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Abstract

A (1, -1)-matrix will be called a bent type matrix if each row and each
column are bent sequences. A similar description can be found in Carlisle
M. Adams and Stafford E. Tavares, Generating and counting binary se-
quences, JEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 1170-1173,
1990, in which the authors use the properties of bent type matrices to con-
struct a class of bent functions. In this paper we give a general method to
construct bent type matrices and show that the bent sequence obtained
from a bent type matrix is a generalized result of the Kronecker product
of two known bent sequences. k
Also using two known bent sequences of length 2%*~2 we can construct
2 — 2 bent sequences of length 2%, more than in the ordinary construc-
tion, which gives construct 10 bent sequences of length 2%* from two known

bent sequences of length length 2%%-2,

Let V;, be the vector space of n tuples of elements from GF(2). Let «, 8 € V,. Write

a=(ay, ,a,), 8= (b1, --,bn), where a;, b; € GF(2). Write (a,8) = 57
the scalar product of o and 8.

=1

a;b; for

Definition 1 We call the function A(z) = a121 + -+ + @nZn + ¢, aj, c € GF(2), an

affine function, in particular, h(z) will be called a lnear function if ¢ = 0.
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Definition 2 Let f(z) be a function from V, to GF(2) (simply, a function on V).

If
27% 3 (—1)f e = 4y
z€Vn

for every 8 € V.. We call f(z) a bent function on V.

From Definition 2, bent functions on V,, only exist for even n. Bent functions were
first introduced and studied by Rothaus [13]. Further properties, constructions and
equivalence bounds for bent functions can be found in [2], [5], [7], [12], [16].
Kumar, Scholtz and Welch [6] defined and studied the bent functions from 23 to Z,.

Bent functxons are useful for digital commumcatlons , coding theory and cryptography

81, [, [, (7, (8], [10], [9], [11}, [12]

We say a = (a1, ,an) < B = (b, -, by) if there exists k, 1 £ k £ 2%, such that
ay =by, ..., @y = by and ax =0, by = 1. Hence we can order all vectors in V, by
the relation <

ao<a1<~~<a2»_1,

where
Qo = (Oy : )0)1
[251 = (0; ) 1)1
Qgn-1.1 = (0, 1, ‘y 1),
Qgn—1 = (1,0, . ,O),
Qan_1 = (1,1,"',1).

Definition 3 Let f(z) be a function from V, to GF(2). We call (—1)f(e0) (—1)f(e),

, (=1)f(=2") the sequence of f(z). We ca,ll the sequence of f(z) a bent sequence if
f(:z:) is bent. A (1, -1)-sequence will be called an affine sequence a (linear sequence )
if it is the sequence of an affine function (a linear function).

Definition 4 A (1, -1)-matrix H of order h will be called an Hadamard matriz if
HHT = hI4.

If h is the order of an Hadamard matrix then A is 1, 2 or divisible by 4 [15]. A special
kind of Hadamard matrix defined as following Wlll be relevant.

Definition 5 The Sylvester-Hadamard matriz (or Walsh-Hadamard matriz) of order
2", denoted by H,,, is generated by the recursive relation

Hn—-l Hﬂ—l

H":[HM —Hn_l]’ n=1,2,..., Ho=1.




Let f(z) be a function from V,, to GF(2), £ be the sequence (regarded as a row vector)
of f(z). Then the following three conditions are equivalent

(i) f(z) is bent,

(i) 275" Ho£T is a (1, -1)-row vector,

1

(iii) for any affine sequence I ({,[) = £23™.

The equivalence of (i) and (ii) can be found in many references, for example, [2],
[16]. Note that any affine sequence of length 2" is a row of £ H,, (see subsection 2.3)
thus (ii) and (iii) are equivalent.

Definition 6 We call a (1, -1)-matrix of order 2™ x 2™ a bent type matriz if each row
is a bent sequence of length of 2" and each column is a bent sequence of length of 2™.

For example,

+

I+ +
I+ +

+ 4+ -

where + and — denote 1 and —1 respectively, is a bent type matrix of order 4. A
similar description can be found in [2, p. 1171].

+ 4+

Definition 7 A (1, -1)-matrix of order 2™ x 2" will be called an affine type matriz
if each row is an affine sequence of length of 2" and each column is an affine sequence
of length of 2™.

For example,

+ +
+ +

is an affine type matrix of order 4 x 8. Any Walsh-Hadamard matrix is an affine type
matrix (see subsection 2.3).

++ + +
++++
D+ +
|+ +
L4+ 1+
I+ 1+

Definition 8 Let A; and A, be affine type matrices of order 2™ x 2™, If A; = QAP
where @ and P are diagonal matrices of order 2™ and 2™ whose diagonals consist of
+1 we say A; and A; are equivalent.
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For example are equivalent affine type

++
++ ++
+ 4+ +
++ + +
+ 4+ +

matrices.

Definition 9 We call each of the four (1, -1)-sequences of length 2 ++, +—, ——,
—+ E'-constructed. Recursively, suppose E™-constructed has been defined for n =
1,...,k—1. The (1, -1)-sequence ! will be said to be E*-constructed if | = (I', +I')
where ' is EF~'-constructed.

1 Bent Type Matrices

1.1 Bent Type Matrices Constructed from Affine Type Ma-

trices
Lemma 1 Let by, by,..., by be a bent sequence and co,cy,...,cony be an affine
sequence, then boco, bicy, ..., byn_1con_y 18 a bent sequence.

Proof.  Let bo, by, ...,ban_1 be the sequence of a bent function f from V, to GF(2)
and ¢, ¢1,...,cam1 be the sequence of an affine function from V, to GF(2). Note
that boco, bicy, ..., ban_ycan_y is the sequence of f + g. From Property 1 [6, p. 95]
f + g is bent. This proves the lemma. o

Bent type matrices can be used to construct bent sequences. For convenience, we
quote a part of the Theorem found in [2]

Theorem 1 Let B = (b;;) be a bent type matrizc of order 2™ x 2". Write §; =
(bajy.ooybami), 5=1,...,2" and o = (bis ... bign), 5 = 1,...,2™. Then both

(2*%mﬁ1Hm> Tty 2”%mﬁ2”Hm)

and . .
(2_5"a1Hn, frty Z'E"azmHn)

are bent sequences of length 2™+",
Proof. The proof can be found in [2, p. 1171]. _ o

Using the three equivalent conditions of bent functions in Section 1, both 2”%mﬁme
and 2-3"o;H, are bent sequences of length 2™ and 2". Hence Theorem 1 gives an
example that the concatenation of some bent sequences is also bent. In general this
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is not true if some extra conditions are not satisfied. For example, each of + 4 +—,
++~+, 4+ —+4++, —+++ 1is bent but the concatenation of the four sequences
is not bent. The conditions for bent type matrices are restrictive. In this section we
use affine type matrices to construct bent type matrices.

Theorem 2 Let A be an affine type matriz of order 2™ x 2, P be a diagonal matriz
of order 2™ whose diagonal is a bent sequence of length 2™, say ao,as,..., a1 and
Q be a diagonal matric of order 2™ whose diagonal is a bent sequence of length 2™,
say bo,b,...,bgm_y1. Then QAP is o bent type matriz of order 2™ x 27,

Proof. Since each row of A is an affine sequence, by Lemma 1, each row of AP is a
bent sequence. Note each column of AP is still an affine sequence. By Lemma 1, each
column of QAP is a bent sequence. Note each row of QAP is still a bent sequence.
This proves the theorem. o

To find the bent sequences using the special construction mentioned in Theorem 1,
we first construct bent type matrices using Theorem 2. In particular, when the affine
matrix A in Theorem 2 consists of only ones, the bent type matrix mentioned in
Theorem 2 yields a bent sequence which is the Kronecker product (see [15]) of two
bent sequences: 2“§"‘6me and 2“%"a.-Hn. Thus we have reproved Theorem 1 [16]
using a different method.

Corollary 1 Let T, denote the number of different bent sequences on V,, with first en-
tries + and Opmyn, denote the number of inequivalent affine type matrices of
order 2™ x 2". Then there exist at least TmTnOmyn different bent type matrices of
order 2™ x 2™,

Proof.  We first note that for a fixed affine type matrix of order 2™ x 2", we can
construct at least 7,7, different bent type matrices of order 2™ x 2" by using Theorem
2. Otherwise suppose B is an affine type matrix of order 2™ x 2", Q; # Q; or P, # P,
but @1 BP, = @Q,BP, where each @; and each P; are the matrices mentioned in the
proof of Theorem 2 whose first entries on the diagonals are +. Thus

Q:Q:BP, P, = B. (1)

Note that both @2@Q1 and P, P, are diagonal matrices whose diagonals consist of 1.
Let Q2Q1 = diag(q1, -, q+), PiPs = diag(p1,---,py»). Let By = (bl,"'ybzk)T be
the first column of B. Compare the first columns on each side of (1) then we have
gibip1 = bj, 5 =1,...,2% thus ¢; = p1, 5 = 1,...,2* and thus Q,Q; = +I,« according
as p; = +1. Hence §3,Q; = elm and PP, = ely» where e = #+1. Since the first
entries on the diagonals of @1, @2, Pi, P, ate +, Q1 = Q4 and P, = P,. This contra-
dicts the assumption that Qq # @, or P; # P,.

Secondly we note that if B; and B, are inequivalent affine type matrices of
order 2™ x 27, there exist no @i, @, P, P, as mentioned in Theorem 2 such that
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Q1B P, = @3B, P;. Otherwise we would have Q,Q,B, P, P, = B,. This contradicts
the assumption that By and B, are inequivalent. Hence we have established the corol-
lary. O

1.2 Constructing Affine Type Matrices

lo

l
Lemma 2 Write H, = 1 where l; is a row of H,. Then l; is the sequence of
12"-—1
a linear function on V,.
Proof. The proof can be found in [14]. o

‘We can now establish:

Theorem 3 An (1, -1)-matriz of order 2™ x 2™ is an affine type matriz if and only
if each row is E™-constructed and each column is E™-constructed.

Proof.  Note that H, has 2" rows and there exist 2" linear sequences of length
2". By Lemma 2 each linear sequence is a row of H, and thus each affine sequence
is a row of +H,. By the Definition of H, each row of H, and is E™-constructed.
Hence each affine sequence is E™-constructed. On the other hand, there exist 2"+!
E™-constructed (1 -1)-sequences and 2*** affine sequences. Thus each E™-constructed
(1, -1)-sequence is affine. a

Theorem 4 Let A; be an affine type matriz of order 2™ x 2™ with rankr, and A, be
an affine type matriz of order 2™ x 2™ with rank ry. Then A; X A, is an affine type
matriz of order 2™ ¥™2 x 2M*™2 with rank riry, where X is the Kronecker product.

Proof. Note that each row of A; x A, is E™*™ _constructed and each column of
Ay x Az is E™* ™ constructed. Hence by Theorem 3, A; X A, is an affine type
matrix.

Let C; be the invertible submatrix of order r, and C, be the invertible submatrix of
order r,. Hence by (25) of [16, p. 114], C;1 x C, is mvertlble and thus the rank of
A; X Aj is at least ry7r,.

On the other hand, since the ranks of A; and A, are r; and ry respectively, write
Qi,..., o, for the linearly independent row vectors of A4;, and f,.. ., B, for the
linearly independent column vectors of A,. Note that any row vector of 4, is a




linear combination of a4, .. .', a,, and any row vector of Aj is a linear combination of
Bi,...,Br,. Any row vector of A; X A, can be written as a x B, where o is a row
vector of A; and S is a row vector of A4;. Write a = 371, ajo; and B = 372, b5,
where each a; and b; € GF(2). Hence

TL T2

axf =33 aba x ).

=1 j=1

This proves that the rank of A; X Aj; is at most ry7; and hence it is exactly ryry. O

Corollary 2 (i) Let A be an affine type matriz of order 2™ x 2 with rank r and
a be the row vector of an affine sequence of length 2°. Then both a X A and
A X a are affine type matrices of order 2™ x 2™ with rank r.

(i) Let o be the row vector of an affine sequence of length 2°. Then both o x H,
and H, X a are affine type matrices of order 2™ x 2"t® with rank 2, where H,
15 a Walsh-Hadamard matriz.

(i11) Let o be the row vector of an affine sequence of length 2° and B be the row vector
of an affine sequence of length 2t. Then a x BT is an affine type matric of order
2t x 2* with rank 1.

Theorem 5 For any integers k, n, m, 0 £ k < n < m, there ezists at least (2F — 1)
inequivalent (under the meaning in Definition 8) affine type matrices of order 2™ x 2"
with rank 2F.

Proof. Write Walsh-Hadamard matrix Hy = [hy - hys] where each h; is a column
vector of Hy. We first prove that any two [hy hj -+ hj ] and [hyhy, - h;zk] are
inequivalent if ja,- - -, jy» and 3,,- -, 4% are two different rearrangements of 2, ..., 2.
Otherwise if there exist diagonal matrices as mentioned in Definition 8, say @ =
diag(qy, -+ - ,qar), P = diag(p1, - ,par), then @ = £, P = +1,x, since

Qlhi ks, .. b )P =[hahiy ... By, (2)

and comparing the first columns on each side of (2), we have gja;p1 = a; where
(@1, a.%)T = hy, thus ¢; = p1, 7 = 1,...,2% and thus Q = +I, according as
p1 = 1. By the same reasoning we can prove that P = £ I,x, according as ¢, = +1.
On the other hand, there exists an integer ¢, 2 < ¢t < 2% such as j, # 4, and thus
hj, # hi,. We note that (2) cannot hold by comparing h;, and h;,. This proves the
above statement.

Let R be the matrix of order 2™ % x 2"* with elements ones. By Theorem 4
[R1hj, -+ hj,] x R is an affine type matrix of order 2™ x 2" with rank 2*. Per-
muting ja, ..., Jox we obtain (2% —1)! inequivalent matrices of this kind. a

Note that 0! = 1 in Theorem 5.




Corollary 3 For any positive integers n and m, n < m, there ezist at least
Tro(2F — 1)! inequivalent (within the meaning of Definition 8) affine type matri-
ces of order 2™ x 2™,

Proof. We note that if two matrices have different ranks they are inequivalent within
the meaning of Definition 8. Im|

Corollary 4 For any positive integers n < m there ezists at least 1,7, reo(2F — 1)
different bent type matrices of order 2™ x 27,

Proof. By Corollary 3 omxn 2 Y5_1(2¥—1)!. An application of Corona,ry 1 completes
the proof. ]

2 Combination of Two Known Bent Sequences

2.1 Enumeration of Nondegenerate Linear Transformations

We replace the real numbers 1, 2, ..., 2" by the vectors
Qp = (0,"',0), [24] :(0,"‘,0,1), ey Ogny :(1,1,1)6 I/n

respectively. Let ¢ be nondegenerate linear transformation on V,. Set §; = w(aj),
j=0,1,...,2" = 1.

Lemma 3 Ifei, €3, -, ezn i.€. €qp,€ay,° ", €agn_, is an affine sequence then €4, €8,
<+, e8n_, 15 also an affine sequence.

Proof. Let €ny,€ay, ", €ayn_, be the sequence of the affine function h(zy,...,z,)
on V.. Set h(p(z1,...,2,)) = g(@1,...,2a) thus h(p(a;)) = g(a;) i-e. A(B;) = g(a;)
and thus eg; = (—1)MF) = (—1)9(=). Since g(Z1,...,%,) is an affine function the
sequence of g i.e. eg,, e, -, €g,._, is an affine sequence. a

Lemma 4 There ezist ezactly ;-‘;01(2" — 29) nondegenerate linear transformations
on V,.

Proof.  An equivalent statement is that there exist exactly H;-‘;g(2" — 27) non-
D,

degenerate matrices of order n over GF(2). Write D = : , @ non-degenerate
D2ﬂ.
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matrix of order n over GF(2), where D; is the i-th row of D. Note that D has 2" — 1
choices (excluding the case that D is the zero vector). After D, is fixed D, has 2™ ~2
choices (excluding Dy = diD; where dy = 0,1). After D; and D, are fixed Dj has
2™ — 22 choices (excluding D3 = dyD; + dyD;, where di,d; = 0,1). Continuing this
reasoning, after Dq,..., D, have been fixed D, has 2" — 2" choices (excluding
D, = Y"1 d;D;, where each d; = 0,1). In total D has I1?2}(2"—27) different choices.

7=1 7=0
]

Lemma 5 (i) All nondegenerate linear transformations on V,, can be divided into
2™ — 1 disjoint classes y,...,8ln_y such that ¢, and @, are in the same class

if and only if {p1(0), . .., p1(azm-1.1)} = {p2(a0),-- -, p2(agn-11)},
(i) |Q;| =2zt —29), 5 =1,...,2" — 1.

Proof. Fix a nondegenerate linear transformation on V,,, say @o. Write po(c;) = £5,

j=1,...,2"—1.

We now count ¢ such that ¢ and g are in the same classi.e. {@(ao),...,p(agn-1_1} =
{po(a0), ..., po(agn-1_1)} = {Bo,...,Pan-1_1}. This counting is equivalent to count-
ing the nondegenerate linear transformations on V, , say 1), such that {¢(8),...,
P(Ban-1-1)} = {Bo,...,Pan-1_1} because if we set ¢ = 1y then {p(a),...,
pr(aan-1-1)} = {Yeo(ao), - . ., Yeo(aam-1-1)} = {$(Bo), .., ¥(Ben-1-1)} = {Bo, .,
Ban-1_1} = {po(c0), - .., po(ctgn-1_1)}. Since {ao,...,am-1_; } contains oy, as, ey, . ..
ayn-2 but contains no aj, § = 2", ... sy, the rank of {ayp,...,apm-1_1}isn—1.
Note that any nondegenerate linear transformation preserves the rank of any set of
vectors thus the rank of {fo,...,Bom-1_1} is also n — 1. Suppose B;,...,B;., €
{Bo,...,Ban-1_1} is a basis for {B,...,Bm-1_1}. Add an appropriate vector in V,,
say v, such that 8;,...,08;,_,,7 form a basis of V.

We now determine ¢ such that {4(Bo),...,¥(Bm-1_1)} = {Bo,--.,Pan-1_1 }. For this

purpose a necessary and sufficient condition is

P(Bjr) = c11Bi, + c12Bi + -+ + cin-1B5,,
¢(ﬁ12) = C21ﬁj1 + 622:3.1'2 +e 4+ C3"~1ﬁjn—1

Y(Bin-1) = cn-11Bi, + n-12B5 + +++ + Encin-184,_,
1!’('7) = dlﬁjx + d2ﬂjz +---+d "lﬁjn——l + ey

where (c;;) is a nondegenerate matrix of order n — 1 on V,,_; and e = 1 since 1 is a

nondegenerate linear transforma.tlon By Lemma 4 (c;;) has TI322(2"! — 27) choices.
On the other hand (dy,- -, d.—1) has 2°~! choices. In total 1) has 2”'1H"‘2(2"' 29)
choices. This proves that [Q;] = 2 'II;Z3(2"1 —27), j =1, —1. By Lemma 4
there exist H;‘_(}(T‘ 27) nondegenerate linear transformatxons on V. Thus we have
7o (2m — 27) /27123 (2t — 27) = 2™ — 1 disjoint classes. |
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2.2 Combination of Two Known Bent Functions

In this section we replace 1, 2, ..., 27! by vectors in Vpk_1: o = (0, --,0)
oy =(0,--+,0,1), ..., apan-1_y = (1,1,--+,1) respectively. ‘

Let ¢ be a nondegenerate linear transformation on Vo_;. Set §; = oley),7=0,1,...,
22k=1 _ 1. Suppose & = (a1, -, agmx-2) and & = (b, -, byen—2) are two bent se-
quences of length 2%*~2. We now construct a (1, -1)-sequence of length 2%, denoted
by n = (m1, 72) where each 7; is of length 2%*~1) by using ¢;, ¢ and o.

3

Construction 1 Let the fo-th, the fi-th, ... , and the Bju—2_;-th entries of
be a,a,..., a5k respectively and let the Byu-2-th, the Baze-241-th, ... , and the
Bazk-1_1-th entries of 7y be by, by, . .., bys—s respectively.

Next let the Bo-th, the Bi1-th, ..., and the Byau-s_;-th entries of 9, be a1, as, ..., ag2ss
respectively and let the Byas-a-th, the Byax-a,y-th, ..., and the Byau-1_;-th entries of
72 be —by, —by, ..., —bye-1 respectively.

Set 1 = (1, 72)-

Lemma 6 7, in Construction 1, is a bent sequence of length 22F,

Proof.  Let L be an affine sequence of length 2**. By Theorem 3 L = (I, +1)
where [ is an affine sequence of length 221, Write I = (ey, 5, - ,€g2k—1) le. =
(EagsCayy " »€agny_, )- Writel = (I, l;) where each I; is of length 22*~2. By Theorem
3, each [; is an affine sequence of length 222 and I, = +1;.

We now consider (5, L) = {n1, l1) + (12, lz).

Case 1: L = (I, l). By Construction 1

(m, L) = (1, 1) + (n2,1)

where
22**2 22h—-2
<7717l) = Z aj€p; 1 + Z bjeﬁzzk—2+j_1
I=1 =1
and
22‘!—2 2:’&—2
<772»l) = E asep;_y — Z bjeﬁzzh—z+,~-1'
7=1 J=1
Thus
22)&*-2
<77aL) =2 E a5€g; ;- (3)
3=1
Write I* = (eg,, €p,," ", 8,5, ), by Lemma 3, it is an affine sequence of length 225~1,

Write I* = (13, I3) where each I} is of length 22*~2. By Theorem 3 each I? is an affine
sequence of length 222,
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Thus (3) becomes (n, L) = 2(¢;, 1}). Note that vfl is a bent sequence of length 2%*~2 and
I} is an affine sequence of length 222, Thus (¢, 1) = £2*~! and hence (y, L) = +2*.
Case 2: L = (I, —1). By Construction 1

<U7L> = (7)171> - <7]2)l>

where
92b-2 22h—2
(771: Z ajep; , + Z b €8 h-2,;5_,
7=1
and
92k—2 92k—2
772) Z a;€p; 4 Z b eﬁzzk—zw_l
J=1
Thus
22‘-—2
( =2 Ei b eﬂ,:u-—:+,_1 - 2<E2’l;)' (4)
i=

Note that ¢, is a bent sequence of length 22~2 and [} is an affine sequence of length
2%6=2 Thus (&, 5) = £2%! and hence (4) becomes (17, L) = 2%

Smce L is arbitrary, by the three equivalent conditions of bent functions, 7 is a bent
sequence. 0

Construction 2 let the fo-th, the fi-th, ... , and the Bj—2_;-th entries of 7,

be a1, az, ..., a4 respectively and let the Byan-2-th, the Byan-a,y-th, ..., and the
Bazi-1_1-th entries of my be by, by, . .., byar—1 respectively.

Next let the Bo-th, the B;-th, ..., and the Byu-a_;-th entries of 7, be —ay, —ay, ...,
—ag2n—: respectively and let the Byau—2-th, the Byar-z,4-th, ..., and the Byax—1_;-th
entries of 775 be by, by, ..., byar_1 respectively.

Set n = (11 72).
Lemma 7 7, in Construction 2, is a bent sequence of length 22%.
Proof. The proof is similar to the proof of Lemma 6. a

2.3 Enumeration of Bent Sequences by Construction 1 and
2

Lemma 8 Let = ..dzk denote the set of bent sequences of length 2°* obtained via Con-
struction 1 and 23, denote the set of bent sequences of length 2% obtained via Con-
struction 2. Then Z3, N E%, = ¢ where ¢ denotes the empty set.
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Proof.  Suppose we construct the bent sequence of length 2%, say = (1, m2),
by using the bent sequences {1 = (a1, -+, apn=2), & = (by,- - -, by2e-2) and the non-
degenerate linear transformation on V4_1, denoted by ©, in Construction 1. Simi-
larly we suppose in Construction 2 we construct a bent sequence of length 2%, say
n' = (n1, m3), by using bent sequences ¢; = (a,- - y@yanna), €2 = (b, blsuy) and
a nondegenerate linear transformation on V3_;, denoted by ¢'.

Set fB; = ¢(a;), B = ¢'(e;) where j = 0,1,...,2%%"1 _ 1. Note that Sy = (o),
Bo = ¢'(a0) and ag = (0,0,---,0) thus Bo = B = (0,0, -, 0) since both ¢ and o'
are linear transformations. -

In Construction 1 a; occurs in the Bo-th place of 7; also a; occurs in the Bo-th place
of 775. Thus the first entries in 7; and 73 are the same. :

In Construction 2 af occurs in the Bo-th place of 7} also —a) occurs in the Bo-th place
of n3. Thus the first entries in 7} and 7} are negatives each other. This proves that
n # 7. Since both 7 and 7' are arbitrary, =L, N E2, = 4. O

By Lemma 5 we divide all nondegenerate linear transformations on Vak—1 into 22k-1_1
disjoint classes: €y,...,Q;24-1_; such that ¢, and ¢, are in the same class if and only

if {¢1(a0), .., p1(azi-2_1)} = {@a(0), . . ., pa(@n-2_y)}.
We fixa o, €Q,,s=1,...,2%1_1

Lemma 9 Suppose we construct the bent sequence of length 22, say n = (n1, m2), by
using the bent sequences & = (a1, -, agan3), & = (b, - -, by2k-2) and the nondegen-
erate linear transformation on Vy_y, denoted by o, where @, € Q,, in Construction
1 (2). Also in Construction 1 (2) we construct a bent sequence of length 2%, say
7' = (11, 13), by using bent sequences & = (a},- - - y8gan2), & = (B, -+, blons) and a
nondegenerate linear transformation on Vai_q, denoted by oy where @, € . Ift # s
thenn # 7.

Proof. Set B; = @,(a;), B = pi(a;) where j = 0,1,...,22%1 _1_ Since {ps(0),- ..,
or(agn-a_1)} # (o)., pa(cgmemsy)} i {Borr oo Basnrs} £ (B Blon i}
there exists a f such that 8 € {By,...,Bym-2_,} but B & {8, ... yBoziea_y }.

In Construction 1 we note that 8 € {fo, ..., Byw-2_1} and we can SuUppose a;, occurs
in the B-th place of 7; and a;, also occurs in the B-th place of ;. Thus the entry in
the (-th place of 7; and the entry in the 8-th place of 5, are the same.

For 7', in Construction 1, we note that 8 ¢ {8, ... s Baana_r } thus B € {Blanes, ...,
By2r-1_1} and we can suppose bj, occurs in the 8-th place of 77 and —¥ occurs in
the B-th place of 7. Thus the entry in the S-th place of 7} and the entry in the §-th
place of 7} are negatives of each other. This proves 7 # n'. Similarly we can prove
the lemma for Construction 2. O

Lemma 10 We fiz o, € Q,. Suppose we construct the bent sequence of length 2%, say
n = (71, 72), by using the bent sequences ¢ = (a1,---,a02-2), & = (b1, -+, byass)
and the nondegenerate linear transformation on Va_y, say ¢,, in Construction 1
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(2). Also in Construction 1 (2) we construct a bent sequence of length 2%, say

n' = (1%, m5), by using bent sequences & = (a}, -+, ahu-2), & = (b}, -, bhan—2) and
the same nondegenerate linear transformation w,. If (€1, &) # (&1, &) then £ 7',

Proof. Without any loss of generality suppose aj, # a’; for some jo. By Construction
1, aj, occurs in the G, _1-th place of 7;.

On the other hand, by Construction 1, a) occurs in the B;,_1-th place of 7;. Thus
m # ni and thus 7 5 5. Similarly we can prove the lemma for Construction 2. O

Theorem 6 (i) Using two bent sequences of length 2*~2, say ¢; and &, we can
construct 2% — 2 different bent sequences of length 2% .

(4) Let 721 denote the number of the bent sequences of length 22%. Then Ty, 2
(2% — 2)72,_, for k 2 2.

Proof. (i) For the two bent sequences of length of 222 in Construction 1 (2), ¢ has
22k-1 _ 1 choices. By Lemma 9, we can construct 2%~! — 1 different bent sequences
from the two known bent sequences of length of 22*=2. By Lemma 8, we have 2% — 2
different bent sequences of length of 2% in Construction 1 and 2 in total.

(ii) Two bent sequences of length 2%¢ — 2 have 72,_, choices. By Lemma 10 and (i)
of the theorem, 73 = (2”‘ — Z)Tzzk_z for k 2 2. O

We note that (i) of Theorem 6 gives many more bent sequences of length 2% from two
known bent sequences of length 22*~2 than the ordinary construction, which gives 10
bent sequences of length 22 from two known bent sequences of length 22¢~2 (see [2]).

2.4 Examples

Example 1 Since 7, = 8, by Theorem 1, 74 2 (2* ~2)8% = 896 and 75 = (2°—2)72 =
62 - 8962 = 62 - 802816 = 49774592.

Previously Adams and Tavares [2] estimated 48201728 as the number of bent se-
quences of length 2% including linear-based bent sequences and those constructed
from four bent sequences of length 24,

Example 2 Let £ = 3 in Construction. Let ¢ be a nondegenerate linear transfor-
mation on V5. Write ap = (0,0,0,0,0), a; = (0,0,0,0,1), ..., ax_; =(1,1,1,1,1).

3 3 b |
Define ¢, a nondegenerate linear transformation on Vs as follows

‘p(al) = (0> 0,0,1, 1): SO(QZ) = (0)07 1, 1,0)‘7 (P(a4) = (O: 1, 1>0»0))
w{asg) = (1,1,0,0,0), ¢(ae)=1(1,0,0,0,0).




Obviously, {a;, @i, ou, ag, aie} is a basis of Vs.
Write ¢(a;) = fB; where j = 0,1,...,31. Hence we have

ﬂﬂz (010)0)0:0)) ﬂl = (0)01071)1)7 ﬂZ = (0;07171>0); ,33 = (0:0:1;0»1);
184“ (0)11170)0)a 55 :(0)1:17171)> 1362(0,1;0;170); ﬂ7=(0)1707071)1
Bs=(1,1,0,0,0), B = (1,1,0,1,1), B = (1,1,1,1,0), B =(1,1,1,0,1),
:812 = (170’ 1y0) 0)1 1613 = (11 07 1:1: 1)7 514 = (1y 070) 1) 0) ﬁls = (1707 0)01 1)1
B =(1,0,0,0, 0), Bir=1(1,0,0,1, 1), B =1(1,0,1,1, 0), Bis= (1,0, 1,0,1),
ﬂ20= (171)17070)y ﬂZl = (1)1)17171)) 322= (17170)1)0)7 )623:(1,1,0,0,1),
ﬁ24 = (0)1)()’070); ﬁ25 = (0»1)07171)7 ﬁ26 = (01171:1:0): ﬂ27: (0)1)1;0:1))
ﬁ28 = (0: 0) 170) 0)) ﬂ29 = (0) O) 1) 11 1)3 ﬁ30 - (0>01 0: 170) ﬁ31 = (0;0; 0; 0: 1)

Choose two bent sequences of length 2%:

b=(t+++++——F+—+—+——+)= (a1, -, 1)
and
L=(t++—+++—+++————+)= (b, -, bs).

Let the Bo-th, the §;-th, ..., the Bi5-th entries of 5, be ay, @y, ..., 016 respectively

and the Bie-th, the fi7-th, ..., the Bs;-th entries of 7, be by, by, ..., big respectively.
We have now constructed #;:

Mm=(t+—t—Ft—t——tt—ttt+t—dt—t—F—+—+—+1).

Also let the fo-th, the B;-th, ..., the B;s-th entries of 7, be ay, a,,.. ., Q16 TESPEC-
tively and the Bi6-th, the Bi7-th, ..., the Bs;-th entries of N2 be —by, —by,..., by
respectively. We have now constructed 7,:

Mm=(t—Ftttt+t———— b bt ——ff——— — ).

Finally set # = (71, 7). By Lemma. 6, this is a bent sequence of length of 26 by using
&1, &2 and ¢ in Construction 1.

Similarly we can construct another bent sequence by using ¢;, ¢, and ¢ in Construc-
tion 2. To do this set n; = 7y and ny = —n,. 7' = (9!, 7). By Lemma 7, this is a
bent sequence of length of 2° by using ¢;, & and ¢ in Construction 2.
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