Decompositions of $K_{m,n}$ and K_n into Cubes

Darryn E. Bryant Centre for Combinatorics Department of Mathematics The University of Queensland Queensland 4072 Australia

Saad I. El-Zanati Department of Mathematics Illinois State University Normal, Illinois 61761 U.S.A.

Robert B. Gardner Department of Mathematics East Tennessee State University Johnson City, Tennessee 37614 U.S.A.

Abstract

We consider the decomposition of the complete bipartite graph $K_{m,n}$ into isomorphic copies of a *d*-cube. We present some general necessary conditions for such a decomposition and show that these conditions are sufficient for d = 3 and d = 4. We also explore the *d*-cube decomposition of the complete graph K_n . Necessary and sufficient conditions for the existence of such a decomposition are known for *d* even and for *d* odd and n odd. We present a general strategy for constructing these decompositions for all values of *d*. We use this method to show that the necessary conditions are sufficient for d = 3.

1 Introduction

Let K be a simple graph and let G be a subgraph of K. A G-decomposition of K is a set $\Gamma = \{G_1, G_2, \ldots, G_t\}$ of edge-disjoint subgraphs of K each of which is isomorphic to G and such that the edge sets of the G_i 's form a partition of the edge set of K. The graph K is said to be G-decomposable.

Australasian Journal of Combinatorics 9(1994), pp.285-290

The decomposition of graphs has been and remains the focus of a great deal of research (see [1, 5, 11]). In particular, K_k -decompositions of K_n (balanced incomplete block designs, see M. Hall [4]) and C-decomposition of K_n , where C is a cycle of given length [7], have received much attention. The decomposition of K_n into complete bipartite graphs is explored in [3, 15] and into complete m-partite graphs in [6]. This problem has also been addressed for K_n in connection with trees and forests [10, 13]. The decomposition of $K_{m,n}$ into cycles of length 2k is explored in [14].

The *d*-cube is the graph Q_d whose vertex set is the set of all binary *d*-tuples, $V(Q_d) = (\mathbb{Z}_2)^d$, and whose edge set consists of all pairs of vertices which differ in exactly one coordinate. Q_d has 2^d vertices, $d2^{d-1}$ edges and is bipartite.

In 1966, Rosa [12] introduced the notion of α -valuation of a graph G as follows: Let |E(G)| = n and let ψ be a one-to-one mapping of V(G) into $N = \{0, 1, \ldots, n\}$. Then ψ is called an α -valuation of G if (i) the set $\{|\psi(u) - \psi(v)| : uv \in E(G)\}$ equals $\{1, 2, \ldots, n\}$ and (ii) there exists a number λ such that, for every $(u, v) \in E(G)$, $\min\{\psi(u), \psi(v)\} \leq \lambda < \max\{\psi(u), \psi(v)\}$. A graph G admitting an α -valuation is necessarily bipartite.

The following theorem establishing a connection between α -valuations of a graph G and G-decompositions of complete graphs was proved by Rosa [12].

Theorem 1.1 If a graph G with n edges has an α -valuation, then there exists a G-decomposition of the complete graph K_{2cn+1} , for every positive integer c.

A bipartite analogue of Theorem 1.1 was proved in [2].

Theorem 1.2 If a graph G with n edges has an α -valuation, then there exists a G-decomposition of the complete bipartite graph $K_{nx,ny}$, for all positive integers x and y.

In 1981, Kotzig [8] showed that Q_d has an α -valuation for all positive integers d, thus establishing necessary and sufficient conditions for the existence of Q_d decompositions of K_n when d is even and in the case when d is odd and n is odd. The case d odd and n even remains open. The purpose of this paper is to explore Q_d -decompositions of $K_{m,n}$ and of K_n .

2 *d*-Cube Decompositions of $K_{m,n}$

In this section, we consider decompositions of the complete bipartite graph $K_{m,n}$ (where we assume $m \leq n$) into copies of a *d*-cube. In such a decomposition, the degree of each vertex of the *d*-cube (which is *d*-regular) must divide the degree of each vertex of $K_{m,n}$ and the number of edges of the *d*-cube must divide the number of edges of $K_{m,n}$. This implies:

- $(2.1) \qquad d \mid m \text{ and } d \mid n, \text{ and}$
- (2.2) $d2^{d-1} \mid mn$.

Also, since the *d*-cube is a bipartite graph with each "part" of size 2^{d-1} , we need (2.3) $2^{d-1} \le m \le n$.

The 2-cube is simply a 4-cycle and it is shown in [14] that the necessary conditions (2.1)-(2.3) are sufficient in this case. To establish sufficiency for d = 3 and d = 4, we will present decompositions of $K_{m,n}$ where the vertex set of $K_{m,n}$ is $(\mathbb{Z}_m \times \{0\}) \cup (\mathbb{Z}_n \times \{1\})$ (with the obvious bipartition) and the ordered pair (x, y) of this vertex set is represented by x_y . For d = 3 we have:

Theorem 2.1 For $m \leq n$, a 3-cube decomposition of $K_{m,n}$ exists if and only if $m \equiv n \equiv 0 \pmod{3}$, $mn \equiv 0 \pmod{4}$ and $m \geq 4$.

Proof. We get the necessary conditions from (2.1)-(2.3). Under these conditions, either

(2.4) $m \equiv 0 \pmod{6}$ and $n \equiv 0 \pmod{6}$,

 $(2.5) \quad m \equiv 3 \pmod{6} \text{ and } n \equiv 0 \pmod{12}, \text{ or }$

(2.6) $m \equiv 0 \pmod{12}$ and $n \equiv 3 \pmod{6}$.

If (2.4) is satisfied, then $K_{m,n}$ can clearly be decomposed into isomorphic copies of $K_{6,6}$. Since $K_{m,n}$ and $K_{n,m}$ are isomorphic, (2.5) and (2.6) are equivalent. In either case, $K_{m,n}$ can be decomposed into a collection of graphs each of which is isomorphic to either $K_{6,6}$ or $K_{9,12}$. So for sufficiency, we only need to give 3-cube decompositions of $K_{6,6}$ and $K_{9,12}$.

We give the desired decomposition in an $m \times n$ array whose rows are labelled 0_0 through $(m-1)_0$ and whose columns are labelled 0_1 through $(n-1)_1$. The (i_0, j_1) entry of the array is q_k if edge (i_0, j_1) of $K_{m,n}$ is an edge of cube q_k in the decomposition. For a decomposition of $K_{6,6}$ into 3-cubes, consider:

	01	11	21	31	41	5_{1}
00	q_1	q_3	q_1	q_1	q_3	q_3
10	q_3	q_1	q_1	q_1	q_3	q_3
20	q_1	q_1	q_2	q_1	q_2	q_2
30	q_1	q_1	q_1	q_2	q_2	q_2
40	q_3	q_3	q_2	q_2	q_3	q_2
5_0	q_3	q_3	q_2	q_2	q_2	q_3

The set of 3-cubes $\{q_1, q_2, q_3\}$ forms a Q_3 -decomposition of $K_{6,6}$.

For a decomposition of $K_{9,12}$ into 3-cubes, consider:

	01	11	21	31	41	51	61	71	81	91	$ 10_1 $	111
00	q_1	q_1	q_1	q_4	q_2	q_2	q_2	q_4	q_3	q_3	q_3	· q4
10	q_1	q_1	q_5	q_1	q_2	q_2	q_5	q_2	q_3	q_3	q_5	q_3
20	q_1	q_6	q_1	q_1	q_2	q_6	q_2	q_2	q_3	q_6	q_3	q_3
30	q_7	q_1	q_1	q_1	q_7	q_2	q_2	q_2	q_7	q_3	q_3	q_3
4 ₀	q_4	q_5	q_5	q_4	q_8	q_9	q_5	q_4	q_8	q_9	q_8	q_9
5 ₀	q_4	q_5	q_5	q_4	q_8	q_9	q_8	q_9	q_8	q_9	q_5	q_4
60	q_4	q_5	q_6	q_7	q_7	q_6	q_5	q_4	q_7	q_6	q_5	q_4
7 ₀	q_7	q_6	q_6	q_7	q_7	q_6	q_8	q_9	q_8	q_9	q_8	q_9
8 ₀	q_7	q_6	q_6	q_7	q_8	q_9	q_8	q_9	q_7	q_6	q_8	q_9

The set of 3-cubes $\{q_1, q_2, \ldots, q_9\}$ forms a Q_3 -decomposition of $K_{9,12}$.

287

For d = 4 we have:

Theorem 2.2 A 4-cube decomposition of $K_{m,n}$ (where $m \leq n$) exists if and only if $m \equiv n \equiv 0 \pmod{4}$, $mn \equiv 0 \pmod{32}$ and $n \geq m \geq 8$.

Proof. Again, (2.1)-(2.3) give the necessary conditions. As in Theorem 2.1, we find under these necessary conditions, that $K_{m,n}$ can be decomposed into a collection of graphs each of which is isomorphic to either $K_{8,8}$ of $K_{8,12}$.

For a decomposition of $K_{8,8}$ into 4-cubes, consider:

	01	1_{1}	21	31	41	5_{1}	61	71
00	q_1	q_1	q_1	q_2	q_2	q_1	q_2	q_2
_1 ₀	q_1	q_1	q_2	q_1	q_1	q_2	q_2	q2
_2 ₀	q_2	q_2	q_2	q_1	q_1	q_2	q_1	q_1
_3 ₀	q_1	q_2	q_2	q_2	q_1	q_1	q_2	q_1
4 ₀	q_1	q_2	q_1	q_1	q_2	q_2	q_2	q_1
50	q_2	q_1	q_1	q_1	q_2	q_2	q_1	q_2
60	q_2	q_1	q_2	q_2	q_1	q_1	q_1	q_2
7 ₀	q_2	q_2	q_1	q_2	q_2	q_1	q_1	q_1

The set of 4-cubes $\{q_1, q_2\}$ forms a Q_4 -decomposition of $K_{8,8}$. For a decomposition of $K_{8,12}$ into 4-cubes, consider:

	01	11	21	31	41	5_{1}	61	71	81	91	101	111
_0 ₀	q_1	q_1	q_1	q_1	q_2	q_2	q_2	q_2	q_3	q_3	q_3	q_3
10	q_3	q_3	q_3	q_3	q_1	q_1	q_1	q_1	q_2	q_2	q_2	q_2
20	q_1	q_1	q_3	q_3	q_1	q_1	q_2	q_2	q_3	q_3	q_2	q_2
30	q_3	q_3	q_1	q_1	q_2	q_2	q_1	q_1	q_2	q_2	q_3	q_3
40	q_1	q_3	q_1	q_3	q_1	q_2	q_1	q_2	q_3	q_2	q_3	q_2
_5 ₀	q_3	q_1	q_3	q_1	q_2	q_1	q_2	q_1	q_2	q_3	q_2	q_3
60	q_3	q_1	q_1	q_3	q_1	q_2	q_2	q_1	q_2	q_3	q_3	q_2
70	q_1	q_3	q_3	q_1	q_2	q_1	q_1	q_2	q_3	q_2	q_2	q_3

The set of 4-cubes $\{q_1, q_2, q_3\}$ forms a Q_4 -decomposition of $K_{8,12}$.

3 *d*-Cube Decompositions of K_n

In this section we examine Q_d -decompositions of the complete graph K_n . Kotzig [8] proved the following results concerning Q_d -decompositions of K_n :

(3.1) If d is even and there is a Q_d -decomposition of K_n , then $n \equiv 1 \pmod{d2^d}$.

(3.2) If d is odd and there is a Q_d -decomposition of K_n then either (a) $n \equiv 1 \pmod{d2^d}$ or

(b)
$$n \equiv 0 \pmod{2^a}$$
 and $n \equiv 1 \pmod{d}$.

(3.3) There is a Q_d -decomposition of K_n if $n \equiv 1 \pmod{d2^d}$.

The consequence of result (3.3) is that the necessary conditions described in (3.1) and (3.2) are sufficient whenever n is odd (and hence, whenever d is even). However, if d is odd and n is even, then (3.2) tells us that

 $(3.4) \quad n \equiv 0 \pmod{2^d} \text{ and }$

 $(3.5) \quad n \equiv 1 \pmod{d}.$

But Kotzig's results do not tell us if these conditions are sufficient. For a given d (odd), equations (3.4) and (3.5) have solution

$$n \equiv a_d \pmod{d2^d} \tag{(*)}$$

for a unique a_d with $0 \le a_d < d2^d$.

We now consider the question of whether or not (*) is sufficient for the existence of a Q_d -decomposition of K_n . This problem had been mentioned previously in the literature, see [5, 9]. It is known that for sufficiently large n, K_n can be decomposed into *d*-cubes whenever (*) is satisfied (see [16]) and it is known that there is a Q_3 decomposition of K_{16} (see [9]).

Theorem 3.1 Let r, a and d be any positive integers with $d \ge 2$ and let $n = rd2^d + a$. Then there is a Q_d -decomposition of K_n if there are Q_d -decompositions of K_a and $K_{d2^d,a-1}$.

Proof. Let $A = \{x_1, x_2, \ldots, x_a\}$ and let V_1, V_2, \ldots, V_r be mutually disjoint sets of size $d2^d$ such that $V_i \cap A = \emptyset$ for all *i*. For each $i, j \in \{1, 2, \ldots, r\}$ with i < j, let $C_{i,j}$ be a Q_d -decomposition of $K_{d2^d,d2^d}$ where the bipartition is (V_i, V_j) (which exists for all positive integers *d* by Theorem 1.2). For each $i \in \{1, 2, \ldots, r\}$, let C_i be a Q_d -decomposition of K_{d2^d+1} (which exists for all $d \ge 2$, see [8]) where the vertex set of K_{d2^d+1} is $V_i \cup \{x_1\}$ and let D_i be a Q_d -decomposition of $K_{d2^d,a-1}$ where the bipartition is $(V_i, \{x_2, x_3, \ldots, x_a\})$. Let *B* be a Q_d -decomposition of K_a where the vertex set of K_a is *A*.

Then, C is a Q_d -decomposition of K_n where

$$C = \left(\bigcup_{i,j \in \{1,2,\dots,r\}, i < j} C_{i,j}\right) \cup \left(\bigcup_{i=1}^{r} C_{i}\right) \cup \left(\bigcup_{i=1}^{r} D_{i}\right) \cup B$$

and the vertex set of K_n is V with $V = (\bigcup_{i=1}^r V_i) \cup A$.

For d = 3, the conditions of the theorem are satisfied since there is a Q_3 -decomposition of K_{16} (see [9]) and of $K_{15,24}$ by Theorem 2.1. Therefore:

Corollary 3.1 There is a Q_3 -decomposition of K_n if and only if $n \equiv 1$ or 16 (mod 24).

References

 J. -C. Bermond and D. Sotteau, Graph decompositions and G-designs. Congr. Numer. 15 (1975) 53-72.

- [2] S. I. El-Zanati, M. J. Plantholt, S. K. Tipnis and C. L. Vanden Eynden, On graceful graphs, preprint.
- [3] R. L. Graham and H. O. Pollak, On embedding graphs in squashed cubes. Graph Theory and Applications, Springer Lecture Notes in Mathematics, Vol. 303, Springer New York (1973) 99-110.
- [4] M. Hall Jr., Combinatorial Theory, Blaisdell Waltham MA (1967).
- [5] F. Harary and R. W. Robinson, Isomorphic facorizations X: Unsolved problems. J. Graph Theory 9 (1985) 67-86.
- [6] Q. Huang, On the decomposition of K_n into complete m-partite graphs. J. Graph Theory 15 (1991) 1-6.
- [7] C. C. Lindner and C. A. Rodger, Decompositions into cycles II: Cycle systems. Contemporary Design Theory (J. H. Dinitz and D. R. Stinson, eds.) John Wiley New York (1992) 325-369.
- [8] A. Kotzig, Decompositions of complete graphs into isomorphic cubes. J. Comb. Theory Ser. B 31 (1981) 292-296.
- [9] A. Kotzig, Selected open problems in graph theory, Graph Theory and Related Topics, Academic Press New York (1979) 258-267.
- [10] G. Ringel, Problem 25, Theory of Graphs and its Applications (M. Fiedler, ed.), Academic Press, New York (1964) 162.
- [11] C. A. Rodger, Graph decompositions, Le Matematiche 45 (1990) 119-140.
- [12] A. Rosa, On certain valuations of the vertices of a graph, Théorie des graphes: Journées internationales d'étude, Rome, 1966 Dunod Paris (1967) 258-267.
- [13] S. Ruiz, Isomorphic decompositions of complete graphs into linear forests. J. Graph Theory 9 (1985) 189-191.
- [14] D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k. J. Comb. Theory Ser. B 30 (1981) 75-81.
- [15] H. Tverberg, On the decomposition of K_n into complete bipartite graphs. J. Graph Theory 6 (1982) 493-494.
- [16] R. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph. Congr. Numer. 15 (1976) 647-659.

(Received 1/6/93)