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Abstract

A function f : V (G) −→ {0, 1, 2} is called a Roman dominating func-
tion on a graph G if for every vertex v ∈ V (G) with f(v) = 0, there
exists a vertex u adjacent to v with f(u) = 2. A Roman dominating
function f is an outer-independent Roman dominating function if the set
{v ∈ V (G) : f(v) = 0} is independent. The outer-independent Roman
domination number of G is the minimum weight of an outer-independent
Roman dominating function on G. Chellali and Dehgardi [Commun.
Comb. Optim. 6 (2021), 273–286] proved that the outer-independent Ro-
man domination number of any tree T of order n ≥ 3 is bounded above
by 5n/6. In this paper, aiming to obtain best upper bounds for the outer-
independent Roman domination number in cactus graphs, we prove an
8n/9-upper bound for unicyclic graphs and a 9n/10-upper bound for bi-
cyclic graphs. We also characterize extremal unicyclic graphs as well as
bicyclic graphs, achieving equality for the given bounds.

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



N. JAFARI RAD ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 385–397 386

1 Introduction

For graph theory notation and terminology not given here we refer to [9]. We consider
finite and simple graphs G with vertex set V = V (G) and edge set E(G). The
number of vertices of G is called the order of G and is denoted by n = n(G). The
open neighborhood of a vertex v ∈ V is N(v) = NG(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is N [v] = NG[v] = N(v) ∪ {v}. The degree of a
vertex v, denoted by deg(v) (or degG(v) to refer to G), is the cardinality of its open
neighborhood. We denote by δ(G) and Δ(G), the minimum and maximum degrees
among all vertices of G, respectively. A vertex of degree one is referred as a leaf and
a vertex adjacent to a leaf is referred as a support vertex. A strong support vertex
is a support vertex adjacent to at least two leaves, and a weak support vertex is a
support vertex adjacent to exactly one leaf. A component of a graph G is a maximal
connected subgraph of G. We denote by Pn, Cn and Km,n the path of order n, the
cycle of order n, and the complete bipartite graph such that one partite set has m
vertices and the other partite set has n vertices, respectively. We refer to K1,3, as a
claw. For a subset S of vertices of a graph G, we denote by G[S] the subgraph of
G induced by S. A graph G is claw-free if G[S] �∼= K1,3 for any set S of cardinality
4. A unicyclic graph is a graph obtained from a tree by adding precisely one edge.
Equivalently, a unicyclic graph is a graph with precisely one cycle. A bicyclic graph
is a graph with precisely two cycles. A cactus graph is a graph such that no pair of
distinct cycles have a common edge. An independent set in a graph G is a subset S
of vertices such that the subgraph induced by S has no edges.

A function f : V −→ {0, 1, 2} having the property that for every vertex v ∈ V
with f(v) = 0, there exists a vertex u ∈ N(v) with f(u) = 2, is called a Ro-
man dominating function or just an RDF. The weight of an RDF f is the sum
f(V ) =

∑
v∈V f(v). The minimum weight of an RDF on G is called the Roman

domination number of G and is denoted by γR(G). The mathematical concept of
Roman domination was developed by Cockayne et al. [8]. Many variations, general-
izations and applications of Roman domination parameters have been studied, and
to see the latest progress until 2020 see [5, 6, 7].

Ahangar et al. [1] introduced the concept of outer-independent Roman domina-
tion in graphs. An RDF f in a graph G is an outer-independent Roman dominating
function (OIRDF) on G if the set {v ∈ V (G) : f(v) = 0} is an independent set.
The outer-independent Roman domination number γoiR(G) is the minimum weight
of an OIRDF on G. The concept of outer-independent Roman domination in graphs
was further studied in, for example, [2, 3, 10, 11, 12, 13]. Chellali and Dehgardi [4]
proved that γoiR(T ) ≤ 5n/6 in any tree T of order n, and they characterized trees
achieving equality for this bound.

In this paper we present upper bounds for the outer-independent Roman domina-
tion number in unicyclic graphs as well as bicyclic graphs, and characterize unicyclic
graphs and bicyclic graphs achieving equality for the given bounds. The organiza-
tion of the paper is as follows. In Section 2, we present our main results, namely
Propositions 2.1 and 2.2, and Theorems 2.3 and 2.4. In Section 3, we present a
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proof for Propositions 2.1 and 2.2. In Section 4, we present a proof for Theorem
2.3. In Section 5, we present a proof for Theorem 2.4. In Section 6, we propose our
suggested bounds and conjectures for cactus graphs. We make use of the following.

Theorem 1.1 (Chellali et al. [4]) For any tree T of order n ≥ 3, γoiR(T ) ≤ 5n/6.

For an RDF f in a graph G, we denote by Vi (or V
f
i to refer to f) the set of all

vertices of G with label i under f . Thus an RDF f can be represented by a triple
(V0, V1, V2), and we can use the notation f = (V0, V1, V2).

2 Main results

Let H1 and H2 be the graphs depicted in Figure 1.

H1 H2

Figure 1. Graphs H1 and H2.

We will prove the following.

Proposition 2.1 For any integer n ≥ 3, γoiR(Cn) = 3n+j
4

if n ≡ j (mod 4), j =
0, 1, 2, 3.

Proposition 2.2 For any integer n ≥ 3, γoiR(Pn) = 3n+j
4

if n ≡ j (mod 4), j =
0, 1, 2, and γoiR(Pn) =

3n−1
4

if n ≡ 3 (mod 4).

Theorem 2.3 For a unicyclic graph G �= K3, γoiR(G) ≤ 8n/9, with equality if and
only if G = H1, where H1 is depicted in Figure 1.

Theorem 2.4 For a bicyclic graph G of order n, γoiR(G) ≤ 9n/10, with equality if
and only if G = H2, where H2 is depicted in Figure 1.

3 Proof of Propositions 2.1 and 2.2

We only present the proof of Proposition 2.1; the proof of Proposition 2.2 is similar
and is thus omitted.

Let V (Cn) = {v1, . . . , vn}, where vi is adjacent to vi+1 for i = 1, 2 . . . , n−1 and v1
is adjacent to vn. It is evident that γoiR(Cn) < n for n ≥ 4, since assigning 2 to v2, 0 to
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v1 and v3, and 1 to all other vertices yields an OIRDF. It is easy to see that γoiR(C3) =
3, γoiR(C4) = 3, γoiR(C5) = 4, γoiR(C6) = 5 and γoiR(C7) = 6. Thus, assume that
n ≥ 8. We show that for each n, γoiR(Cn) = γoiR(Cn−4)+3, and then the result follows
by induction on n. Let f = (V0, V1, V2) be a γoiR(Cn)-function such that |V2| is as
small as possible. If V2 = ∅, then w(f) = n, a contradiction. Thus, V2 �= ∅. Clearly,
for any vertex vi ∈ V2, |{vi−1, vi+1} ∩ V0| ≥ 1. Suppose that there is a vertex vi ∈ V2

such that |{vi−1, vi+1} ∩ V0| = 1. Assume that {vi−1, vi+1} ∩ V0 = {vi−1}. Then we
change both f(vi) and f(vi−1) to 1 to obtain a γoiR(Cn)-function with fewer vertices
assigned 2 than under f , contradicting the choice of f . Thus, |{vi−1, vi+1} ∩ V0| = 2,
for each vertex vi ∈ V2. Let vi ∈ V2. As noted, {vi−1, vi+1} ⊆ V0. Observe that
vi+2 �∈ V0 and vi−2 �∈ V0. Suppose that vi+2 ∈ V2. Then we change both f(vi) and
f(vi−1) to 1, leading as before to a contradiction on the choice of f . Thus, vi+2 ∈ V1,
and likewise, vi−2 ∈ V1. Let G′ be obtained from Cn by removing vi−1, vi, vi+1 and
vi+2, and then joining vi−2 to vi+3. Then G′ = Cn−4 and f |G′ is an OIRDF for G′,
implying that γoiR(G

′) = γoiR(Cn−4) ≤ γoiR(Cn)− 3, since f(vi) + f(vi+2) = 3.

On the other hand, let g = (V0, V1, V2) be a γoiR(Cn−4)-function such that |V2| is
as small as possible. If V1 = ∅, then n − 4 is even (since by the choice of g, both
neighbors of a vertex of V0 belong to V2 and both neighbors of a vertex of V2 belong to
V0) and we may assume that V2 = {v2i+1 : 0 ≤ i < n−4

2
} and V0 = {v2i : 1 ≤ i ≤ n−4

2
},

and so γoiR(Cn−4) = n − 4, a contradiction, since n ≥ 8. Thus, there is a vertex
vj such that vj ∈ V1. Then we form a graph G′′ by replacing vi with a path abcde,
and join a to vi−1 and e to vi+1. Observe that G′′ = Cn. Then h defined on
G′′ by h(x) = g(x) if x �∈ {a, b, c, d, e}, h(a) = h(e) = 1, h(b) = h(d) = 0 and
h(c) = 2, is an OIRDF on G′′, and so γoiR(G

′′) ≤ w(g) + 3 = γoiR(Cn−4) + 3. We
deduce that γoiR(Cn) ≤ γoiR(Cn−4) + 3. Hence γoiR(Cn) = γoiR(Cn−4) + 3. Now it is
straightforward to prove that γoiR(Cn) =

3n+j
4

using induction on n.

4 Proof of Theorem 2.3

We prove this by induction on the order n. For the base step of the induction it is
easy to see that the result holds if n ≤ 5. Thus let n ≥ 6 and assume the result holds
for all unicyclic graph G′ of order 5 ≤ n′ < n, that is, γoiR(G

′) ≤ 8n′
9
, with equality

if and only if G′ = H1. Now consider the unicyclic graph G of order n. Assume G
has no leaves. Then G = Cn. By Proposition 2.1, γoiR(Cn) =

3n+j
4

if n ≡ j (mod 4),

j = 0, 1, 2, 3. Since n ≥ 6, we find that 3n+j
4

< 8n/9. We thus assume that G has
at least one leaf. Let C be the unique cycle of G, and x0 be a vertex of C such that
deg(x0) is as maximum as possible and x0 . . . xd, where d ≥ 1, be a path from x0 to
a farthest leaf xd of G, where xi is outside C for i = 1, . . . , d. Let |V (C)| = k, and
V (C) = {x0, y1, y2, . . . , yk−1}, where k ≥ 3, x0 is adjacent to y1 and yk−1, and yi is
adjacent to yi+1 for i = 1, 2, . . . , k − 2.

Lemma 4.1 If deg(yi) = 2 for some i ∈ {1, 2, . . . , k − 1}, then γoiR(G) < 8n/9.

Proof. Suppose that deg(yi) = 2 for some i ∈ {1, 2, . . . , k − 1}, and let T = G− yi.
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By Theorem 1.1, γoiR(T ) ≤ 5(n− 1))/6. Then we extend any γoiR(T )-function to an
OIRDF for G by assigning 1 to yi. Thus, γoiR(G) ≤ 5(n − 1))/6 + 1 < 8n/9, since
n ≥ 6. �

By Lemma 4.1, we have deg(yi) ≥ 3 for i = 1, 2, . . . , k − 1.

Lemma 4.2 If v ∈ C is a strong support vertex of degree at least four such that all
its neighbors but two are leaves, or v ∈ V (G) − C is a strong support vertex such
that all its neighbors but one are leaves, then γoiR(G) < 8n/9.

Proof. Let v ∈ C be a strong support vertex of degree at least four such that all its
neighbors but two are leaves and let v′ and v′′ be the neighbors of v in C. Let T ′ be
the tree obtained from G by removal of edges v′v and v′′v, such that T ′ contains v′.
If |V (T ′)| = 2, then n = 1 + deg(v) and by assigning 2 to v, 1 to v′ and 0 to each
other vertex we obtain that γoiR(G) = 3 < 8n/9, since deg(v) ≥ 4. Thus assume that
|V (T ′)| ≥ 3. By Theorem 1.1, γoiR(T

′) ≤ 5(n− (deg(v)−1))/6. Then we extend any
γoiR(T

′)-function to an OIRDF for G by assigning 2 to v and 0 to its leaf neighbors.
Thus, γoiR(G) ≤ 5(n− (deg(v)− 1))/6 + 2 < 8n/9, since deg(v) ≥ 4. The proof for
the case v ∈ V (G)− C is similar and is omitted. �

We proceed with Lemma 4.3.

Lemma 4.3 If d = 1, then γoiR(G) < 8n/9.

Proof. Assume that d = 1. Then n = 2k, since deg(yi) ≥ 3, for i = 1, 2, . . . , k − 1.
It is straightforward to see that if k = 3 then γoiR(G) = 5 < 8n/9, if k = 4,
then γoiR(G) = 6 < 8n/9, if k = 5 then γoiR(G) = 8 < 8n/9 and if k = 6 then
γoiR(G) = 9 < 8n/9. Thus assume that k ≥ 7. Let T be the tree obtained by
removing the edges yk−1x0 and y2y3 such that T contains y3. By Theorem 1.1,
γoiR(T ) ≤ 5(n − 6)/6. We assign 2 to x0, 1 to y2 and the leaf-neighbors of y1 and
y2, and 0 to x1 and y1 to extend any γoiR(T )-function to an OIRDF for G. Then
γoiR(G) ≤ 5(n− 6)/6 + 5 < 8n/9. �

We thus assume that d ≥ 2. By Lemma 4.2, deg(xd−1) = 2, and any neighbor of
xd−2, with the exception of xd−3 (if d ≥ 3) and with the exception of its neighbor on
C (if d = 2), is a leaf or a support vertex of degree two. We proceed with Lemma 4.4.

Lemma 4.4 If d ≥ 3, then γoiR(G) < 8n/9.

Proof. Assume that d ≥ 3. We consider the following two cases.

Case 1. deg(xd−2) ≥ 3. Assume that xd−2 has a neighbors as support vertices
of degree two and b neighbors as leaves. Clearly a ≥ 1 and a+ b ≥ 2. Let G′ be the
component of G−xd−2 that contains xd−3. If G

′ = K3, then d = 3 and n = 2a+b+4.
Then we assign 2 to x1, 0 to each neighbor of x1, and 1 to any other vertex of G to
obtain that γoiR(G) ≤ a + 4 < 8n/9, since a + b ≥ 2. Thus, assume that G′ �= K3.
By the inductive hypothesis, γoiR(G

′) ≤ 8n′/9. Let f ′ be a γoiR(T
′)-function. Then
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we extend f ′ to an OIRDF for G by assigning 2 to xd−2, 0 to its neighbors which are
leaves or support vertices of degree two, and 1 to any other vertex. Since a ≥ 1 and
a + b ≥ 2, we obtain that

γoiR(G) ≤ γoiR(G
′) + 2 + a

≤ 8

9
(n− 2a− b− 1) + 2 + a

=
8n− 7a− 8b+ 10

9
<

8

9
n.

Case 2. deg(xd−2) = 2. If xd−3 has a neighbor w1 outside C such that there
is a path xd−3w1w2w3 from xd−3 to a leaf w3, then w3 plays the role of xd, and
thus, by Lemma 4.2 and Case 1 of the proof of Lemma 4.4, we may assume that
deg(w1) = deg(w2) = 2. Thus, any neighbor of xd−3 outside C is a leaf, a support
vertex of degree two, or a vertex of degree two which is adjacent to a support vertex
of degree two.

Assume that d ≥ 4. Let G′ be the component of G − xd−3xd−4 that contains
xd−4. It is evident that G′ �= K3. By the inductive hypothesis, γoiR(G

′) ≤ 8n′/9.
Let f ′ be a γoiR(G

′)-function. If deg(xd−3) = 2, then n′ = n − 4, and we extend f ′

to an OIRDF for G by assigning 2 to xd−1, 0 to xd and xd−2 and 1 to xd−3 to obtain
γoiR(G) ≤ γoiR(G

′) + 3 ≤ 8
9
(n − 4) + 3 < 8n/9. Thus, assume that deg(xd−3) ≥ 3.

Assume that xd−3 is adjacent to c leaves, b support vertices of degree two and a
vertices of degree two each of which is adjacent to a support vertices of degree two
(all outside C). Then a ≥ 1 and a+ b+ c ≥ 2. Then we extend f ′ to an OIRDF for
G by assigning 2 to xd−3 and each support vertex at distance 2 from xd−3, 1 to any
leaf at distance two from xd−3 and 0 to any other vertex in V (G)− V (G′). Then

γoiR(G) ≤ γoiR(G
′) + 2 + 2a+ b

≤ 8

9
(n− 3a− 2b− c− 1) + 2 + 2a+ b

=
8n− 6a− 7b− 8c+ 10

9
<

8

9
n,

since a + b+ c ≥ 2.

Next assume that d = 3. Let G′ be the component of G − {x0y1, x0yk−1} that
contains y1. If G′ �= K2, then by Theorem 1.1, γoiR(G

′) ≤ 8n′/9, and as before, we
can extend a γoiR(G

′)-function to an OIRDF for G to obtain that γoiR(G) < 8n/9.
Thus, assume that G′ = K2. Assume that x0 is adjacent to c leaves, b support
vertices of degree two and a vertices of degree two each of which is adjacent to a
support vertex of degree two. Then n = 3a + 2b + c + 3, a ≥ 1 and a + b + c ≥ 1.
Then we define a function f on V (G) by assigning 2 to xd−3 and each support vertex
at distance 2 from xd−3, 1 to y1 and to any leaf at distance two from xd−3 and 0 to
any other vertex in V (G). Then γoiR(G) ≤ 3 + 2a+ b < 8

9
(3a+ 2b+ c+ 3) = 8

9
n, as

desired. �
By Lemmas 4.3 and 4.4, we may assume for the next that d = 2. Furthermore

any neighbor of x0 outside C is a leaf or a support vertex of degree two. Let a be the
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number of support neighbors of x0 (outside C) and b be the number of leaf neighbors
of x0 (outside C).

Assume that deg(x0) ≥ 4. Then a+b ≥ 2. Let G′ be the component of G−x0 that
contains y1. Then G′ is a tree of order at least four. By Theorem 1.1, γoiR(G

′) ≤
5n′/6. Let f ′ be a γoiR(T

′)-function. Then we extend f ′ to an OIRDF for T by
assigning 2 to x0, 0 to its neighbors outside C, and 1 to any other vertex, and thus
we can obtain that γoiR(G) ≤ 5

6
(n− 2a− b− 1) + a+ 2 < 8

9
n. We thus assume that

deg(x0) = 3. By the choice of x0, any vertex on C is of degree three which either is
a support vertex or is adjacent to a support vertex of degree two.

Assume that yi is a support vertex for some i ∈ {1, 2, . . . , k − 1} and zi is the
leaf adjacent to yi. Let T = G − {yi, zi}. Then |V (T )| ≥ 5. By Theorem 1.1,
γoiR(T ) ≤ 5(n− 2)/6. Then we extend any γoiR(T )-function to an OIRDF for T by
assigning 1 to both yi and zi, and so γoiR(G) ≤ 5

6
(n− 2) + 2 < 8

9
n. We thus assume

that yi is a vertex of degree three adjacent to a support vertex of degree two, for
i = 1, 2, . . . , k − 1.

Assume that k ≥ 5. Let T be the tree containing y2 that is obtained by removing
the edges y1y2 and yk−1x0. Note that |V (T ) ≥ 6. Let G′ be the unicyclic graph
obtained from T by joining y2 to yk−1. By the inductive hypothesis, γoiR(G

′) ≤ 8
9
n′.

Let f ′ be a γoiR(G
′)-function. Clearly f ′(y2) �= 0 or f ′(yk−1) �= 0, since they are

adjacent in G′. Without loss of generality, assume that f ′(y2) �= 0. Let y′1 be the
support vertex adjacent to y2, and let y′′1 be the leaf adjacent to y′1. Clearly we may
assume that f(y′1) + f(y′′1) = 2. Let f be a function defined on V (G) by f(x0) = 2,
f(x) = f ′(x) if x ∈ V (G′) − {y′1, y′′1}, f(x) = 0 if x ∈ {x1, y1, y

′′
1}, f(y′1) = 2 and

f(x) = 1 otherwise. Then f is an OIRDF for G, and so γoiR(G) ≤ 8
9
(n−6)+5 < 8

9
n.

If k = 4, then n = 12. Let f be a function defined on V (G) by f(x0) = 2,
f(x) = 0 if x is adjacent to x0, and f(x) = 1 otherwise. Then f is an OIRDF for
G with weight 2 + (n − 4) = n − 2, and clearly, γoiR(G) ≤ n − 2 < 8

9
n. Thus, we

assume that k = 3. Then n = 9 and G = H1. Let f be a function defined on V (G)
by f(x1) = 2, f(x0) = f(x2) = 0, and f(x) = 1 otherwise. Then f is an OIRDF for
G with weight 8 = 8

9
n.

We thus have proved the upper bound. If the equality holds, then following the
above proof, we deduce that G = H1.

5 Proof of Theorem 2.4

We prove this theorem by induction on the order n. Clearly, n ≥ 5. For the base step
of the induction, if n ≤ 9 then we choose a vertex x with two non-adjacent neighbors
y and z, and assign 2 to x, 0 to both y and z, and 1 to other vertices of G, and so
γoiR(G) ≤ n − 1 < 9n/10. Thus let n ≥ 10 and assume that the result holds for all
bicyclic graphs of order n′ < n. Now consider the bicyclic graph G of order n. Let C1

and C2 be the cycles of G, and let V (C1) = {v1, . . . , vk} and V (C2) = {u1, . . . , ul}.
Without loss of generality, assume that d(C1, C2) = d(v1, u1). Let d(C1, C2) = s and
P the shortest path between v1 and u1. The following lemma can be proved similarly
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to the proof of Lemma 4.2, and thus we omit its proof.

Lemma 5.1 If v ∈ P∪C1∪C2 is a strong support vertex such that all of its neighbors
outside P ∪C1 ∪C2 are leaves, or v ∈ V (G)−P ∪C1 ∪C2 is a strong support vertex
such that all of its neighbors but one are leaves, then γoiR(G) < 9n/10.

We proceed with Lemma 5.2.

Lemma 5.2 If x is a vertex on P ∪ C1 ∪ C2 and there is a path of length d ≥ 3
from x to a furthest leaf xd from x that intersects P ∪ C1 ∪ C2 only in x, then
γoiR(G) < 9n/10.

Proof. Assume that there is a path xx1x2 . . . xd to a leaf xd and {x, x1, . . . , xd} ∩
(V (P ) ∪ V (C1) ∪ V (C2)) = {x}. By Lemma 5.1, deg(xd−1) = 2. Assume that
deg(xd−2) ≥ 3. Then we may assume that each neighbor of xd−2 with the exception
of xd−3 is a leaf or a support vertex of degree two by Lemma 5.1. Assume that xd−2

has a neighbors as support vertices of degree two and b neighbors as leaves. Clearly
a + b ≥ 2. Let G′ be the component of G − xd−2 that contains no leaf-neighbor or
support neighbor of xd−2. By the inductive hypothesis, γoiR(G

′) ≤ 9n′/10. Let f ′ be
a γoiR(G

′)-function. Then we extend f ′ to an OIRDF for G by assigning 2 to xd−2,
0 to its neighbors which are leaves or support vertices of degree two, and 1 to any
other vertex. Since a + b ≥ 2, we obtain that

γoiR(G) ≤ γoiR(G
′) + 2 + a ≤ 9

10
(n− 2a− b− 1) + 2 + a

=
9n− 8a− 9b+ 11

10
<

9

10
n.

We thus assume that deg(xd−2) = 2.

Assume that d ≥ 4. Assume deg(xd−3) ≥ 3. Then we may assume that each
neighbor of xd−3 with the exception of xd−4 is a leaf, a support vertex of degree two,
or a vertex of degree two that is adjacent to a support vertex of degree two. Assume
that xd−3 has a neighbors as vertices of degree two that are adjacent to support
vertices of degree two, b neighbors as support vertices of degree two, and c neighbors
as leaves. Clearly a + b+ c ≥ 2. Let A be the set of all such neighbors of xd−3. Let
G′ be the component of G − xd−3 that contains no vertex of A. By the inductive
hypothesis, γoiR(G

′) ≤ 9n′/10. Let f ′ be a γoiR(G
′)-function. We extend f ′ to an

OIRDF for G by assigning 2 to xd−3 and each support vertex at distance 2 from xd−3,
1 to any leaf at distance two from xd−3 and 0 to any other vertex in V (G)− V (G′).
Then

γoiR(G) ≤ γoiR(G
′) + 2 + 2a+ b ≤ 9

10
(n− 3a− 2b− c− 1) + 2 + 2a + b

=
9n− 7a− 8b− 9c+ 11

10
<

9

10
n,
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since a + b+ c ≥ 2. Thus assume that deg(xd−3) = 2. Let G′ = G− {xd, xd−1, xd−2,
xd−3}. By the inductive hypothesis, γoiR(G

′) ≤ 9n′/10. Let f ′ be a γoiR(G′)-function.
Then we extend f ′ to an OIRDF for G by assigning 2 to xd−1, 1 from xd−3, and 0 to
xd and xd−2. Then γoiR(G) ≤ γoiR(G

′) + 3 ≤ 9
10
(n− 4) + 3 < 9

10
n.

Thus assume that d = 3. Let G′ = G − {x, x1, x2, x3}. If G′ is connected, then
G′ �= K3, since G is a bicyclic graph. By Theorem 2.3, γoiR(G

′) ≤ 8n′/9. Let f ′ be a
γoiR(G

′)-function. Then we extend f ′ to an OIRDF for G by assigning 2 to x2, 1 to x,
and 0 to x1 and x3. Then γoiR(G) ≤ γoiR(G

′)+3 ≤ 8
9
(n−4)+3 < 9

10
n. Next assume

that G′ is disconnected. If G′ has no K3-components, then as before we find that
γoiR(G) < 9

10
n. Thus assume that G′ has some K3-components. If G′ has two K3-

components, then |C1| = |C2| = 3, s = 2 and P = v1xu1. Then n = 10 and γoiR(G) =
8 < 9

10
n. Thus assume that G′ has precisely one K3-component. Without loss of

generality, assume that C1 is such component. Let G′ = G−{x, x1, x2, x3, v1, v2, v3}.
By Theorem 2.3, γoiR(G

′) ≤ 8n′/9. Let f ′ be a γoiR(G
′)-function. Then we extend f ′

to an OIRDF for G by assigning 2 to x, 1 to x2, x3, v2, v3, and 0 to x1 and v1. Then
γoiR(G) ≤ γoiR(G

′) + 6 ≤ 8
9
(n− 7) + 6 < 9

10
n. �

Lemma 5.3 If x is a vertex in P ∪ C1 ∪ C2 with x �∈ {v1, u1} and deg(x) ≥ 4, then
γoiR(G) < 9

10
n.

Proof. Assume that x is a vertex in P ∪ C1 ∪ C2 and x �∈ {v1, u1} and deg(x) ≥ 4.
By Lemmas 5.1 and 5.2, each neighbor of x outside P ∪C1∪C2 is a leaf or a support
vertex of degree two.

Assume that x has a neighbors as support vertices of degree two and b neighbors
as leaves. Clearly a + b ≥ 2. Let G′ be the component of G − x that contains
no leaf-neighbor or support neighbor of x. If G′ has no K3-components, then by
Theorem 2.3, γoiR(G

′) ≤ 8n′/9. Let f ′ be a γoiR(G
′)-function. Then we extend f ′ to

an OIRDF for G by assigning 2 to x, 0 to its neighbors which are leaves or support
vertices of degree two, and 1 to any other vertex. Since a + b ≥ 2, we obtain that
γoiR(G) ≤ γoiR(G

′) + 2 + a ≤ 8
9
(n − 2a − b − 1) + 2 + a < 9

10
n. Thus assume that

G′ has some K3-components. If G′ has two K3-components, then |C1| = |C2| = 3,
s = 2 and P = v1xu1. Then n = 2a+ b+7 and γoiR(G) = 6+a < 9

10
n. Thus assume

that G′ has precisely one K3-component. Without loss of generality, assume that C1

is such component. Let G′′ = G′ − {v1, v2, v3}. By Theorem 2.3, γoiR(G
′′) ≤ 8n′/9.

Let f ′ be a γoiR(G
′′)-function. Then we extend f ′ to an OIRDF for G by assigning

2 to x, 1 to v2, v3 and the leaves at distance two from x, and 0 to each other vertex.
Then γoiR(G) ≤ γoiR(G

′′) + 4 + a ≤ 8
9
(n− 2a− b− 4) + 4 + a < 9

10
n. �

By Lemma 5.3 if x is a vertex in P ∪ C1 ∪ C2 and x �∈ {v1, u1}, then we may
assume that deg(x) ≤ 3. Similarly, we may assume that the following hold.

Lemma 5.4 3 ≤ deg(v1) ≤ 4 and 3 ≤ deg(u1) ≤ 4.

From Lemmas 5.1 and 5.2, we may assume that for any vertex x ∈ P ∪C1∪C2−
{v1, u1} with deg(x) = 3, x is a support vertex or adjacent to a support vertex of
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degree two, and if deg(x) = 4 for x ∈ {u1, v1}, then x is a support vertex or adjacent
to a support vertex of degree two.

Lemma 5.5 If n > 10, then γoiR(G) < 9
10
n.

Proof. Assume that n > 10. Assume that there is a vertex x ∈ C1 ∪ C2 such that
deg(x) = 2. Clearly, x �∈ {v1, u1}. LetG′ = G−x. By Theorem 2.3, γoiR(G

′) ≤ 8n′/9.
Let f ′ be a γoiR(G

′)-function. Then we extend f ′ to an OIRDF for G by assigning
1 to x. Then γoiR(G) ≤ γoiR(G

′) + 1 ≤ 8
9
(n− 1) + 1 < 9

10
n. Thus assume that each

vertex of C1 ∪ C2 with the exception of v1 and u1 are of degree 3.

Assume that |C1| = 3. Let G′ be the component of G− v1 containing u2. Then
G′ is a tree or a unicyclic graph. If G′ is a tree then by Theorem 1.1, γoiR(G

′) < 5
6
n′

and if G′ is a unicyclic graph, then by Theorem 2.3, γoiR(G
′) < 8

9
n′. We extend any

γoiR(G
′)-function to an OIRDF for G by assigning 1 to v1 and the remaining vertices

are assigned values as follows. Assume that each vertex in {v1, v2, v3} is a support
vertex. Then assign 2 to v3, 0 to v2 and the leaf-neighbor of v3, and 1 to each other
vertex. If G′ is a tree, then γoiR(G) ≤ γoiR(G

′) + 5 ≤ 5
6
(n − 6) + 5 < 9

10
n, and if

G′ is a unicyclic graph, then γoiR(G) ≤ γoiR(G
′) + 5 ≤ 8

9
(n − 6) + 5 < 9

10
n. Thus,

assume without loss of generality, that v3 is not a support vertex, (note that the other
possibilities are similar). Assume that both v1 and v2 are support vertices. Then we
assign 2 to v3, 0 to v2 and the support-neighbor of v3, and 1 to each other vertex. If
G′ is a tree, then γoiR(G) ≤ γoiR(G

′)+6 ≤ 5
6
(n−7)+6 < 9

10
n, and if G′ is a unicyclic

graph, then γoiR(G) ≤ γoiR(G
′) + 6 ≤ 8

9
(n − 7) + 6 < 9

10
n. Thus, assume that v2 is

not a support vertex. If deg(v1) = 3, then we we extend any γoiR(G
′)-function to

an OIRDF for G by assigning 2 to v3, 0 to v2 and the support-neighbor of v3, and
1 to each other vertex, and as before the result is valid no matter G′ is a tree or
a unicyclic graph. Thus, assume that deg(v1) = 4. If v1 is a support vertex, then
assign 2 to v3, 0 to v2 and the support-neighbor of v3, and 1 to each other vertex.
If G′ is a tree, then γoiR(G) ≤ γoiR(G

′) + 7 ≤ 5
6
(n − 8) + 7 < 9

10
n, and if G′ is a

unicyclic graph, then γoiR(G) ≤ γoiR(G
′) + 7 ≤ 8

9
(n − 8) + 7 < 9

10
n. Thus assume

that v1 is not a support vertex. Then similarly, we find that if G′ is a tree then
γoiR(G) ≤ γoiR(G

′) + 8 ≤ 5
6
(n − 9) + 8 < 9

10
n, and if G′ is a unicyclic graph, then

γoiR(G) ≤ γoiR(G
′) + 8 ≤ 8

9
(n− 9) + 8 < 9

10
n.

Next assume that |C1| > 3. Let G′ be the component of G−{v2, v3, v4} containing
v1. Then G′ is a unicyclic graph, and by Theorem 2.3, γoiR(G

′) < 8
9
n′. Observe that

deg(v2) = deg(v3) = deg(v4) = 3. We asign 2 to v2, 0 to v3 and the neighbor of
v2 outside C1, and 1 to any other vertex. If none of v2, v3, v4 is a support vertex,
then γoiR(G) ≤ γoiR(G

′) + 8 ≤ 8
9
(n − 9) + 8 < 9

10
n. If precisely, one vertex in

{v2, v3, v4} is a support vertex, then γoiR(G) ≤ γoiR(G
′) + 7 ≤ 8

9
(n− 8) + 7 < 9

10
n. If

precisely, two vertices in {v2, v3, v4} are support vertices, then γoiR(G) ≤ γoiR(G
′) +

6 ≤ 8
9
(n − 7) + 6 < 9

10
n. Finally, if each vertex in {v2, v3, v4} is a support vertex,

then γoiR(G) ≤ γoiR(G
′) + 5 ≤ 8

9
(n− 6) + 5 < 9

10
n. �

Thus assume by Lemma 5.5 that n = 10. If |C1| ≥ 4, then assigning 2 to v1, 0
to v2, vk and a neighbor of v1 outside C1, and 1 to each other vertex of G yields an
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OIRDF for G, and thus γoiR(G) ≤ n − 2 < 9
10
n. Thus assume that |C1| = 3 and

likewise, |C2| = 3.

Lemma 5.6 If there is a vertex x with three neighbors x1, x2, x3 such that G[{x, x1,
x2, x3}] = K1,3, then γoiR(G) < 9

10
n.

Proof. Assume that x is a vertex with three neighbors x1, x2, x3 such that G[{x, x1,
x2, x3}] = K1,3. Then assigning 2 to x, 0 to x1, x2, x3, and 1 to each other vertex of
G yields an OIRDF for G, and thus γoiR(G) ≤ n− 2 < 9

10
n. �

By Lemma 5.6, we assume that G is claw-free. We next continue according to
values of s = d(v1, u1).

Assume that s = 0. By Lemma 5.6, deg(v1) = 4. If deg(v2) = deg(v3) =
deg(u2) = deg(u3) = 3, then we may assume, without loss of generality, that u3

is not a support vertex, while v2, v3, u2 are support vertices. Then γoiR(G) = 8 <
9
10
n. Thus, assume, without loss of generality, that deg(v2) = 2. Then deg(v3) =

deg(u2) = deg(u3) = 3, since n = 10. If v3 is a support vertex, then neither of u2

and u3 is a support vertex, and γoiR(G) = 8 < 9
10
n. Thus assume that v3 is not a

support vertex. Then one of u2 and u3 is a support vertex and the other one is not
a support vertex, and we can see that γoiR(G) = 8 < 9

10
n.

Thus 1 ≤ s ≤ 5. Let P : v1w1 . . . ws−1u1. If s = 5, then by assigning 2 to w1, u2,
1 to w3, v2, v3, u2, and 0 to each other vertex we obtain that γoiR(G) = 8 < 9

10
n. If

s = 4, then we may assume by Lemma 5.6 that precisely one vertex in {v2, v3, u2, u3}
is a support vertex. Assume that v2 is such a vertex. Then by assigning 2 to w2, v2,
0 to v3, w1, w3 and the leaf-neighbor of v2, and 1 to each other vertex we obtain that
γoiR(G) = 8 < 9

10
n. If s = 3, then by Lemma 5.6, either there is precisely one vertex

of {v2, v3, u2, u3} that is a adjacent to a support vertex of degree two or there are
two vertices in {v2, v3, u2, u3} that are support vertices. In each of this possibilities,
we can see that γoiR(G) = 8 < 9

10
n. If s = 2, then by Lemma 5.6, either there

are precisely three vertices of {v2, v3, u2, u3} that are support vertices or there are
two vertices x, y in {v2, v3, u2, u3} such that x is a support vertex and y is adjacent
to a support vertex of degree two. In each of these possibilities, we can see that
γoiR(G) = 8 < 9

10
n.

Finally, assume that s = 1. If deg(v2) = deg(v3) = deg(u2) = deg(u3) = 3,
then γoiR(G) = 8 < 9

10
n. Thus assume, without loss of generality, that deg(u2) = 2.

Assume that deg(u3) = 3. If u3 is a support vertex, then we may assume that v2
is a support vertex and v3 is a vertex adjacent to a support vertex of degree two.
Then γoiR(G) = 8 < 9

10
n. Thus, assume that u3 is not a support vertex. Then u3 is

adjacent to a support vertex of degree two. Then either both v2 and v3 are support
vertices or precisely one of them is adjacent to a support vertex of degree two. Then
we observe that γoiR(G) = 8 < 9

10
n. We thus assume that deg(u3) = 2. Then each

of v2 and v3 is adjacent to a support vertex of degree two. Consequently, G = H2.
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6 Concluding remarks

By Theorem 2.3, γoiR(G) ≤ 8n/9 for a unicyclic graph G �= K3, and by Theorem
2.4, γoiR(G) ≤ 9n/10 if G has two cycles. It is a good problem to investigate such
a bound for cactus graphs. It seems that if a cactus graph G has three cycles
then γoiR(G) ≤ 10n/11, and if it has four cycles then γoiR(G) ≤ 11n/12. Figure 2
illustrates two graphs achieving equality of the above proposed bounds. Furthermore,
if the above bounds are correct then perhaps γoiR(G) ≤ (8+k

9+k
)n if G is a cactus graph

with k cycles, but this earlier bound does not seem to be sharp. We propose these
problems for researchers.

Conjecture 6.1 If G �= K3 is a cactus graph of order n, then γoiR(G) ≤ 11n/12,
with equality if and only if G = H4, where H4 is the graph depicted in Figure 2.

H3 H4

Figure 2. Cactus graphs with outer-independent Roman domination number
10n/11 and 11n/12. The graph H3 has outer-independent Roman domina-
tion number 10 and the graph H4 has outer-independent Roman domination
number 11.
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