a of order d contained in [n] 
over a field F is any point such that all the n + 1 partial derivatives of f are zero 
at that point. A singularity of f is a derived point that lies on the primal. 

Now Euler's formula states that 

n af 
LXi.ax' = d·f(x). 
i=O ' 

Hence there can only be derived points that are not singularities if the characteristic 
of the field F divides d. The first interesting case is that of conics in projective planes 
of characteristic 2, where the derived point is called the nucleus. 

Here is a curious property of the normal rational curve of PG( 4,9). 

Theorem 4.4. The normal rational curve ((1,x,x2 ,Xs ,:l!4) I x E GF(9) U {co}} 
together with the point N = (0, 0, 1, 0, 0), is the set of derived points of any cubic 
primal of the form 

4 

V : xox; - XOX2:l!4 + Xl X2 X S + X~X4 + L CtiX~ = 0, 
i=O 

where (Xi E GF(9). 

Proof. By Theorem 3.3 the quadric space, whose intersection is the normal rational 
curve, is generated by the quadrics 

which are therefore 

Only one of these quadrics does not pass through N: it is Xl Xs = x~. The others 
have as their complete intersection the normal rational curve and the point N. Also, 
the partial derivatives of V are the five quadrics passing through N above. Hence 
the cubic has precisely 11 derived points which are those on the normal rational 
curve, and also the point N. We leave some of the details because next we show 
that a similar thing happens for the non-classical arc. 0 
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Theorem 4.5. K, U {N} is the set of derived points of a. cubic primal of PGC 4,9) 

where ai E GF(9). 

Proof It is only necessary to note tha.t 

From Theorem 4.2, K, U {N} is the intersection of these quadrics and so J( U {N} is 
the set of derived points of C, Note that some of these points can lie on the cubic 
primal, depending on how the ai's are chosen. D 

Some of the properties of the space of quadrics containing the non-classical 10-
arc K of PG( 4,9) are really related to general properties of cubic primals in any 
projective space [n]. Given a cubic primal f of [n] there is always a space Qn[n] of 
first-polar quadrics associated with f. The first-polar of a point (Yo,.,. ,Yn) is the 
quadric 2:;=0 Yi :1. = O. The Hessian matrix of f is the (n + 1) X (n + 1) matrix of 
all second-order partial derivatives 

H:= ( ). 

When f is cubic, H is linear in the variables :ei, and this provides a connection, via 
an identity, to the polar quadrics of f. 
Theorem 4.6. Let f be any cubic primal of [nJ, where the base field does not have 
characteristic two. Then the following hold. 

(1) There is an identity valid for all variables :ei, Yj. 

Thus the symmetric matrix of the polar quadric (in Qn[n]) of the point 
( :eo, ... , :en) is given by evaluating the Hessian matrix at this point. 

(2) Another identity in :ei is: 

8f 8f 
(:eo, .. ,,:en)H = 2(-8 ""'-8 ). 

:eo :en 

Thus a point is a vertex of its own polar quadric if and only if it is a derived 
point of f. 

(3) The quadratic point to hyperplane transformation r of PG(4, 9) associated 
with the 10-arc JC, defined (in dual coordinates) by 
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4 

,(P) = P LPiAi, where 
i=O 

P = (Po, ... ,P4) and Ai is the symmetric 4 x 4 matrix corresponding to Qi. 
(4) With respect to the lO-arc JC of PG( 4,9) we have: (Ao, ... ,A4) E 1::=0 AiQi, 

V points of PG( 4,9). Thus every point is contained in its polar quadric. 
Further, a point is the vertex of the cone which is its polar quadric if and 
only if it is a derived point; that is, it lies on JC U {N}. 

Proof. (1) The cubic primal f contains three types of tenTIs: XiXjXk, (i, j, k dis
tinct); XiX~, (i, j distinct); and x~. If the identity is valid for these terms then it is 
valid, by summation, for all cubics. Thus in the first case we obtain, on both sides 
the form 2(YiYjXk + YiXjYk + XiYjYk); and in the second the form 2(2YiYjXj + xiyJ); 

and in the third 6xiyr. 
(2) This follows immediately from Euler's identity, since a column of H is the vector 
of first partial derivatives of a primal of degree 2. The second assertion follows from 
the fact that the vertices of a quadric cone correspond to the non-zero vectors of the 
null space of the symmetric matrix (in this case H) corresponding to the quadric; 
see [13]. 
(3) This follows directly from (1) and (2), when we realize that Qi = :;i is the 
polar quadric of the i'th unit vector ei, and so its matrix Ai (up to multiplication 
by 1/2) is obtained by evaluating H at ei. 
(4) This comes from Euler's identity in the case of one of the cubic primals C asso
ciated with JC, since the characteristic of GF(9) is three, which divides the order, 
3, of C. 0 

At first the author thought that there was some connection between the non
classical la-arc of PG( 4,9), and the theory of quintic curves and Segre la-nodal 
cubic primals of four dimensional space ... perhaps because the number 10 was 
involved in both cases; see [26, Chapter VIII, §5], where many properties of the 
elliptic quintic and its related quadro-cubic Cremona transformation are listed. See 
also [25]' where "the most beautiful of all quadric transformations" is described in 
detail, and also [1]. Let us discuss these things for a while. There are two types of 
irreducible quintic curves of [4]. 

(1) Elliptic: take three quadrics of [4] (generating a Q4[2]) that intersect in a 
normal rational cubic curve of a [3] and residually in an elliptic quintic. 
It is explained in [25,26] how the Q4[4] through this curve determines a 
quadratic Cremona transformation with cubic inverse. Associated also with 
this curve are Segre cubic primals of [4], which have 10 nodes. However, 
there are 15 planes contained in such a primal, each containing 4 nodes. 
Hence the set of nodes is not a la-arc, and so our cubic primal C containing 
JC U {N} does not appear to be a Segre cubic primal. 

(2) Rational: although a rational curve is a special case of an elliptic we can 
find another way to construct a Q4 [4] through any rational quintic curve 
of [4]. Consider the following. Every rational curve A of order n + 1 in [n] 
is obtained by projecting a normal rational curve R of [n + 1] from a point 
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P (j. R. There is a Qn+I[(ntl) -I} through R and so the dimension of the 
space of cones with vertex P containing R is at least 

(See Theorem 3.4.) Hence the rational curve A is contained in a Qn[(;) -2]. 
Now put n = 4 to obtain the result for rational quintic curves of [4]. 

Thus both the non-classical 10-arc, and the quintic curves above have a Q4[4] 
through them. Despite this we have the following. 

Theorem 4.7. The non-classical lO-arc I( of PG(4, 9) together with its special 
point N are not contained in any irreducible quintic curve. 

Proof. I( U {N} is the precise intersection of the Q4[4] of quadrics generated by 
Qo) ... , Q4; see Theorem 4.2. Since the Q4[4] through the eleven points is unique, 
and since any quintic curve has an infinite number of points over the algebraic 
closure of GF(9), we see that the set of intersection of the quadrics is not a quintic 
curve. It is also not contained in any rational or elliptic (or irreducible) quintic curve 
of [4] the Q4[4] containing the quintic curve and that containing I( could not be 
the same, and so there would be at least a Q4[5] containing I( - a contradiction. 0 

Theorem 4.8. The chords of I( U {N} are contained in a quintic primal with the 
property that each point of the chord is the vertex of a single cone or pencil of 
cones of the Q4[4] of quadrics containing lC U {N}. There are two points (possibly 
imaginary), on each chord of I( U {N} which are vertices of a pencil of quadrics. 

Proof. If Ai is the symmetric matrix of Qi, then 

det (t PiAi) = ° 
\=0 

is the equation of the set of cones of the space of quadrics. This is a quintic primal. 
From Theorem 4.6(4) it follows that P = (Po, ... ,P4) is the vertex of the cone above 
if and only if PEl( U {N}. Consider two points of 1(, which we may take to be 
(1,0,0,0,0) and (0,0,0,0,1) by the 3-transitivity of the group of 1(. A general point 
on the line joining these points is (1,0,0,0, k), where k -:j:. 0. The quadric 

( 0 

npI P4 ps 
P2 ) 4 npI npo + P4 -Ps -P2 PI 

LPiAi = P4 -Ps ° -PI Po , 
i=O Ps -P2 -PI po + np4 nps 

P2 PI Po nps ° 
is a cone with vertex (l,O,O,O,k) if and only if (l,O,O,O,k) L:i=oPiAi = 0. Solving 
this we find that 

P2 = (n + k )PI = P4 + kpo = (1 + nk )Ps = 0. 
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These equations show that there is a unique cone through all but two points on the 
chord joining any two points of}(. The two points with a pencil of cones are 

(1,0,0,0, -n) and (-n, 0, 0, 0, 1). 

Similarly, each point on the line joining (1,0,0,0,0) and (0,0,1,0,0) is the vertex 
of a unique cone, except for two points 

(1,0, k, 0, 0), where k 2 n, 

which in this case are in PG(4,81), as n is a non-square of GF(9). 0 

Note that this property is very similar to that of a quintic curve of [4]. See [26]. 

5. CONCLUSIONS 

We have given some of the basic theory connecting quadrics and k-arcs, so here 
is the place to include some conjectures and ideas about further progress in the 
subject. 

Conjecture. A (q+ 1 )-arc of PG( n, q) that is contained in a Qn[ (;) -1] of quadrics 
is a normal rational curve. One may need to assume that q 2:: 2n. 

Note that if this could be proven then every (q + I)-arc of PG(q/2,q), where 
q = 2\ would be a normal rational curve. This is because of Theorem 3.2(1). By 
orthogonal duality, every (q + I)-arc of PG«q - 2)/2,q) would also be a normal 
rational curve. The first counter-example might be in PG(8,16). 

Conjecture. There exist more examples ofq-arcs of PG(n, q) that are the complete 
intersection of a Qn[(;) - 1] of quadrics. 

The non-classical 9-arc of PG( 4,9) contained in the 10-arc )( is an example. 

Conjecture. The maximum dimension of a space of quadrics of [n] that does not 
contain a prime-pair is (;) - 1. Note that by dimension theory this is true for 
geometries over algebraically closed fields. 

Conjecture. For most q 2:: 2n there exist examples of (2n + I)-arcs of [n] not 
contained in a normal rational curve: by Theorem 3.2, these are the intersection of 
a Qn[(;) - 1] of quadrics. 

For n 2, every (2n + I)-arc of [n] is in a unique quadric (conic). For n = 3, 
a 7 -arc of [3] is orthogonally dual to a 7 -arc of [2]. There are plenty of such arcs 
not contained in a conic. In fact, they have all been counted [9, Theorem 4.2]. 
Hence the number of 7-arcs of PG(3, q) is given by a similar formula involving one 
variable, noting the result by Thas [29]' which essentially says if Kn is the number 
of k-arcs in [n], and if Hn is the number of homographies (linear collineations) in 
[n], then 

Hk-n-2 K n = H n K k - n - 2 . 

This is best thought of as a relation between the orthogonal duals. 
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Main Problem. Generalise tbe non-classical 10-arc of PG( 4,9). 

One could look at curves (elliptic or rational) of order n + 1 in [n]. Another 
idea is to consider the space of quadrics of a normal rational curve of [n + 1], and 
then construct good spaces of quadrics of [n] by projection or by restriction to a 
hyperplane. The first cases to consider in PG( n, q) would be q odd, n ~ 4, q ~ 11; 
or q a power of 2, n ~ 5, q ~ 16. One could also look at sets of derived points of 
certain primals to see if arcs are hidden in them. 
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