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Abstract 

Let k~l be an integer, and let G = (V, E) be a graph. The closed k­
neighborhood N k[V] of a vertex v E V is the set of vertices within distance k 
from v. A 3-valued function f defined on V of the form f : V --+ { -1,0, I} is 
a three-valued k-neighborhood dominating function if the sum of its function 
values over any closed k-neighborhood is at least 1. The weight of a three­
valued k-neighborhood dominating function is f(V) L f( v), over all vertices 
v E V. The three-valued k-neighborhood domination number of a graph G, 
denoted Ik(G), equals the minimum weight of a three-valued k-neighborhood 
dominating function of G. For k ~ 2, we establish the existence of trees with 
three-valued k-neighborhood domination number less than any given negative 
number. We show that the decision problem corresponding to the problem of 
computing Ik is NP-complete even when restricted to bipartite graphs. 



1 Introduction 

Let G = (V, E) be a graph, and let v be a vertex in V. For k 2: 1 an integer, the 
closed k-neighborhood Ndv] of v is defined as the set of vertices within distance k 
from v. The open k-neighborhood Nk( v) of v is Nk[v] - {v}. For a set S of vertices, we 
define the closed k-neighborhood Nk[S] of S as the set of all vertices within distance 
k from some vertex of S. The open k-neighborhood Nk(S) of S is Nk[S] - S. A set S 
of vertices is a k-dominating set if Nk[S] = V. The k-domination number of a graph 
G, denoted rk( G), is the minimum cardinality of a k-dominating set in G. 

Results on the concept of k-domination in graphs have been presented by, among 
others, Bacso a'nd Tuza [1, 2], Beineke and Henning [3], Bondy and Fan [4], Chang [5], 
Chang and Nemhauser [6, 7, 8], Fraisse [10], Fricke, Hedetniemi, and Henning [11, 12], 
Henning, Oellermann, and Swart [13, 14, 15, 16, 17], Meir and Moon [18], Mo and 
Williams [19], Slater [20], and Topp and Volkmann [21]. In this paper we introduce a 
new variation on the k-domination theme which we call three-valued k-neighborhood 
domination. In so doing we will attempt to describe a larger tapestry of domination 
results which increases our general understanding of domination parameters. 

2 Definition of Three-Valued k-Neighorhood 
Domination 

Let 9 : V ~ {O, I} be a function which assigns to each vertex of a graph an element 
of the set {O, I}. To simplify notation we will write g(S) for I:g(v) over all v in the 
set S of vertices, and we define the weight of 9 to be g(V). Further, we will write 
gk(V) for g(Nk[v)). We say 9 is a k-dominating function if for every v E V, gk(V) 2: 1. 
We say 9 is a minimal k-dominating function if there does not exist a k-dominating 
function h : V -+ {O, I}, h =I- g, for which h(v) ~ g(v) for every v E V. This 
is equivalent to saying that a k-dominating function is minimal if for every vertex v 
such that g( v) > 0, there exists a vertex u E Nk[v] for which gk( u) = 1. An equivalent 
definition of the k-domination number of a graph G is rk( G) = min {g(V) I 9 is a 
minimal k-dominating function on G}. 

In a similar manner we now define a three-valued k-neighborhood dominating func­
tion. A three-valued k-neighborhood dominating function is a function of the form 
9 : V ~ {-I, 0, I} such that for every v E V, gk( v) ?: 1. The three-valued k­
neighborhood domination number for a graph G is ,;; (G) = min {g(V) I 9 is three­
valued k-neighborhood dominating function on G}. For k = 1, this definition coin­
cides with the notion of three-valued domination introduced and studied by Dunbar, 
Hedetniemi, Henning, and McRae [9]. 
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There is a wide variety of possible applications for this variation of domination. By 
assigning the values -1, ° or +1 to the vertices of a graph we can model such things as 
networks of positive, neutral and negative electrical charges, networks of positive and 
negative spins of electrons, and networks of people or organizations in which global 
decisions must be made (e.g. positive, negative or neutral responses or preferences). 
In such a context, for example, the three-valued k-neighborhood domination number 
represents the minimum number of people whose positive votes can assure that all 
local groups of voters (represented by closed k-neighborhoods) have more positive 
than negative voters, even though the entire network may have far more people who 
vote negative than positive. In this paper we study situations in which, in spite of the 
presence of negative vertices, the closed k-neighborhoods of all vertices are required 
to maintain a positive sum. 

Proposition 1 A three-valued k-neighborhood dominating function 9 on a graph G 
is minimal if and only if for every vertex v with g( v) = ° or 1, there exists a vertex 
U E Nk[v] with gk(U) = 1. 

Proof. Let 9 be a minimal three-valued k-neighborhood dominating function and 
assume that there is a vertex v E V with g(v) ~ ° and gk(U) ~ 2 for every U E Nk[v]. 
Define a new function f : V -+ {-1,0,1} by f(v) = g(v) - 1 and f(u) = g(u) 
for all U =J v. Then for all U E Nk[v], fk( u) = gk( u) 1 ~ 1. For w rt Nk[v], 
h(w) = gk(W) ;::: 1. Thus f is a three-valued k-neighborhood dominating function. 
Since f < g, the minimality of 9 is contradicted. 

Conversely, let 9 be a three-valued k-neighborhood dominating function such that 
for all v E V with g( v) ~ 0, there exists a U E Nk[v] with gk( u) = 1. Assume 
9 is not minimal. Then f( w) ::; g( w) for all w E V and there is a v E V with 
-1 ::; f(v) < g(v). So g(v) ~ ° and by assumption, there is a U E Nk[v] with 
gk(U) = 1. Since f(v) ::; g(v) - 1, and f(w) ::; g(w) for all w E V, we know 
that fk( u) ::; gk( u) - 1 = 0. This contradicts the fact that f is a three-valued 
k-neighborhood dominating function. 0 

Proposition 2 For every graph G, Ik(G) :::; Ik(G). 

Proof. Let D be a minimum k-dominating set in G. Let 9 : V -+ {a, I} be the 
characteristic function on D, i.e., g(v) = 1 if v E D and g(v) = ° if v E V-D. Note 
that g(V) = Ik( G). By definition 9 is a three-valued k-neighborhood dominating 
function. Hence Ik(G) :::; g(V) = I(G). 0 
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3 Three-Valued k-Neighorhood Domination 
for Trees 

In [9] it is shown that every tree T satisfies 11 (T) 2: 1 with equality if and only if T is 
a star KI,n' In this section we show that for k ~ 2, there exist trees with three-valued 
k-neighborhood domination number less than any negative integer. 

Proposition 3 For any integers k 2: 2 and t ~ 1) there exists a tree T with 
Ik(T) :::; -to 

Proof. Consider the tree T constructed as follows. Let m be a large positive integer, 
and let HI, Hz, ... , Hm be (disjoint) paths of length 2k 1. Let the ends of Hi 
be Ui and Vi and let Wi and Xi be the vertices at distance k - 1 from Uj and V, 

respectively. Let Hm+l be isomorphic to a star K1,m-1 and let W m+l denote the 
central vertex of H m+1 , and let Yl,Yz, ... ,Ym-l denote the end-vertices of Hm+1 . 

Finally, let T be the tree obtained from the (disjoint) union of HI, Hz, ... , Hm+l by 
joining Wm+l to Wi with an edge, i = 1,2, ... , m, and then subdividing the edge 
YiWm+l k - 2 times for each i = 1,2, ... , m - 1. (The tree T is sketched in Figure 1.) 
Let U = {Ul,llZ, ... ,um }, V = {Vl,VZ, ... ,vm }, W = {Wl,WZ"",Wm+l}, X = 
{XlJX2,".,Xm} and Y = {Yl,Y2"",Ym-d. Now let f assign the value 1 to each 
vertex of ~V U X, the value -1 to each vertex in U U V U Y, and the value of 0 to all 
remaining vertices of T. Then it is not too difficult to see that f is a three-valued k­
neighborhood dominating function with f(V(T)) = -m + 2. Hence Ik(T) :::; -m + 2. 
Letting m = t + 2 completes the proof. 0 
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Figure 1. A tree T with Ik (T) :::; -m + 2. 
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4 Complexity Issues 

In this section we consider the following decision problem corresponding to the prob­
lem of computing Ik (G) for any fixed integer k 2: l. 

THREE-VALUED k-NEIGHBORHOOD DOMINATION (TkND) 
INSTANCE: A graph G = (V, E) and a positive integer r S IVI. 
QUESTION: Is there a three-valued k-neighborhood dominating function of weight 
r or less for G? 

The purpose of this section is to establish the following result. 

Theorem 1 TkN D is NP-complete when restricted to bipartite graphs. 

Proof. It is obvious that T kN D is a member of N P since we can, in polynomial 
time, guess at a partition of the vertex set of G into three subsets Vi,1;2, and \13, 
where the vertices of Vi, \12, and \13 are assigned the values -1,0 and 1, respectively, 
and then verify that the funcion j : V -+ {-I, 0,1} corresponding to this partition 
has weight at most r and is a three-valued k-neighborhood dominating function. 

To show that TkN D is an NP-complete problem, we will establish a polynomial 
transformation from the well-known NP-complete problem 3SAT. Let I be an in­
stance of 3SAT consisting of the (finite) set C = {Cl, ... , cm } of three literal clauses 
in the n variables Xl, ... , X n . We transform I to the instance (GI , r) of TkN D in 
which r = 3( n + m) and G I is the bipartite graph constructed as follows. 

Let H be the bipartite graph obtained from a (4k + 2)-cycle C by attaching a path 
P of length 2k + 1 at some vertex e. Let x and x be the vertices on C at distance 
k from e and let j,g and h be the vertices on P at distance 1, k + 1 and 2k + 1, 
respectively, from e. Further, let a, band d be the three vertices on the x-x path of 
H that does not contain e at distance 1, k + 1 and 2k + 1 from X, respectively. (So 
d is adjacent to x.) Let HI, Hz, ... , Hn be n disjoint copies of H. Corresponding to 
each variable Xi we associate the graph Hi. Let xi,xi,ai,bi,di,ej,ji,gj and hi be the 
names of the vertices of Hi that are named x, x, a, b, d, e, j, 9 and h, respectively, in 
H. 

Next we construct the bipartite graph F as follows. Attach three (disjoint) paths 
of length k - 1 to a vertex c of a (2k + 2)-cycle. Let YI and Yz (WI and wz) be the 
two vertices on the cycle at distance 1 (k, respectively) from c. Let Ull Uz, U3, U4, Us 

be a path of length 4 and identify the vertex Uz with the vertex at distance k + 1 
from c. Finally let I = {I, 2, 4, 5} and attach a Ui-Vi path of length k to each vertex 
Ui for i E I. Let F denote the resulting (bipartite) graph. Let Fll Fz, ... , F m be m 
disjoint copies of F. Corresponding to each clause Cj we associate the graph Fj . Let 
cj, Yj,l, Yj,Z, Wj,}' Wj,Z, Uj,i (i = 1,2, ... ,5) and Vj,i (i E I) be the names of the vertices 
of Fj that are named c, YI, Yz, WI, Wz, Ui (i = 1,2, ... ,5) and Vi (i E I), respectively, 
in F. If k = 1, then we let Yj,i = Wj,i. 



The construction of our instance of T kN D is completed by joining the vertex Cj to 
the three special vertices that name the three literals in clause Cj if k = 1, or by joining 
the three end-vertices of Fj at distance k - 1 from Cj to the three special vertices that 
name the three literals in clause Cj, each end-vertex being joined to exactly one literal, 
and vice-versa, for k ~ 2. Let G r denote the resulting graph. Observe that G r is 
a bipartite graph. The graph Gr associated with (Xl V X2 V xn) /\ (Xl V X2 V xn) is 
depicted in Figure 2. 

It is easy to see that Gr has order (6k+3)n+(9k+3)m and size (6k+3)n+(9k+6)m 
and the construction can be accomplished in polynomial time. All that remains to 
be shown is that I has a satisfying truth assignment if and only if Ik(Gr) :::; r, where 
r = 3(n + m). 

First suppose I has a satisfying truth assignment t : {Xl, X2, ... , xn} -t {T, F}. 
'vVe construct a three-valued k-neighborhood dominating function f of G r of weight 
f(V(Gr)) :::; 3(n + m). This will show that Ik(Gr) :::; 3(n + m). For each i = 
1,2, ... ,n, do the following. Ift(Xi) = T, then let f(xi) f(di) = f(gi) = 1 and let 
f(v) = 0 for the remaining vertices of Hi. On the other hand, if i(Xi) = F, then let 
f(xi) f( ai) f(gi) = 1 and let f( v) = 0 for the remaining vertices of Hi. For each 
j = 1,2, ... , m, do the following. Let f(uj,i) 1 for i E I, let f(uj,3) = -1 and let 
f( v) = 0 for the remaining vertices of Fj. Then it is straightforward to verify that f is 
a minimal three-valued k-neighborhood dominating function of weight 3(n +m). The 
only vertices whose closed k-neighborhoods under f give any doubt are the vertices 
Cj. But the closed k-neighborhoods of these vertices under f maintain a positive sum 
because I has a satisfying truth assignment. This shows that Ik(Gr) :::; 3(n + m). 

Conversely assume that Ik (G r) :::; 3( n + m) r. Let 9 be a three-valued k-
neighborhood dominating function of weight g(V(Gr)) = Ik(Gr). 

Claim 1 g(V(Hi)) ~ 3 for all i = 1,2, ... ,n. 

Proof. Since 9 is a three-valued k-neighborhood dominating function, gk( v) ~ 1 for 
every v E V(Gr). Hence, since Ndbi] , Nk[ei] and Nk[h i ] are pairwise disjoint and 
their union is V(Hi ), we have g(V(Hi)) ~ 3. 0 

Next we show that g(V(F\)) ~ 3 for all j. For each j = 1,2, ... , m, let Nj = 
Nk[cj] n V(Fj ). We proceed further by proving four claims. 

Proof. Suppose, to the contrary, that g(Nj ) < -1. Then 1 :::; gk(Yj,l) = g(Nj ) -
g(Wj,2) + g(Uj,2) < -1- g(Wj,2) + g(Uj,2) :::; -1- (-1) + 1 1, which is impossible. 0 
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Claim 3 If g(Nj ) = -1) then g(V(Fj )) 2: 4. 

Proof. Since 1 S 9k(Yj,1) = g(Nj )-g(Wj,2)+g(Uj,2) S -1-( -1)+1 = 1, we must have 
equality throughout in the above inequalities. In particular, this means g( Uj,2) = 1 
and g( Wj,2) 1. Similarly, if we consider the vertex Yj,2, we may show that g( Wj,l) = 
-1. Now let Zj denote the vertex that immediately precedes Vj,2 on the Uj,rVj,2 path. 
(If k = 1, then Zj = Uj,2') Then g(V(Fj)) = gk(Zj) + (g(Nj ) - g(Wj,l) - g(Wj,2)) + 
(gk(Vj,l) - g(Uj,d) +gk(Vj,4)+gk(Vj,S) 2: 1+(-1+2)+(1 1)+1 +1 = 4, as asserted. 
o 

Claim 4 If g(Nj ) = 0) then g(V(Fj )) 2: 3. 

Proof. Since V(Fj) can be partitioned into the six subsets Nj, {Uj,3}, Nk[vj,i] (i E I), 
it follows that g(V(Fj )) = g(Nj ) +g(Uj,3) +'£iET9k(Vj,i) 2: 0-1+4 = 3, with equality 
if g(Uj,3) = -1 and gk(Vj,i) = 1 for i E I. 0 

Claim 5 If g(Nj) 2 1) then g(V(Fj )) 2: 4. 

Proof. Proceeding as in the proof of Claim 4, we have g(V(Fj )) = g(Nj ) + g(Uj,3) + 
'£iEygk(Vj,i) 2 1 - 1 + 4 = 4. 0 

As an immediate consequence of Claims 2, 3, 4 and 5, we have the following result: 

Claim 6 g(V(Fj )) 2: 3 for all j = 1,2, ... , m. 

By Claims 1 and 6, we have 

n m 

g(V(Gr)) = I: g(V(Hi)) + I:g(V(Fj)) 2 3(n + m) 
i=l j-l 

with equality if and only if g(V(Hi)) = 3 for all i and g(V(Fj)) = 3 for all j. However, 
by assumption, g(V(Gr)) S 3(n + m). Consequently, g(V(G[)) = 3(n + m) and 
g(V(Hi)) = 3 for all i and g(V(Fy)) = 3 for all j. In particular, since g(V(Fj)) = 3, 
it follows from Claims 2,3,4 and 5, that g(Nj) = O. Since gk(Cj) 2 1 for all j, this 
implies the existence of a set S ~ U~l {Xi, xd with g( v) 1 for all v E S and such 
that {Cl' C2, ... , cm } ~ Nk (S). We show next that S contains at most one of the 
vertices Xi and Xi. 

Proof. Since V(Hd can be partitioned into the five subsets Nk[Ji], Nk[h i ] - {gd, 
Nk[bi], {xd and {xd, it follows that g(V(Hi)) = gk(fi) + (gk(h i) - g(gi)) + gk(b i ) + 
g(Xi) + g(Xi) 2:: 1 + (1 - 1) + 1 + 1 + 1 = 4, as asserted. 0 
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Since g(V(Hi)) = 3 for all i, it follows from Claim 7 that S contains at most 
one of the vertices Xi and Xi. Thus we can use S to obtain a truth assignment 
t : {Xl, X2, ... , Xn} -t {T, F}. We merely set t(Xi) = T if Xi E Sand t(Xi) = F 
if Xi tJ. S. By our construstion of the graph GI , and from the definition of S, it 
follows that each clause Cj of I contains some variable Xi E S or Xi E S. Hence this 
truth assignment satisfies each of the clauses Cj of C. Hence I has a satisfying truth 
assignment. 

Therefore, I has a satisfying truth assignment if and only if Ik(T) :::; r, where 
r = 3(n + m), completing the proof. 0 
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