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Abstract

Kleinewillinghöfer classified Laguerre planes with respect to various lin-
early transitive groups of central automorphisms and obtained a multi-
tude of types. In this paper we investigate the Kleinewillinghöfer types of
finite Laguerre planes with respect to Laguerre translations and the full
automorphism groups of these planes. This yields, among other results,
a characterization of finite elation Laguerre planes of odd order by their
Kleinewillinghöfer types.

1 Introduction

A finite Laguerre plane L of order n is a transversal (or group divisible) 3-design
with block size n + 1 and n points in each ‘group’, or equivalently, an orthogonal
array of strength 3 on n symbols (levels), n + 1 constraints and index 1, cf. [1].
Since we have a more geometric point of view we rather use the term Laguerre
plane instead of orthogonal array or transversal design. Explicitly, a finite Laguerre
plane L = (P, C,G) of order n is an incidence structure consisting of a set P of
n(n + 1) points, a set C of n3 circles and a set G of n + 1 generators (where circles
and generators are both subsets of P ) such that G partitions P and each generator
contains n points, such that each circle intersects each generator in precisely one
point, and such that three points no two of which are on the same generator can
be joined by a unique circle; see [38] or [33, §2] for a more geometric definition of
(general) Laguerre planes.

Models of finite Laguerre planes can be obtained as follows. Let O be an oval
in the Desarguesian projective plane P2 = PG(2, q), q a prime power. Embed P2

into 3-dimensional projective space P3 = PG(3, q) and let v be a point of P3 not
belonging to P2. Then P consists of all points of the cone with base O and vertex
v except the point v. Generators are the traces of lines of P3 through v that are
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contained in the cone. Circles are obtained by intersecting P with planes of P3 not
passing through v. In this way one obtains an ovoidal Laguerre plane of order q. If
the oval O one starts off with is a conic, one obtains the Miquelian Laguerre plane of
order q. All known finite Laguerre planes of odd order are Miquelian and all known
finite Laguerre planes of even order are ovoidal. In fact, it is a long standing open
problem whether or not these are the only finite Laguerre planes. (There are many
non-ovoidal infinite Laguerre planes though, see, for example, [19] or [24, §2].)

Similar to the Lenz–Barlotti classification of projective planes, Kleinewillinghöfer
classified Laguerre planes with respect to linearly transitive subgroups of central
automorphisms, that is, automorphisms that fix at least one point and a central
collineation is induced in the derived projective plane at this fixed point. Further-
more, the induced groups of central collineations are transitive on each central line
except for the obvious fixed points, the centre and the point of intersection with the
axis. In this paper we are mainly concerned with two of the four kinds of central
automorphisms in Laguerre planes that Kleinewillinghöfer used, namely Laguerre
translations, that is, G-translations and B(q, C)-translations; see Section 3 for defi-
nitions.

The (Kleinewillinghöfer) type of a Laguerre plane L is the type of the (full)
automorphism group of L in Kleinewillinghöfer’s classification. We investigate the
Kleinewillinghöfer types of finite Laguerre planes with respect to Laguerre transla-
tions, labelled A to K, making use of the special combinatorial situation in finite
planes. As so often is the case in finite geometry Laguerre planes of even order
behave quite differently from those of odd order. This is reflected in the results we
obtain for the Kleinewillinghöfer types of finite Laguerre planes. In particular, for
one of the types, type D, one has the following.

Main Theorem A finite Laguerre plane L of Kleinewillinghöfer type D has E = G.
Furthermore, if the order of L is odd, then L is an elation Laguerre plane.

In Section 2 we give a brief summary of basic properties of and results about
finite Laguerre planes. The following section deals with Laguerre translations and
the types of finite Laguerre planes with respect to these central automorphisms are
investigated. In particular, some feasible types are excluded in even/odd order and
finite elation Laguerre planes of odd order are characterized by their Kleinewill-
inghöfer types. In the last section we combine the results of Section 3 with respect
to Laguerre translations with those from [33] about Kleinewillinghöfer types of finite
Laguerre planes with respect to Laguerre homotheties and provide examples of finite
Laguerre planes of four of the combined types (with respect to both Laguerre trans-
lations and homotheties). We further exclude four combined types from the list of
feasible combined types as Kleinewillinghöfer types of finite Laguerre planes.
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2 Laguerre planes

Since the generators partition the point set P , being on the same generator defines an
equivalence relation on P , and points on the same generator are often called parallel.
We denote the generator that contains the point p by [p].

It readily follows that for each point p of a Laguerre plane L the residual incidence
structure Ap = (Ap,Lp) whose point set Ap consists of all points of L that are not
parallel to p and whose line set Lp consists of all traces in Ap of circles of L passing
through p and of all generators not passing through p is an affine plane, called the
derived affine plane at p. This affine plane extends to a projective plane Pp, which
we call the derived projective plane at p.

When forming the derived projective plane Pp of a Laguerre plane at a point
p circles C not passing through the distinguished point p induce ovals in Pp by
removing from C the point on [p] and adding in Pp the ideal point ω of the lines that
come from generators of L. The ideal line of Pp (relative to the derived affine plane
Ap) is a tangent to this oval.

In case of an ovoidal Laguerre plane each derived affine plane is Desarguesian.
Given a parabolic function f (that is, {(x, f(x)) | x ∈ F} ∪ {ω} is an oval in the
Desarguesian projective plane over the field F where ω is the ideal point of the y-axis
in the projective plane), the circles of the corresponding ovoidal Laguerre plane L(f)
are the sets

{(x, y) ∈ F
2 | y = af(x) + bx+ c} ∪ {(∞, a)},

where a, b, c ∈ F. For example, f(x) = x2 describes the Miquelian Laguerre planes.
Moreover, every ovoidal Laguerre plane is isomorphic to a plane L(f) for a suitable
parabolic function f .

Note that every oval in a finite Desarguesian projective plane PG(2, q) of odd
order q is a conic by [28]. As a consequence, a finite Laguerre plane of odd order
that admits a Desarguesian derivation is Miquelian, see [3] and [22, VII.2].

There may be many different ovals in a finite Desarguesian projective plane of
even order 2h. One particularly nice class of ovals are translation ovals. These are
ovals O that have a point c such that the translations of the projective plane with
axis the tangent to O at c that fix O are transitive on O\{c}. They can be described
by f(x) = x2k where k is co-prime to h, see [20] or [11].

If O is an oval in a projective plane of even order, then the tangents to O all
pass through a common point, the nucleus or knot of O, see [25] or [7, 3.2.23]. This
fact implies the following property of Laguerre planes of even order as noted in [15,
p. 27] where we say that two circles C and C ′ touch at a point p if C ∩ C ′ = {p} or
C = C ′.

Lemma 2.1 In a finite Laguerre plane of even order the relation of “touching” be-
tween circles is an equivalence relation, that is, if circles C1 and C2 touch each other
at a point p and C2 and C3 touch each other at a point q (not necessarily the same
as p), then C1 and C3 also touch each other at a point.
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An automorphism of a Laguerre plane L is a permutation of the point set that
maps circles to circles and generators to generators. The collection of all automor-
phisms of L forms a group with respect to composition, the automorphism group
Γ = Aut(L) of L. The collection of all automorphisms of L that fix each genera-
tor is a normal subgroup of Γ, called the kernel of L. Finally, the collection of all
automorphisms that fix each generator globally but fix no circle, together with the
identity forms a normal subgroup Ξ, see [31, Corollary 1.5], called the elation group
of L.

In [31] finite elation Laguerre planes were introduced and their basic structure
investigated. They generalize finite ovoidal Laguerre planes and were characterized
by Knarr [17] as weakly Miquelian Laguerre planes, that is, those Laguerre planes
in which a certain variation M2 of Miquel’s configuration, which characterizes the
Miquelian Laguerre planes, is satisfied. More precisely, a finite elation Laguerre plane
is a finite Laguerre plane that admits a group of automorphisms that acts trivially
on the set of generators and regularly on the set of circles. The group in question is
the elation group defined above. Clearly one has

Miquelian =⇒ ovoidal =⇒ elation.

The latter implication follows from the spatial model of ovoidal Laguerre planes by
considering central collineations of PG(3, q) with centre the vertex of the cone and
‘axis’ a plane through the vertex of the cone.

Finite ovoidal Laguerre planes are characterized by the kernel having maximum
order, see [31, Proposition 1.9]. Similarly, finite elation Laguerre planes are charac-
terized by the kernel being transitive on the circle set C of L, see [31, Theorem 2].

Theorem 2.2 A finite Laguerre plane L of order n is ovoidal if and only if the
kernel of L has order (n− 1)n3.

A finite Laguerre plane L of order n is an elation Laguerre plane if and only if
the kernel of L has order divisible by n3.

Each derived projective plane of a finite elation Laguerre plane L is a dual trans-
lation plane with translation centre the ideal point ω. In particular, L has order a
prime power. This allows us to use the rich theory of translation planes. Further-
more, the automorphism group of an elation Laguerre plane is linearly represented on
the elation group (considered as a vector space over the corresponding prime field).
Hence representation theory of finite groups is also available. Finite elation Laguerre
planes seem to give the best candidates so far to find finite non-ovoidal Laguerre
planes.

A finite elation Laguerre plane of order q is equivalent to a generalized oval (or
pseudo-oval) with q + 1 points and thus to a translation generalized quadrangle of
order q. This connection has been used in [27] to characterize those finite elation
Laguerre planes of even order that are ovoidal. In case of odd order one also obtains
a translation generalized quadrangle with an anti-regular point via the associated
Lie geometry; compare [2], [14] and [37].
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3 Laguerre Translations

Following Kleinewillinghöfer [15] or [16] a Laguerre translation of a Laguerre plane
L = (P, C,G) is an automorphism of L that is either the identity or fixes precisely
the points of one generator and induces a translation in the derived affine plane at
one of its fixed points. Depending on the direction of this translation in the derived
affine plane there are two kinds of Laguerre translations. A G-translation where G is
a generator of L is an automorphism in the kernel of L that is either the identity or
fixes precisely the points of G. A group of G-translations of L is called G-transitive,
if it acts transitively on each generator H �= G. We say that the automorphism
group Γ of L is G-transitive if Γ contains a G-transitive subgroup of G-translations.

The second kind of Laguerre translations is determined by a circle C passing
through p ∈ G. Let B(p, C) denote the tangent pencil with carrier p, that is, B(p, C)
consists of all circles that touch the circle C at the point p (i.e., circles D such that
D∩C = {p} or D = C). In the derived affine plane at p the tangent pencil represents
a parallel class of lines and one considers translations in the direction of this parallel
class of lines. Then a B(p, C)-translation of L is an automorphism of L that fixes
[p] pointwise and each circle in B(p, C) globally. (Note that B(p, C) = B(p,D) for
any circle D in the pencil B(p, C).) A group of B(p, C)-translations of L is called
B(p, C)-transitive, if it acts transitively on C \ {p}. We say that the automorphism
group Γ of L is B(p, C)-transitive if Γ contains a B(p, C)-transitive subgroup of
B(p, C)-translations.

With respect to Laguerre translations Kleinewillinghöfer obtained 11 types of
Laguerre planes, labelled A to K; see [15, Satz 3.3] or [16, Satz 2]. If E ⊆ G denotes
the set of all generators G for which the automorphism group Γ of the Laguerre plane
is G-transitive, and B denotes the set of all tangent pencils B(p, C) with carrier p for
which Γ is B(p, C)-transitive, then exactly one of the following statements is valid:

A. E = ∅; B = ∅.
B. |E| = 1; B = ∅.
C. |E| = 2; B = ∅.
D. |E| ≥ 3; B = ∅.
E. E = ∅; |B| = 1.

F. E = ∅; there are a generator G, a subset U ⊆ G, |U | ≥ 2, and an injective map
φ : U → C such that q ∈ φ(q) and B = {B(q, φ(q)) | q ∈ U}.

G. E = ∅; there is a circle C such that B = {B(q, C) | q ∈ C}.
H. There is a point p such that E = {[p]} and B = {B(p, C) | p ∈ C ∈ C}.
I. There is a generator G such that E = {G} and B = {B(q, C) | C ∈ C, q ∈

C ∩G}.
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J. E = G; there is a generator G such that B = {B(q, C) | C ∈ C, q ∈ C ∩G}.
K. E = G; B = {B(q, C) | q ∈ C ∈ C}.

Remark 3.1 Since the elation group of a finite elation Laguerre plane acts regularly
on the circle set and transitively on each generator, one readily sees that in a finite
elation Laguerre plane one has E = G so that the Laguerre plane is of type D, J or
K with respect to translations. The examples in 4.1 show that each of these types
occurs as a type of a finite ovoidal Laguerre plane and thus as the type of a finite
elation Laguerre plane. We now have

Miquelian =⇒ ovoidal =⇒ elation =⇒ E = G =⇒ type D, J, K.

Clearly, each Miquelian Laguerre plane is of type K. Conversely, finite Miquelian
Laguerre planes are described by this type, see [10, Sätze 1 and 3].

Proposition 3.2 A finite Laguerre plane is of Kleinewillinghöfer type K if and only
if it is Miquelian.

In case of finite Laguerre planes of odd order, Hartmann [10, Satz 3] shows that
a configuration as in type J with respect to Laguerre translations already implies
Miquelian. In [10, Satz 2] he deals with the even-order case.

Proposition 3.3 A finite Laguerre plane of Kleinewillinghöfer type J has even or-
der.

A finite non-Miquelian Laguerre plane of even order is ovoidal over a translation
oval if and only if L is of type J with distinguished generator G and there is a point
p on G such that the derived affine plane at p is Desarguesian.

Kleinewillinghöfer [15, Lemma 3.4] shows that E = ∅, |E| = 1 or E = G in a
finite Laguerre plane of even order. This follows from Lemma 2.1. Furthermore, [15,
Lemma 3.7] or [16, Lemma 6] implies that in a finite Laguerre plane L of even order
the B(p, C)-transitivity of L for all circles C through a given point p results in the
B(q,D)-transitivity of L for all points q on [p] and all circles D through q. (Briefly,
the derived affine plane Ap at p is a translation plane, and circles not passing through
p induce translation ovals.) Hence, one has the following.

Proposition 3.4 A finite Laguerre plane of Kleinewillinghöfer type C or H has odd
order.

As in the even-order case we show that E = G if E contains sufficiently many
generators. To do this we need another kind of central Laguerre automorphism,
Laguerre shears. They are defined in [15, 16] and [10] but have not been investigated
systematically further. Let G and H be two distinct generators of a Laguerre plane
L. A {G,H}-shear is an automorphism of L that is either the identity or fixes
precisely the points on the two generators G and H . By [19, Lemma 3.1] a Laguerre
shear is in the kernel or an involution.
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Proof of Main Theorem. As mentioned above |E| ≥ 2 implies E = G in Laguerre
planes of even order by [15, Lemma 3.4]. Therefore we now assume that L is a
Laguerre plane of odd order n. Let G1, G2, G3 be three distinct generators in E .
The Gi-translations form a normal subgroup Δi in the kernel T of L. Since by
assumption Δi is Gi-transitive, Δi has order n. Furthermore, Δi ∩ Δj = {id} for
i �= j, so that Δi and Δj generate a normal subgroup Δij � Δi ×Δj of T of order
n2.

Assume that there are γi ∈ Δi, i = 1, 2, 3, and a circle C of L such that γ1γ2γ3
fixes C. Consider the circles C1 = γ−1

1 (C) and C3 = γ3(C). Then Ci touches C in
pi = C ∩ Gi for i = 1, 3 and, because C1 = γ2(C3), the circle C1 also touches C3 in
p2 = C3 ∩ G2. We consider the Lie geometry Q associated with L. This geometry
has points the points of L plus the circles of L plus one additional point ∞; the lines
of Q are the extended generators G∪{∞}, G ∈ G, and the extended tangent pencils
B(p, C) ∪ {p}, p ∈ C ∈ C, with incidence being the natural one; compare [22]. The
circles C, C1, C3 give rise to three points in Q, any two of which are collinear. But
Q is a generalized quadrangle by [22, VII.1], so that no proper triangle exists in Q.
Therefore two of the points (i.e., circles in L) must be the same, which then implies
γ1 = γ2 = γ3 = id.

This shows that Δ3∩Δ12 = {id}. Hence Δ1, Δ2, Δ3 generate a normal subgroup
Δ123 � Δ1 ×Δ2 ×Δ3 of T of order n3. Furthermore, as seen above, its stabilizer of
a circle consists of the identity only. Hence Δ123 acts regularly on the set of circles
of L.

Given two distinct circles C and D that intersect in two points p and q, there
is an automorphism δ ∈ Δ123 such that δ(C) = D. Then δ fixes p and q. In the
derived projective plane Pp at p, the automorphism δ induces a central collineation

δ̂ with centre ω. Since q is a fixed point of δ̂, the axis A of δ̂ passes through q. But
δ is in the kernel of L so that A must come from a generator of L. This shows that
δ fixes every point of [q]. By symmetry, δ also fixes every point of [p], and δ is a
{[p], [q]}-shear. Moreover, since D can be chosen as an arbitrary circle through p and
q, we see that the group of all {[p], [q]}-shears is transitive on this set of circles and
thus transitive one each generator different from [p] and [q].

Finally, let C and C ′ two circles that touch each other at a point p. Choose
a circle D through p that intersects each of C and C ′ in another point q and q′,
respectively. From the above we know that there is a {[p], [q]}-shear that takes C to
D and a ([p], [q′])-shear that takes D to C ′. The composition δ of these two Laguerre
shears fixes every point of [p] and maps C to C ′. In the derived projective plane at
p, we see a central collineation with centre ω, and similar to the former case the axis
must be the ideal line. This shows that δ is a [p]-translation. Since C ′ was arbitrary,
we see that L is [p]-transitive. Hence E = G.

Theorem 2.2 shows that L is an elation Laguerre plane. �

An immediate consequence of Proposition 3.3 and the Main Theorem is the fol-
lowing result which characterizes finite elation Laguerre planes of odd order in terms
of their Kleinewillinghöfer types.
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Corollary 3.5 A finite non-Miquelian Laguerre plane of odd order is an elation
Laguerre plane if and only if it is of Kleinewillinghöfer type D.

Remark 3.6 1. With the above results Remark 3.1 can be sharpened for finite
Laguerre planes of odd order:

Miquelian ⇐⇒ ovoidal =⇒ elation ⇐⇒ E = G ⇐⇒ type D, K.

(There is no type J in odd order.)

2. Under certain additional assumptions the implication “ovoidal =⇒ elation”
above can also be reversed. For example, in [34, Main Theorem 3.10], it was
shown that if the automorphism group of an elation Laguerre plane L of odd
order is 2-transitive on G, then L is Miquelian. Similarly, if the automorphism
group of an elation Laguerre plane L of odd order fixes a generator G0 and
acts 2-transitively on G \ {G0}, then L is Miquelian; see [35, Theorem 3.6].

The first of the results mentioned above remains valid for finite elation Laguerre
planes of even order, but in the second case there are non-Miquelian elation
Laguerre planes of even order. If the order is 2h where h is either a prime
number or the square of a prime number, then the Laguerre plane is ovoidal
over a translation oval, see [35, Corollary 5.7].

3. There are infinite (locally compact, 4-dimensional, topological) elation La-
guerre planes that are not ovoidal, see for example [32].

4. Note that in case of even order although types D and J have E = G the group
generated by all G-translations for G ∈ G may not be transitive on C. For
example, in the ovoidal Laguerre plane L(f) of order 2h over a translation oval
described by f(x) = x2k where k and h are co-prime, the collection

Σ = {(x, y) �→
{
(x, y + af(x) + c), if x ∈ F,

(∞, y + a), if x = ∞,
| a, c ∈ F}

of automorphisms is a group consisting entirely of Laguerre translations such
that for each G ∈ G the subgroup of allG-translations in Σ is linearly transitive.
However, Σ is clearly not transitive on C.

5. Furthermore, in the even-order case type J is potentially possible as the type
of a finite non-ovoidal elation Laguerre plane. By Proposition 3.3 though no
derived affine plane at a point on the distinguished generator G as in type J
can be Desarguesian.

A slight weakening of the conditions in Proposition 3.3 yields the following.

Proposition 3.7 A finite Laguerre plane of Kleinewillinghöfer type J with distin-
guished generator G is an elation Laguerre plane if there is a point p on G such that



G.F. STEINKE/AUSTRALAS. J. COMBIN. 88 (3) (2024), 327–342 335

the derived affine plane at p is a semifield plane. Moreover, each circle not passing
through p induces a translation oval in Ap.

Conversely, a finite non-Miquelian elation Laguerre plane has Kleinewillinghöfer
type J if it admits a generator G such that the derived affine plane at a point p of
G is a translation plane and such that each circle not passing through p induces a
translation oval in Ap.

Proof. Let L be a finite Laguerre plane of Kleinewillinghöfer type J with distin-
guished generator G and let p ∈ G be such that Ap is a semifield plane. Then
conditions (1*), (2*), (3*) of [10, Section 3] are satisfied. Lemma 3.1 of that paper
then shows that circles of L can be described as Ca,b,c = {(x, fa(x) + b ∗ x + c) |
x ∈ K} ∪ {(∞, a)} where a, b, c ∈ K and K is the semifield with multiplication
∗ that coordinatises Ap and where the fa are suitable functions. Furthermore, by
[10, Lemma 3.2], one has that fa(x) + fa′(x) = fa+a′(x) for all a, a′, x ∈ K. Hence
(x, y) �→ (x, y + fr(x) + s ∗ x + t) where r, s, t ∈ K extends to an automorphism of
L. The collection of all these automorphisms is a group that acts regularly on the
set of circles. This shows that L is an elation Laguerre plane.

By Proposition 3.3 a finite Laguerre plane of Kleinewillinghöfer type J has even
order. In this case [10, Lemma 3.3] shows that all functions fa as above are additive.
Hence each Ca,b,c where a �= 0 induces a translation oval in the semifield plane.

For the converse direction note that E = G in any elation Laguerre plane. In
particular, every derived affine plane is a dual translation plane. The assumption
that Ap is a translation plane thus implies that Ap is a semifield plane. Furthermore,
because all circles not passing through p induce translation ovals in Ap, one sees that
each translation of Ap is an automorphism of the Laguerre plane. Hence the Laguerre
plane is of Kleinewillinghöfer type J. �

Translation ovals in proper translation planes have been found in commutative
semifield planes; cf. [4] and [13]. For ovals in Desarguesian planes of even order see
[11], [12, Section 8.4] or [5].

The following lemma will be used to exclude Kleinewillinghöfer type F in finite
Laguerre planes of odd order.

Lemma 3.8 If there is a generator G and at least two points p1, p2 ∈ G and circles
C1, C2 ∈ C, pi ∈ Ci, for which the finite Laguerre plane L of odd order is B(pi, Ci)-
transitive, i = 1, 2, then L is B(p1, C)-transitive for all circles C through p1.

Proof. Let Σi, i = 1, 2, be the collection of all B(pi, Ci)-translations. Then Σ2 is
transitive on C2 \ {p2}. Since Σ2 also fixes the point p1, it induces a group Σ′

2 of
collineations of the derived projective plane P1 = Pp1 at p1.

The circles in B(p1, C1) give rise to affine lines in P1, all passing through the
same point ωC1 on the ideal line W . The B(p1, C1)-transitivity implies that P1 is
(ωC1 ,W )-transitive, that is, the induced group of all translations with axis W and
centre ωC1 is linearly transitive.
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The circle C2 induces an oval O in P1 such that W is a tangent line to O at the
distinguished ideal point ω. Furthermore, Σ′

2 is transitive on O \ {ω}. Since in a
finite projective plane of odd order there are either no or precisely two tangent lines
to an oval through a point not on the oval (see for example [7, 3.2.23]), there is a
unique tangent line �= W to O through every point of W \{ω}. We therefore see that
Σ′

2 is also transitive on W \ {ω}. Hence P1 is (q,W )-transitive for all q ∈ W , q �= ω.
Furthermore, all these collineations are induced by automorphisms of the Laguerre
plane. But this implies the B(p1, C)-transitivity of L for all circles C through p1. �

Since type F contains a configuration of points and circles as in Lemma 3.8, we
obtain the following.

Corollary 3.9 A finite Laguerre plane of Kleinewillinghöfer type F has even order.

Lemma 3.10 Let L be a finite Laguerre plane of order n and let G be a generator
in L such that the automorphism group of L is B(p, C)-transitive for all p ∈ G and
C ∈ C, p ∈ C. Then L is Miquelian in case L has odd order. In case of even order
each derived affine plane at a point of G is a translation plane and circles not passing
through the point of derivation are induced by translation ovals.

Proof. Clearly, each derived affine plane Ap at a point p of G is a translation plane
so that n is a prime power. For each p ∈ G let Δp be the group generated by all
B(p, C)-translations for all circles C � p. This group induces the full translation
group in Ap. If Qp is a coordinatising quasifield of Ap, then Δp � (Qp)

2 � F
2
n.

We fix two distinct points p, q ∈ G. We coordinatise Ap in such a way that Δp

consists of the transformations (x, y) �→ (x + u, y + v) where u, v ∈ Fn. Since Δp

also fixes q, this group induces a group Σ of collineations of the derived plane Aq

at q. Furthermore, because Σ � F
2
n, this group is transitive on the points of Aq,

fixes the ideal line W and the ideal point ω. By [6, Satz 3] the group Σ is either the
translation group of Aq or a shift group of Aq (so that Σ is transitive on the set of
non-vertical lines of Aq).

The latter case occurs if and only if n is odd, see [8, Lemma 9]. Since the
translation plane Ap admits at least one shift group, it can be coordinatised by a
commutative semifield; see [30] or [18, 9.12]. The shift plane Aq can be coordinatised
in such a way that non-vertical lines have the form {(x, f(x−a)+ b) | x ∈ Fn} where
a, b ∈ Fn and where f is a planar function, that is, for each a ∈ Fn \ {0} the map
x �→ f(x+ a)− f(x) is a permutation of Fn; cf. [8]. Since this can be done for each
q ∈ [p], q �= p, Theorem 2.2 in [36] yields that the derived plane Ap is Desarguesian.
Hence, L is Miquelian.

In the former case n has to be even, and non-identity translations have order 2.
Let C be a circle through q and let r, s ∈ C \ {q}, r �= s. There is a translation τ
that takes r to s. Since τ is an involution, it fixes q and {r, s} and thus C. It follows
that C induces a translation oval in Pp. �

As a consequence of Lemma 3.10, types I and J cannot occur in finite Laguerre
planes of odd order. We already know this in case of type J by Proposition 3.3.



G.F. STEINKE/AUSTRALAS. J. COMBIN. 88 (3) (2024), 327–342 337

Corollary 3.11 A finite Laguerre plane of Kleinewillinghöfer type I or J has even
order.

Corollary 3.12 A finite Laguerre plane of odd order as in Lemma 3.8 is Miquelian.

Proof. Note that by symmetry, a finite Laguerre plane L as in Lemma 3.8 is also
B(p2, C)-transitive for all circles C through p2. But then [16, Lemma 6] shows that
L is B(p, C)-transitive for all circles C through p ∈ [p1]. Hence, L is of type I, J or
K. With Corollary 3.9 we obtain that L has type K and thus is Miquelian. �

In summary, we now obtain the following feasible Kleinewillinghöfer types for
finite Laguerre planes with respect to Laguerre translations.

Theorem 3.13 A finite Laguerre plane of odd order is of Kleinewillinghöfer type A,
B, C, D, E, G, H or K.

A finite Laguerre plane of even order is of Kleinewillinghöfer type A, B, D, E,
F, G, I, J or K.

There are examples of finite Laguerre planes of Kleinewillinghöfer types D, J and
K, see Example 4.1.

4 Combined Types and Examples

Kleinewillinghöfer further considered Laguerre homotheties and obtained 13 different
types, labelled 1 to 13; see [15, Satz 3.2] or [16, Satz 1]. A (Laguerre) homothety
of a Laguerre plane L is determined by two non-parallel points p and q of L. An
automorphism of L is a {p, q}-homothety if it the identity or fixes precisely p and
q and induces a homothety with centre q in the derived affine plane Ap at p. The
automorphism group Γ of L is said to be {p, q}-transitive if Γ contains a subgroup
of {p, q}-homotheties that is transitive on each circle through p and q minus the two
points p and q.

In [33] finite Laguerre planes and their Kleinewillinghöfer types with respect to
homotheties were investigated. The known finite Laguerre planes are of one of the
following types where H denotes the set of all unordered pairs of non-parallel points
{p, q} for which the automorphism group of the Laguerre plane L is {p, q}-transitive.

1. H = ∅.
8. There are two distinct generators F , G such that H = {{p, q} | p ∈ F, q ∈ G}.
12. There is a generator G such that H = {{p, q} | p ∈ G, q ∈ P \G}.
13. H consists of all pairs of non-parallel points.
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The full list of possible Kleinewillinghöfer types with respect to homotheties can
be found in [15, Satz 3.2], [16, Satz 1] or [33, §3].

It was shown in [33, Proposition 3.9] that a finite elation Laguerre plane is of
type 1, 8, 12 or 13 with respect to homotheties and that a finite non-ovoidal elation
Laguerre plane must be of type 1 or 8. Furthermore, by [33, Theorem 3.8], a finite
Laguerre plane of type 8 is an elation Laguerre plane.

When combining both classifications with respect to Laguerre translations and
Laguerre homotheties of course not every combination X.m with X ∈ {A, . . . ,K}
and m ∈ {1, . . . , 13} can occur as the Kleinewillinghöfer type of a Laguerre plane.
In fact, there are at most a total of potentially 25 combined types A.1, . . ., K.13,
see [15, Satz 3.4] or [24, §6] where a third kind of central automorphisms, Laguerre
homologies, are also used. Explicitly the feasible combined types with respect to
Laguerre translations and Laguerre homotheties are

A. 1, 2, 5, 7, 9, B. 1, 3, 10, C. 1, 8, D. 1, 8,
E. 1, 4, F. 1, G. 1, 6, H. 1, 11,
I. 1, 11, J. 1, 12, K. 1, 13.

Example 4.1 All known finite Laguerre planes are ovoidal and thus are represented
as L(f) over a field F for some parabolic function f : F → F. In a Laguerre plane
L(f) the transformations

(x, y) �→
{
(x, y + t(af(x) + bx+ c)), if x ∈ F

(∞, y + ta), if x = ∞,

where t ∈ F, form a transitive group of [(x0, 0)]-translations whenever the circle

{(x, af(x) + bx+ c) | x ∈ F} ∪ {(∞, a)}
touches the circle C given by y = 0 in the point (x0, 0).

The known finite Laguerre planes have combined Kleinewillinghöfer types as fol-
lows. We just state the respective linearly transitive groups of translations (other
than G-translations) and homotheties without explicitly verifying that no further
linearly transitive groups of these central automorphisms exist. Of course, there
may be more models of finite ovoidal Laguerre planes of a given type, we just specify
some that are easiest to write down.

D.1 An ovoidal Laguerre plane over an oval that is neither a translation oval nor
admits a group that fixes two points and is transitive on the remaining points
of the oval. For example, if the finite Laguerre plane is represented as L(f) over
the field F2h of order 2h, where h odd and f is given by f(x) = x1/6+x3/6+x5/6,
exponents are modulo 2h−1, see [21], then this plane does not admit a linearly
transitive group of homotheties or B(p, C)-translations.

D.8 An ovoidal Laguerre plane over an oval O that is not a translation oval but
admits a group that fixes two points of O and is transitive on the remaining
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points of O. For example, if the finite Laguerre plane is represented as L(f)
over the field F2h, where h odd and f is given by f(x) = x6, compare [29], then
the transformations

(x, y) �→
{
(sx, sy + (1 + s)c+ a(s+ f(s))f(x)), if x ∈ F2h(
∞, s

f(s)
y +

(
1 + s

f(s)

)
a
)
, if x = ∞,

where s ∈ F2h, s �= 0, form a transitive group of ((∞, a), (0, c))-homotheties.
There is no linearly transitive group of B(p, C)-translations.

J.12 A non-Miquelian ovoidal Laguerre plane over a translation oval. In this case,
the oval is not a conic, the finite Laguerre plane has even order 2h, and the
plane can be represented in the form L(f) over the field F2h where f(x) = x2k

and k is co-prime to h. The distinguished generator is {∞} × F2h. For each
a, b, c ∈ F2h the transformations

(x, y) �→
{
(sx+ (1+s)b, sy + (1+s)c+ a((s+f(s))f(x)+f(sb)), if x ∈ F2h(
∞, s

f(s)
y +

(
1 + s

f(s)

)
a
)
, if x = ∞,

where s ∈ F2h, s �= 0, form a transitive group of ((∞, a), (b, c))-homotheties.
Furthermore, for each a, b, c ∈ F2h the transformations

(x, y) �→
{
(x+ t, y + af(t) + bt), if x ∈ F2h

(∞, y), if x = ∞,

where t ∈ F2h , form a transitive group of B(∞, a), C)-translations where C is
the circle given by y = af(x) + bx+ c.

K.13 A Miquelian Laguerre plane. Here all admissible subgroups of Laguerre trans-
lations and Laguerre homotheties are linearly transitive.

One sees that the above examples comprise all possible types of finite ovoidal
Laguerre planes.

Theorem 4.2 A finite Laguerre plane cannot have type C.8, H.11, I.11 or K.1.

Proof. By [33, Theorem 3.8], a finite Laguerre plane of type 8 is an elation Laguerre
plane. Hence E = G, and type C is impossible in combination with type 8.

In type 11 there is a point p such that H = {{p, q} | q ∈ P \ [p]}. It has been
noted in [33] after Theorem 3.4 that a finite Laguerre plane cannot have type 11
with respect to homotheties. Hence combined types H.11 and I.11 are excluded too.
Alternately, by [33, Theorem 3.4], a finite Laguerre plane of type 11 is Miquelian
or ovoidal over a translation oval. But ovoidal Laguerre planes have E = G so that
types H and I are impossible in combination with type 11.

By Proposition 3.2 a finite Laguerre plane of type K is Miquelian and thus of
type 13 with respect to homotheties. �
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Remark 4.3 1. As a direct consequence of [33, Proposition 3.5] one obtains that
a finite Laguerre plane of type A.5 or A.9 must have odd order.

With Theorem 3.13 we further know that a finite Laguerre plane of type C.1
or H.1 must have odd order. Moreover, a finite Laguerre plane of type F.1, I.1,
J.1 or J.12 must have even order.

2. In a finite elation Laguerre plane L of type D.8 each derived projective plane
at a point of the two distinguished generators F and G as in type 8 is a dual
nearfield plane by the dual of [23, 3.5.46]. In suitable coordinates F = {∞}×N ,
G = {0}×N where N is the coordinatising dual nearfield, and circles through
(∞, 0) are

{(x, x ∗ b+ c) | x ∈ N} ∪ {(∞, 0)}
where b, c ∈ N and ∗ is multiplication in N . The {(∞, 0), (0, 0)}-homotheties
are

(x, y) �→
{
(r ∗ x, r ∗ y), if x ∈ N

(∞, r ∗ y), if x = ∞,

where r ∈ N \ {0}. Furthermore, there is a parabolic function f : N → N
with f(0) = 0 and f(x) = 0 if and only if x = 0 such that the circles of L not
passing through (∞, 0) are of the form

{(x, a ∗ f(a−1 ∗ x) + x ∗ b+ c) | x ∈ N} ∪ {(∞, a)}

where a, b, c ∈ N , a �= 0.

Finite nearfields have been classified by Dickson [9] and Zassenhaus [39]. If
N is a regular nearfield of dimension 2 over its centre, the projective plane
coordinatised by it contains ovals, see [26]. However these ovals are ‘hyperbolic’,
that is, they have two points on the translation axis of the plane. Dualising
these ovals in case of odd order does not result in parabolic ovals as is required
for Laguerre planes considered here.

3. Each derived projective plane of a finite elation Laguerre plane of type J.12 at a
point of the distinguished generator G as in type J or 12 is a dual nearfield plane
and a semifield plane. Thus, derived planes at these points are Desarguesian.
Proposition 3.7 and Theorem 3.3 then show that the Laguerre plane is ovoidal.
Hence, a non-ovoidal elation Laguerre plane must be of type D.1, D.8 or J.1.
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[16] R. Kleinewillinghöfer, Eine Klassifikation der Laguerre-Ebenen nach L-Streckungen
und L-Translationen, Arch. Math. 34 (1980), 469–480.

[17] N. Knarr, A geometric characterization of elation Laguerre planes, Arch. Math. 78
(2002), 162–165.

[18] N. Knarr and M. J. Stroppel, Polarities of shift planes, Adv. Geom. 9 (2009), 577–603.
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