
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 88(3) (2024), Pages 308–326

Leaky forcing: a new variation of zero forcing

Joseph S. Alameda∗

Shannon Dillman Franklin Kenter†

Mathematics Department
United States Naval Academy

Annapolis, MD, U.S.A.

Abstract

Zero forcing is a one-player game played on a graph. The player chooses
some set of vertices to color blue, then iteratively applies a color-change
rule, allowing vertices to “force” their neighbors to become blue. The
results of the game determine linear-algebraic properties of matrices with
a corresponding sparsity pattern.

In this article, we introduce and study a new variation of zero forcing
where ` ≥ 0 of the vertices may have a “leak” which cannot facilitate any
forces. The key is that the locations of the leaks are unknown at the start
of the game; hence, to win, the player must implement a strategy that
overcomes any configuration of ` leaks. As such, this variation of zero
forcing corresponds to resiliency in solving linear systems.

We compute the `-leaky forcing numbers for selected families of graphs
for various values of `, including grid graphs and hypercubes. We find
examples where additional edges make the graph more “resilient” to these
leaks. Finally, we adapt known computational methods to our new leaky
forcing variation.

1 Introduction

Zero forcing is a game played on a graph, G. The game was originally developed
to bound the maximum nullity (or equivalently, the minimum rank) of G over the
set of matrices with a corresponding zero-nonzero pattern, S(G) [1]. In the zero
forcing game, some vertices start as blue and others white. Blue vertices “force”
white vertices to become blue under the zero forcing color-change rule: If all but one
of a blue vertex’s neighbors are blue, the remaining white neighbor becomes blue. A
set of vertices is a zero forcing set if, when initially colored blue, all vertices in G will

∗ First author suported by ONR Grant N0001417GTC00161.
† Third author supported, in part, by NSF Grant DMS-1719894 and ONR grant

N0001418WX00709. Corresponding author: kenter@usna.edu

ISSN: 2202-3518 ©The author(s). Released under the CC BY-ND 4.0 International License



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 309

eventually become blue after iteratively applying the color-change rule. The general
goal is to find the minimum zero forcing set.

Perhaps surprisingly, zero forcing and its variations have a habit of being re-
discovered in different fields and applications. These include power systems and
sensor allocation [6, 11, 19], control of quantum systems [7], and controllability of
leader-follower systems [15].

Despite all of these applications, most variations of zero forcing arise from the
original context of the minimum rank problem: If one places additional restrictions
or relaxations on the matrix pattern, those restrictions translate to variations in the
color-change rule. For instance, restricting the desired matrices to positive semidefi-
nite and/or skew-symmetric matrices changes the color-change rules, making it easier
for vertices to force [3, 4]. On the other hand, the applications mentioned above in-
dicate that there are other potential meaningful variations of zero forcing beyond the
minimum rank problem, as we will study here.

The variation we study in this article is based on the following equivalent notion
of zero forcing.

Theorem 1.1 (K.-Lin, [14, Proposition 3:i,iii]). Let G = (V,E) be a graph and
F (≠ F2) be a field. A set of vertices, S, is a zero forcing set of G if and only if for
any matrix A ∈ SF (G), whenever Ax = 0, the partial vector xS (i.e., x restricted to
entries corresponding to S) is sufficient to uniquely determine the entirety of x.

Let us put this theorem into an applied context. Suppose you know the pattern
of interactions of a system and you want to place sensors on the nodes in order to
observe the entire system. Using natural laws (such as Kirchhoff’s Laws), once the
details of the interactions are known, it is possible to deduce the status of some
nodes that do not have a sensor; hence, it is not necessary to place sensors at every
node. For example, in a fluid network, you may be able to deduce the flow at every
point in the network using only a very limited number of sensors. The theorem
considers the context where the sensors must be placed and allocated before the
system is realized (e.g., before you know exactly what proportions of flow go from
one juncture to another, etc.). Indeed, the theorem says the only way to guarantee
full and accurate observability is to place sensors on nodes corresponding to a zero
forcing set. This is exactly the concept behind the application of zero forcing in
power grids and quantum systems: One cannot wait until the system is realized to
determine what aspects to monitor or measure. Rather, one must be ready to go
beforehand, only knowing the rough pattern of interactions.

The variation of zero forcing we introduce here is based upon a variation of the
scenario above. In a literal sense, we ask the question: What if there is a leak in the
network? If a leak exists in a network at a specific node, then the natural laws could
not correctly be applied to further deduce the status of other nodes. In the context
of zero forcing, each “force” corresponds to applying a linear equation (or physical
law) to deduce further information [1, 14]. Hence, a “leak” corresponds to a vertex
that is unable to force. We wish to determine a way to observe the whole system
despite the possibility of the presence of a fixed number of leaks. In the context of
zero forcing, given a graph G and a number of leaks `, we wish to find the minimum



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 310

number of initially-blue vertices such that regardless of which specific ` vertices are
unable “force,” all of the vertices will eventually be blue. We call this minimum
quantity the `-leaky forcing number of G, denoted Z(`)(G); it will be more carefully
defined in Section 2.

Our variation is not unlike the “fault-tolerant” variant of power domination.
Power domination is a variant of zero forcing used in the phasor measurement unit
(PMU) placement problem for electrical networks introduced by Haynes, Hedetniemi,
Hedetniemi and Henning in [11]. In other work, Pai, Chang and Wang study place-
ment of PMUs (sensors) on grids using a variant of power domination. The goal
of their study is to make the entire network observable after iteratively applying
natural laws even if some number, k, of the PMUs are faulty and unable to provide
measurements [16]. The main distinction here is that the faults within leaky forcing
may be at a vertex where no sensor is placed (e.g., it is not initially colored blue)
whereas Pai, Chang and Wang are only concerned with the case where the faults
occur at the locations of the sensors themselves.

This study has faced a few delays in light of the recent pandemic. Some of the
contributions of the original preprint [9] of this article have since been superseded by
subsequent work. Where applicable, we will refer the reader to these developments.
Even so, we contribute the following:

• We provide preliminaries including a definition of leaky forcing and the `-leaky
forcing number of a graph, Z(`)(G). (Section 2)

• We derive the exact value of Z(`)(G) for select families of graphs, including
paths, cycles, and wheels. (Section 3)

• We determine exact values and bounds for Cartesian (box) products of graphs
Z(`)(G◻H) including the specific families such as grids and hypercubes. (Sec-
tion 4)

• We construct and implement an integer program algorithm to compute Z(`)(G)

exactly and run computational experiments. (Section 5)

2 Preliminaries, Introduction to Leaks

A leak in a graph G is a vertex that is unable to perform a force. An `-leaky forcing
set for a graph G is a subset of initial blue vertices B such that if any ` vertices are
chosen to be leaks (chosen only after B has been specified), then iteratively applying
the color-change rule will still force every vertex in G. The `-leaky forcing number of
G is the order of a minimum `-leaky forcing set and is denoted Z(`)(G). It is worth
noting that Z(0)(G) is the zero forcing number of G in the original sense. We will
look at this `-leaky forcing number on various families of graphs in Section 3 and in
Section 4.

We now provide some crucial basic results for our study of leaky forcing.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 311

Lemma 2.1. For any graph G,

Z(0)(G) ≤ Z(1)(G) ≤ Z(2)(G) ≤ ⋅ ⋅ ⋅ ≤ Z(n)(G).

Proof. Let G be a graph on n vertices, and let B be a minimum `-leaky forcing set,
1 ≤ ` ≤ n. Since B is an `-leaky forcing set, if we choose any ` − 1 vertices of G to be
leaks, B will still be able to force G to be blue. Therefore, B is also an (`− 1)-leaky
forcing set. Thus, Z(`−1)(G) ≤ Z(`)(G).

Let us review the concept of “forts” introduced in [10]. A (zero forcing) fort is a
subset of vertices F such that F is non-empty and that no vertex in V ∖F is adjacent
to exactly one vertex in F . This means that a fort can also be thought of as a set
F ⊆ V such that V ∖ F , as blue, is unable to make any forces. Put another way,
we define the closure of S, cl(S), to be the set of blue vertices after exhaustively
applying the color-change rule; in which case, a non-empty set of vertices is a fort of
G if and only if it is the complement of the closure of a subset of vertices of G.

The power of forts is the following which allows for a constraint generation method
to calculate zero forcing numbers based on the following.

Proposition 2.2. [5, Model 2 and Theorem 8, reworded] For a graph G, a set of
vertices S is a zero forcing set if and only if S intersects every fort.

We will extend the concept of forts to leaky forcing naturally. Define the closure
of S with respect to the leaky set L, cl(S,L), to be the set of vertices that are forced
blue after exhaustively applying the color-change rule to the initially-blue set S with
leaks at the vertices L. In this case, an `-leaky fort (or just fort if the context is
clear) is a non-empty set of vertices T for which T = V ∖ cl(S,L) for some set of
vertices S and a set of vertices L of order `.

Proposition 2.3. For a graph G, a set of vertices S is an `-leaky forcing set if and
only if S intersects every `-leaky fort.

Proof. We proceed in both directions by contrapositive.
Suppose S is not an `-leaky forcing set. Then, for some set of leaks, L, the set

T = V ∖ cl(S,L) is non-empty. However, T is a fort by definition and S did not
intersect T .

Suppose S does not intersect all `-leaky forts. Let T be such a fort achieved with
leak set L. Note that S ⊆ V ∖ T , so cl(S,L) ⊆ cl(V ∖ T,L). However, by the choice
of T and L, cl(V ∖ T,L) = V ∖ T is not all of V . Hence, S ⊆ V ∖ T ≠ V cannot be an
`-leaky forcing set.

Lemma 2.4. Choose ` ≥ 0. Let G be a graph and let v be a vertex of G with degree
` or less. Then, {v} is an `-leaky fort of G. Hence, v must necessarily be in every
`-leaky forcing set of G.

Proof. Color all the vertices of G except for v. Set the open neighborhood of v as
leaks (for which there are necessarily at most ` neighbors). Since no vertex can force
v by the nature of the leaks, it remains white. Hence, {v} is a fort. By Proposition
2.3, v must be in every `-leaky forcing set.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 312

3 Leaky Forcing For Certain Families of Graphs

In this section, in order to get a taste of the topic, we discuss the `-leaky forcing
number for particular graph families. Specifically, we look at paths, trees, cycles,
complete graphs, wheels and grids. We will focus on graph products and hypercubes
in Section 4.

3.1 Paths

Proposition 3.1. For the path on n vertices, Pn,

Z(`)(Pn) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ` = 0
2 if ` = 1
n if ` ≥ 2

Proof. It is a well-known result that Z(0)(Pn) = 1. We will focus on when ` ≥ 1. Let
B be a minimum 1-leaky forcing set for Pn. By Lemma 2.4, both ends of Pn must
be in B. Therefore, ∣B∣ ≥ 2. If either of the blue vertices is chosen to be a leak, then
the other vertex will be able to complete the forcing process. If a vertex in between
the two ends of Pn is chosen to be a leak, then both sides will force until the leak is
reached. Thus, ∣B∣ ≤ 2.

If ` ≥ 2, then again by Lemma 2.4, all vertices of degree ` or less must be in B.
Since every vertex in a path is of degree 2 or less, all vertices in Pn must be in B.
Thus ∣B∣ = n.

3.2 Trees

Proposition 3.2. For a tree T ≠ K1 with t leaves, Z(1)(T ) = t. Furthermore, the
optimum 1-leaky forcing set contains exactly all leaves of T .

Proof. By Lemma 2.4, Z(1)(T ) ≥ t (i.e., all the leaves must be colored blue).
It remains to show that coloring all of the leaves of T necessarily produces a

1-leaky forcing set. We will proceed by strong induction on the number of vertices
on T . For a base case, note that for K2, all vertices are leaves and the statement
holds. For the induction step, consider a tree T with 3 or more vertices; we will
assume the result holds for any smaller tree. Let L be the set of all leaves in T ; color
L blue. Necessarily T has at least 2 leaves; at least one of them will not be a leak.
Call that vertex v and its sole neighbor v′. Now, v forces v′. Consider the tree T − v
which now has at least L ∪ {v′} ∖ {v} colored blue. Note that v′ forces within T − v
if and only if it can force in T given that v is blue. Also, the leaves of T − v are L
with perhaps v′ added; hence by the induction hypothesis, with L ∪ {v′} ∖ {v} blue
in T − v, we have a 1-leaky forcing set of T − v. Since v does not affect whether a
vertex can force besides v′, this 1-leaky forcing set of T −v will force all of T −v, and
hence, T .

We emphasize that subsequent work has extended Proposition 3.2 for all ` ≥ 0.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 313

Theorem 3.3 (A.-Kritschgau-Warnberg-Young 2022 [2, Theorem 4.4]). For any tree
T and positive integer `, the optimal `-leaky forcing set is to choose all vertices of
degree ` or less.

3.3 Cycles

Proposition 3.4. For the cycle on n vertices, Cn,

Z(`)(Cn) = {
2 if ` = 0,1
n if ` ≥ 2

Proof. It is well-known that the zero forcing number of Cn is 2. This is achieved by
coloring two adjacent vertices on the cycle blue. Hence, Z(0)(Cn) = 2.

For ` = 1, we know that by Lemma 2.1 Z(1)(Cn) ≥ 2. Hence, it suffices to show
that a zero forcing set will force the graph despite a single leak. We have the following
two cases:

Case 1 - The leak is added to a blue vertex. If the leak is on one of the blue
vertices, then the other may force around the cycle until it reaches the leaky vertex.

Case 2 - The leak is added to a white vertex. If the leak is on an initially white
vertex, then both blue vertices will force and the forcing repeats until one reaches
the vertex with the leak. However, the other may force around the cycle until all
vertices are colored blue.

Finally for ` ≥ 2 leaks, we know by Lemma 2.4 that since all vertices have degree
2, every vertex must be colored blue to be an `-leaky forcing set.

3.4 Complete Graphs

Proposition 3.5. For the complete graph on n vertices, Kn,

Z(`)(Kn) = {
n − 1 if ` ≤ n − 2,
n if ` = n − 1, n.

Proof. It is well-known that if G = Kn, then Z(0)(G) = n − 1. Therefore, by Lemma
2.1, Z(`)(Kn) ≥ n − 1 for all ` ≥ 0. If ` ≤ n − 2, let B be a set of n − 1 vertices and
place ` leaks anywhere on Kn. At least one vertex in B does not have a leak and can
force the only remaining white vertex blue. Thus, B is an `-leaky forcing set and
Z(`)(Kn) = n − 1. If ` ≥ n − 1, then by Lemma 2.4, every vertex in Kn must be in an
`-leaky forcing set. Therefore, Z(`)(Kn) = n.

3.5 Wheels

Here, we will compute the leaky forcing numbers for the wheel graph. For n ≥ 3,
we will let Wn denote the wheel graph on n + 1 vertices constructed by taking the
cycle on n vertices, Cn, and adding an additional “central” vertex that is adjacent
to all other vertices. We will denote the vertices on the cycle as v1, v2, . . . , vn with
vi adjacent to vj whenever i − j ≡ ±1 mod n and the central vertex as u. Where
applicable, subscripts are taken mod n (e.g., vn+1 = v1).



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 314

Proposition 3.6. For the wheel graph on n + 1 ≥ 4 vertices, Wn,

Z(`)(Wn) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3 if ` = 0,1,
⌈2n/3⌉ + 1 if ` = 2,

n if 2 < ` < n,
n + 1 if ` = n,n + 1.

Proof. Case ` = 0. It is well-known that Z(Wn) = Z(0)(Wn) = 3. This is achieved by
coloring the set B = {u, v1, v2} blue.

Case ` = 1. By Lemma 2.1, Z(1)(Wn) ≥ Z(0)(Wn) = 3. The set B above is
sufficient to ensure the entire graph can be blue, similar to the proof of Proposition
3.4. Hence, Z(1)(Wn) = 3.

Case 2 < ` < n. By Lemma 2.4, all vertices on the outer cycle, v1, . . . vn, must be
colored blue. To show that this is sufficient, note that by the Pigeonhole Principle,
one of the vertices on the outer cycle must not have a leak. That vertex can can
immediately force the center, the only remaining white vertex.

Case ` = n or n + 1. By Lemma 2.4, all vertices must be colored blue.
It still remains to prove the result for ` = 2.
Case ` = 2 and n = 3. For n = 3, we have Z(2)(W3) ≥ Z(W3) = 3 = ⌈2 ⋅ 3/3 + 1⌉.

Coloring any three vertices blue will result in at least one vertex without a leak which
can force the remaining vertex. Hence, Z(2)(W3) = 3.

Case ` = 2 and n = 4. Note that any set of three vertices that does not include the
center cannot force. However, with a set of three vertices that includes the center,
the center cannot force; in which case, leaks placed on the two blue cycle vertices
will prevent the other vertices to be forced blue. It follows that four vertices are
necessary. The Pigeonhole Principle guarantees that since each vertex has degree 3
or more, 2 leaks cannot prevent the sole remaining vertex from being forced.

Case ` = 2 and n ≥ 5. We focus on the following claims.
Claim 1. For any two adjacent cycle vertices vi, vi+1, the set {vi, vi+1} is a fort.
Proof of Claim 1. Color all vertices except vi and vi+1. Choose the set of leaks

to be the blue cycle vertices adjacent to vi and vi+1, vi−1 and vi+2. At this point, no
vertex can force, and so {vi, vi+1} are white. Hence, {vi, vi+1} forms a fort. △

Claim 2. For any 2-leaky forcing set, S, if vi ∈ S then one of its two neighbors on
the cycle is also in S.

Proof of Claim 2. We proceed by contrapositive. Without loss of generality, let
v3 be an initially blue vertex with v2 and v4 white. Suppose the two leaks are placed
at v1 and v5 (these vertices are distinct as n ≥ 5). Then, the only potential neighbors
to force v2 are u or v3; the same applies for v4. However, both u and v3 have the
same two white neighbors v2 and v4 that cannot be forced otherwise. Hence, the
initial configuration with v3 blue and v2 and v4 white cannot be a 2-leaky forcing
set. △

Together with the two claims, it follows that among any three consecutive vertices
on the cycle, two of them must be colored blue in a 2-leaky forcing set. (If only the
first or last are blue, or none at all, Claim 1 is violated; if only the middle vertex
among the three is blue, Claim 2 is violated.) Further, no forcing can occur unless



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 315

either the center vertex u is blue or both the center vertex u is white and all of the
cycle vertices are blue. Hence, Z(2)(Wn) ≥ ⌈2n/3⌉+1 (e.g., there is at most one white
vertex at every third vertex on the cycle). We now construct a 2-leaky forcing set
that achieves this bound. Let B be the set {u} ∪ {vi ∣ i ≡ 1 or 2 mod 3}. Any white
vertex, va is adjacent to exactly three blue neighbors, two on the outer cycle, va−1
and va+1, and the center vertex, u. If either of the va−1 or va+1 are without a leak, that
one will force va immediately. Hence, the only way a vertex will not be immediately
forced in this manner is if both va−1 and va+1 have a leak; in which case, all other
vertices on the outer cycle become immediately colored blue (as their neighbors on
the outer cycle cannot both have leaks). After which, u can force va. This completes
the proof for n ≥ 5.

4 Cartesian Products

As found in [17], the Cartesian (box) product of two finite graphs G and H is denoted
G ◻H. Its vertex set consists of V (G) × V (H), i..e, the ordered pairs (x, y), where
x ∈ V (G) and y ∈ V (H). Two vertices (x, y) and (x′, y′) are adjacent in the Cartesian
product if and only if either both x = x′ in G and y is adjacent to y′ in H or both
y = y′ in H and x is adjacent to x′ in G. For example, the Cartesian product P3 ◻P5

is the 3 × 5 grid of vertices, illustrated in Figure 1.

P5

P3

Figure 1: The Cartesian product P3 ◻ P5.

The d-dimensional hypercube, Qd, is the graph

Qd ∶=K2 ◻ . . . ◻K2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d times

.

In particular, Q1 =K2 and Q2 = C4.
It was shown in the original paper on zero forcing [1] that

Z(G ◻H) ≤ min{∣V (G)∣Z(H), ∣V (H)∣Z(G)}.

We demonstrate an analogous result for leaky forcing.

Lemma 4.1. For graphs G and H and a number of leaks ` ≥ 0,

Z(`)(G ◻H) ≤ min{∣V (G)∣Z(`)(H), ∣V (H)∣Z(`)(G)}.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 316

Proof. Without loss of generality, let us look at G◻H as ∣V (H)∣ copies of the graph
G and assume ∣V (H)∣Z(`)(G) ≤ ∣V (G)∣Z(`)(H). Choose a minimum `-leaky forcing
set of G, S.

Color all vertices S × V (H) blue; that is, color all corresponding vertices to S in
all ∣V (H)∣ copies of G blue.

Arbitrarily choose ` leaks of G ◻H: (g1, h1), . . . , (g`, h`). Let LG = {g1, . . . , g`}.
We will show that S×V (H) forces the entirety of G×H with leaks LG×V (H). Note
that if S = V (G), this holds trivially, so we will assume that S ≠ V (G)

Let S(0) = S be the set of initially blue vertices of G. Let S(i) be the set of vertices
colored blue after i simultaneous applications of the color-change rule within G when
forcing with the set of leaks LG. Since S(0) = S is an `-leaky forcing set of G, each
S(i) is also an `-leaky forcing set of G.

Suppose s ∈ S(0) forces s′ ∈ S(1) ∖ S(0) during the first iteration of the color-
change rule in G (such an s exists by assumption that S ≠ V (G)). Then, for any
h ∈ V (H), (s, h) has exactly one white neighbor, (s′, h). Hence, (s, h) forces (s′, h)
during the first iteration of the color-change rule in G ◻ H. Therefore, after one
application of the color-change rule in G ◻H, all vertices S(1) × V (H) will be blue.
Inductively, since S(i) is an `-leaky forcing set of G, whenever S(i) ×V (H) is colored
blue, S(i+1)×V (H) will become blue. It follows that all vertices of G×H will become
blue. Hence, S × V (H) is an `-leaky forcing set of G ◻H with leaks LG × V (H).

Since the set of ` leaks was chosen arbitrarily, this completes the proof.

4.1 Leaky Forcing on Hypercubes

In this subsection, we will compute the `-leaky forcing number of hypercubes for
some values of ` as well as provide upper bounds in other cases. We will view the
hypercube Qd to have a vertex set of all length d binary strings whereby two vertices
are adjacent if and only if their strings differ in exactly one location (bit). For an
example, see Q4 in Figure 2.

Let us recall the zero forcing number of the hypercube.

Lemma 4.2 (AIM Group, [1, Theorem 3.1]). For d ≥ 1,

Z(0)(Qd) = 2d−1.

Proposition 4.3. For d ≥ 2,
Z(1)(Qd) = 2d−1.

Proof. By Lemma 4.1, since Qd = Qd−2◻C4, Z(1)(Qd) ≤ 2d−2Z(1)(C4). By Proposition
3.4, Z(1)(C4) = 2, so altogether, Z(1)(Qd) ≤ 2d−1. For equality, we apply Lemmas 2.1
and 4.2: Z(0)(Qd) = 2d−1 ≤ Z(1)(Qd).

Arguably, the easiest proof for the next proposition computing Z(2)(Q3) is “the
computer said so.” (Simply try all 28 possible subsets of vertices each with all 28
possible leak placements.) However, we present a more elegant proof using a fort
intersection argument more in line with Proposition 2.3 and how our algorithm works
in Section 5 based on the work in [5].



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 317

Proposition 4.4. The 2-leaky forcing number of the 3-dimensional hypercube is
given by

Z(2)(Q3) = 6.

Proof. We will consider Q3 a graph whose vertices are binary strings of length 3
whereby two vertices are adjacent if they differ in exactly one bit.

Color all vertices except 000 and 001 blue. We will show that this is a 2-leaky
forcing set. If there is no leak on the vertex 100 or no leak on 010, then 000 will
be colored blue which can then force 001. However, if both 100 and 010 have leaks,
then 001 will become blue, after which, 001 forces 000.

To see that this is optimal, note any set of vertices consisting of all but a pair of
vertices distance 2 apart, u1, u2, will not be 2-leaky forcing set (as the leaks could
be on the vertices representing the complement strings of u1 and u2, preventing u2

and u1 from being forced respectively); hence, {u1, u2} is a fort. By Proposition 2.3,
at least one vertex of each such pair must be initially colored blue to be 2-leaky
forcing set. The set system comprised of all such pairs of vertices can be viewed as
a simple graph, D, on V (Q3) whose edge set consists of pairs vertices that differ in
exactly two bits (e.g., they are distance 2 in Q3). Any 2-leaky forcing set of Q3 must
be a transversal of D (e.g., the set intersects every edge at least once). However,
D is simply a graph consisting of two disjoint copies of K4. Any transversal of K4

requires 3 vertices, so D requires 6. It follows that any 2-leaky forcing of Q3 requires
6 vertices.

Lemma 4.5. The following `-leaky forcing numbers hold.

Z(2)(Q4) = 8.

Z(3)(Q4) = 10.

Z(3)(Q5) = 16.

Unfortunately, we do not have an elegant or easily verifiable proof of the above
results, and this time, we omit a formal proof and resort to “the computer said so,”
using the computational techniques in Section 5.

For Z(2)(Q4) and Z(3)(Q5), one can check (hopefully by computer) that coloring
any all of the vertices with a leading 0 in their binary representation (e.g. a “sub-
cube”) form a 2-leaky or 3-leaky forcing set respectively. These would be optimal as
Z(0)(Q4) = 8 ≤ Z(2)(Q4) and Z(0)(Q5) = 16 ≤ Z(3)(Q5) by Lemmas 2.1 and 4.2.

For Z(3)(Q4), an optimal 3-leaky forcing set for Q4 can be found in Figure 2. We
resort to using the integer programming techniques in Section 5.

MATLAB code used to perform these calculations can be found in [8].

Proposition 4.6. For d ≥ 4,
Z(2)(Qd) = 2d−1.

Proof. Since Qd = Qd−4 ◻Q4, we can apply Lemmas 4.1 and 4.5 to yield: Z(2)(Qd) ≤

2d−4Z(2)(Q4) = 2d−4 ⋅ 8 = 2d−1. Equality is achieved, as Z(0)(Qd) = 2d−1 ≤ Z(2)(Qd) by
Lemmas 2.1 and 4.2.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 318

0000 0001

0101
0100

0111

0010

0110

0011

1100

1110

1101

1111

1000
1001

1010
1011

Figure 2: An optimal 3-leaky forcing set of Q4.

Proposition 4.7. For d ≥ 5,
Z(3)(Qd) = 2d−1.

Proof. By Lemmas 4.1 and 4.5, we have Qd = Qd−5 ◻Q5, Z(3)(Qd) ≤ 2d−5Z(3)(Q5) =

2d−5 ⋅ 16 = 2d−1. As before, equality follows by applying Lemmas 2.1 and 4.2.

A summary of the known values of Z(`)(Qd) can be found in Table 1. In the
preprint version of this article, we commented that it appeared as though Z(d−2)(Qd) =

2d−1; Herrman recently proved this equality.

Theorem 4.8 (Herrman [12, Theorem 1.1]). For d ≥ 3,

Z(d−2)(Qd) = 2d−1.

The nontrivial values of Z(d−1)(Qd) do not appear to be powers of 2; we hesitate
to conjecture any pattern from only two values. Hence, we ask the following.

Question 4.9. What are the explicit values of Z(d−1)(Qd)?

4.2 Leaky Forcing on Grids

A grid, is the graph Pn ◻Pm for m,n ≥ 2. In this section, we focus on computing the
1-leaky forcing number of a grid, Z(1)(Pn ◻ Pm).

In the preprint version of this article, we proved the following.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 319

d

3 4 5 6

0 4 8 16 32

`
1 4 8 16 32

2 6 8 16 32

3 8 10 16 32

4 ⋮ 16 ? 32

Table 1: Summary of values of Z(`)(Qd). The value Z(d−2)(Qd) = 2d−1 for d ≥ 6 was
determined by Herrman [12].

Theorem 4.10 (See [9]). For the grid Pn ◻ Pm with m ≥ n,

Z(1)(Pn ◻ Pm) ≤ 2m − n.

The preprint version of this article also showed for select cases of m,n, Z(1)(Pn ◻

Pm) ≤ min(2n,m). These results have since been superseded by the following result
for all grids.

Theorem 4.11 (A.-Kritschgau-Warnberg-Young [2, Theorem 4.10]). For the grid
Pn ◻ Pm, with m ≥ n,

Z(1)(Pn ◻ Pm) ≤ min(2n,m).

We have omitted full proofs of these statements. However, to showcase the com-
plicated nature of these constructions, illustrations of 1-leaky forcing sets used to
prove Theorem 4.10 are displayed in Figure 3. For a full proof of Theorem 4.10, the
reader is referred to the preprint version of this article [9]. The proof of Theorem
4.11 provides an improved construction. The reader is referred to [2] for details.

Note that the both of these theorems only provide an upper bound. We remark
that computational evidence using the techniques provided in Section 5, it appears
that Z(1)(Pn◻Pm) = min(2n,m), but so far this remains elusive. To our understand-
ing this problem remains open.

However, for n =m have the following.

Theorem 4.12. For n ≥ 1, the grid Pn ◻ Pn,

Z(1)(Pn ◻ Pn) = n.

To prove this we use the following result.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 320

m

m − n

n

⌈n
2
⌉

m

m − n

n

n
2

Figure 3: Patterns for n odd (top) and n even (bottom) for the proof of Theorem
4.10 given in [9].

Proposition 4.13 (AIM Group [1, Corollary 3.7]). For 1 ≤ n ≤m, the grid Pn ◻Pm

has
Z(0)(Pn ◻ Pm) = n.

Proof of Theorem 4.12. By Theorem 4.10, Z(1)(Pn◻Pn) ≤ 2n−n = n. A lower bound
is achieved by Lemmas 2.1 and Proposition 4.13:

Z(1)(Pn ◻ Pn) ≥ Z(0)(Pn ◻ Pn) = n.

5 Integer Program Methods For Leaky Forcing

In this section, we develop a constraint generation method to calculate the `-leaky
forcing number similar to [5, Model 2 and Theorem 8], using Proposition 2.3. The full
integer program can be found in Model 5.1 (overleaf) and the algorithm using con-
straint generation is found in Algorithm 5.3. Finally, we provide some computational
results, including those related to the results in Section 4.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 321

Model 5.1. A fort-covering integer programming model given a set of forts F ⊂

2V (G). Later, we will refer to this model (as a function) as IP (G,F) whose output
is a candidate for an `-leaky forcing set. Since the inputs include a set of forts, the
number of leaks, `, is implicitly included in the choice of forts. Ideally, F is the set
of all `-leaky forts for some `. Indeed, when F is the set of all `-leaky forts, Theorem
5.2 guarantees the model returns a minimum `-leaky set. However, since generating
all `-leaky forts is impractical, we leverage this model using an incomplete set of forts
in Algorithm 5.3.

Inputs

G a graph

F a set of forts

Other sets

V the set of vertices of G

Parameters

fk,v k ∈ F , v ∈ V indicator variable whether vertex v
is in fort k

Decision Variables

xv v ∈ V indicator variable whether vertex v
in the candidate `-leaky forcing set
S

Objective and Constraints

min ∑
v∈V

xv (1a)

s.t. ∑
v∈V

fk,vxv ≥ 1 ∀k ∈ F , (1b)

xv ∈ {0,1} ∀v ∈ V. (1c)

Outputs

S candidate `-leaky forcing set com-
prised of the set of vertices v ∈ V
for which xv = 1



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 322

Theorem 5.2. When F is the set of all ` leaky forts of G, Model 5.1 returns an
optimal `-leaky forcing set S.

Proof. Constraint 1b requires that S have at least one element in every fort of F .
Hence by Lemma 2.3, S is an `-leaky forcing set. The objective 1a requires further
requires that this be optimal.

Algorithm 5.3 provides a process to compute an optimal `-leaky forcing set with-
out necessarily enumerating all `-leaky forcing sets. An overview of the algorithm
is as follows. First, an initial set of forts is initialized; necessarily V (G) is a fort,
but also as a consequence of Lemma 2.4, each individual vertex with degree at most
` forms a fort. As a note, one could augment this initialization using other forts
(perhaps by computing V (G) ∖ cl(S,L) for random choices of S,L ⊆ V or by lever-
aging the specific structure of G, etc.). Then, Model 5.1 is run using the current
set of forts. If the result is an `-leaky forcing set, we are done; if not, there are
additional forts to add and Model 5.1 can be rerun with those additional forts. This
iterates until an optimal `-leaky forcing set is found. We note that this algorithm
still computes optimal zero forcing sets (in the original sense) when ` = 0. The proof
termination and accuracy of Algorithm 5.3 is given in Theorem 5.4.

Algorithm 5.3 Finding an optimal `-leaky forcing set for a graph G
Input: A graph G and a nonnegative integer ` (e.g., the number of leaks)
Output: An optimal `-leaky forcing set of G, S

(Initialize a set of forts, F : The set of all vertices is a fort; also, by Lemma 2.4,
each vertex with degree at most ` is a fort.)
F ← {V (G)}

for each r ∈ V (G) with degree at most ` do
Add {r} to F .

(Run Model 5.1 to generate a candidate `-leaky forcing set S)
S ← IP (G,F)

(While S is not an `-leaky forcing set, generate new forts by computing the closure
of S for all possible sets of leaks, and rerun Model 5.1.)
while S is not an `-leaky forcing set on G do

for all sets of possible sets of leaks L do
if V (G) ∖ cl(S,L) ≠ ∅ then

Add V (G) ∖ cl(S,L) to F

S ← IP (G,F)

(When S is finally an `-leaky forcing set, return S)
return S



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 323

Theorem 5.4. Algorithm 5.3 terminates and returns an optimal `-leaky forcing set
of G.

Proof. To see that Algorithm 5.3 terminates, at each iteration of the loop, either the
set S calculated from IP (G,F) will be an `-leaky forcing set or it will not. In the
first case, we are done. For the latter case, there will be an additional fort to be
added to F that was not previously included. In the worst case, F will eventually
include all, finitely many forts. At which point, by Proposition 2.3, IP (G,F) will
necessarily return an `-leaky forcing set and the loop will terminate.

Let S be the returned set of Algorithm 5.3. To see that ∣S∣ = Z(`)(G), note that
the result of each iteration of IP (G,F) calculates a minimum set of vertices that
intersect some set of forts. Hence, it follows that for every iteration, ∣S∣ ≤ Z(`)(G), as
adding more constraints (i.e., more forts) cannot decrease the objective value which
is at most Z(`)(G) (achieved whenever F is the set of all forts). On the other hand,
S is necessarily a leaky forcing set, so ∣S∣ ≥ Z(`)(G).

5.1 Computational Results

We first tested the runtimes of our algorithm and integer program on various fam-
ilies of graphs. The MATLAB code containing the functions and scripts of these
computations can be found in [8].

First, we computed Z(1)(Pm ◻ Pm) for values of m = 3,4,5, and 6. Our results
are detailed in Table 2. Each of these four graphs has the same structure, so the
dramatic increase in runtime shows that our integer program is sensitive to the
number of vertices in the graph.

m ∣V ∣ Z(1)(Pm ◻ Pm) Time (seconds)

3 9 3 0.7851

4 16 4 7.9365

5 25 5 101.3456

6 36 6 1134.9772

Table 2: Runtimes for finding Z(1)(Pm ◻ Pm).

We also tested the runtimes of our algorithm and integer program on nine cubic
graphs from the Wolfram database [18] with one leak, the results of which are found
in Table 3. Cubic graphs are those in which all vertices have a degree of 3. Since
these nine graphs have very similar structures, we can more easily compare their
runtimes. Just as with the Pm ◻ Pm graphs, we can see that the number of vertices
does affect the runtime. However, within a fixed number of vertices, smaller zero
forcing numbers have smaller runtimes. Since our method begins with the smallest
potential `-leaky forcing set and iteratively adds more vertices to this set as it runs,
this increase in time makes sense as Z(`)(G) increases.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 324

Comparable methods were timed on cubic graphs with no leaks from [5]. Their
results for cubic graphs on 20 vertices yielded an average runtime of 0.40 seconds, and
for cubic graphs on 30 vertices yielded an average runtime of 2.05 seconds. Although
our runtimes are not nearly as fast, our algorithm took into account the potential
for a leak to be on any vertex in the graph, significantly increasing the complexity
of our process.

Lastly, we computationally investigated the 1-leaky forcing number of random
graphs using the traditional Erdős-Reyni graph model, G(n, p) with p = 1/4 (i.e.,
there are n vertices and an edge between a pair of vertices exists with probability
p = 1/4 independent of all other pairs). Our results and runtimes are reported in
Table 4. We encounter the similar growth in runtime around 20 vertices as before.
In addition, there is a gap between Z(G) and Z(1)(G), suggesting that Lemma 2.1
is often not sharp (e.g., an additional leak will often cause the forcing number to
increase). It is difficult to compare these computations for small graphs to previous
asymptotic results on zero forcing for random graphs. In their work, Kalinowski,
Kamcev and Sudakov show that for certain ranges of p, Z(G(n, p)) is almost always
all of the vertices; notably, Z(G(n,1/2)) = n − (2 +

√
2 + o(1)) log2 n asymptotically

almost surely [13]. It is unclear if these same constants would hold for the case of
1-leaky forcing.

Graph name ∣V ∣ Z(1)(G) Time (seconds)

Cubic 20 1 20 6 101.2786

Cubic 20 2 20 6 75.9405

Cubic 20 3 20 7 223.4605

Cubic 22 1 22 7 392.8827

Cubic 22 2 22 7 301.0180

Cubic 24 1 24 8 1058.7689

Cubic 24 2 24 6 481.3399

Cubic 24 3 24 8 927.1612

Cubic 24 4 24 8 968.2742

Table 3: Values and runtimes for Z(1)(G) for various cubic graphs.

6 Conclusion

We introduced zero forcing and `-leaky forcing and provided the `-leaky forcing
numbers of various families of graphs, such as paths, cycles, complete graphs, and
wheels. Additionally, we explored `-leaky forcing on hypercubes and grids. We used



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 325

n Trials Mean Z(G(n,1/4)) Mean Z(1)(G(n,1/4)) Mean Z(1) Time (sec.)

10 100 3.80 5.38 0.1924

11 100 4.05 5.49 0.3452

12 10 4.5 5.6 0.388

13 10 4.6 6.1 1.164

14 10 4.7 6.4 2.084

15 10 5.0 5.9 2.972

16 10 5.2 7.0 6.350

17 10 5.6 7.4 14.191

18 10 6.2 7.9 13.891

19 10 6.7 8.1 60.938

20 10 7.1 8.7 150.145

Table 4: Values and runtimes for random graphs, Z(1)(G(n,1/4)).

the idea of forts in graphs as the foundation for our algorithm and integer program
which find the `-leaky forcing number for any finite, connected graph.

For future work, there are a couple of appetizing questions for specific graphs.
First, computing Z(d−1)(Qd) remains open (Question 4.9). Second, for m ≥ n, prov-
ing that Z(1)(Pn ◻ Pm) = min(m,2n) (e.g., equality) remains elusive. Also, given
the exponential growth of runtimes for our algorithm, improving the computational
approach would be helpful for future study of leaky forcing.

Finally, we are ever grateful to the reviewers and referees who have made sub-
stantial comments toward improving this manuscript. Thank you.

References

[1] “AIM Special Work Group”, Zero forcing sets and the minimum rank of graphs,
Linear Algebra Appl. 428 (7) (2008), 1628–1648.

[2] J. S. Alameda, J. Kritschgau, N. Warnberg and M. Young, On leaky forcing
and resilience, Discrete Appl. Math. 306 (2022), 32–45.

[3] M. Allison, E. Bodine, L.M. DeAlba, J. Debnath, L. DeLoss, C. Garnett,
J. Grout, L. Hogben, B. Im, H. Kim et al., Minimum rank of skew-symmetric
matrices described by a graph, Linear Algebra Appl. 432 (2010).

[4] F. Barioli, W. Barrett, S.M. Fallat, H.T. Hall, L. Hogben, B. Shader,
P. Van Den Driessche and H. Van Der Holst, Zero forcing parameters and
minimum rank problems, Linear Algebra Appl. 433 (2) (2010), 401–411.



J.S. ALAMEDA ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 308–326 326

[5] B. Brimkov, C.C. Fast and I. V. Hicks, Computational approaches for zero
forcing and related problems, Eur. J. Oper. Res. 273 (3) (2019), 889–903.

[6] D. J. Brueni and L. S. Heath, The PMU placement problem, SIAM J. Discrete
Math. 19 (3) (2005), 744–761.

[7] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini and M. Young, Zero
forcing, linear and quantum controllability for systems evolving on networks, IEEE
Trans. Automat. Contr. 58 (9) (2013), 2349–2354.

[8] S. Dillman and F. Kenter, MATLAB code for Leaky Forcing, https://github.
com/fkenter/leakyforcing.

[9] S. Dillman and F. Kenter, Leaky forcing: a new variation of zero forcing, arXiv
preprint arXiv:1910.00168 (2019).

[10] C.C. Fast and I.V. Hicks, Effects of vertex degrees on the zero-forcing number
and propagation time of a graph, Discrete Appl. Math. 250 (2018), 215–226.

[11] T.W. Haynes, S.M. Hedetniemi, S. T. Hedetniemi and M.A. Henning, Dom-
ination in graphs applied to electric power networks, SIAM J. Discrete Math. 15 (4)
(2002), 519–529.

[12] R. Herrman, The (d − 2)-leaky forcing number of qd and `-leaky forcing number of
GP (n,1), Discrete Optim. 46 (2022), 100744.

[13] T. Kalinowski, N. Kamcev and B. Sudakov, The zero forcing number of graphs,
SIAM J. Discrete Math. 33 (1) (2019), 95–115.

[14] F.H. Kenter and J.C.-H. Lin, On the error of a priori sampling: zero forcing sets
and propagation time, Linear Algebra Appl. 576 (2019), 124–141.

[15] N. Monshizadeh, S. Zhang and M.K. Camlibel, Zero forcing sets and control-
lability of dynamical systems defined on graphs, IEEE Trans. Automat. Contr. 59 (9)
(2014), 2562–2567.

[16] K.-J. Pai, J.-M. Chang and Y.-L. Wang, Restricted power domination and fault-
tolerant power domination on grids, Discrete Appl. Math. 158 (10) (2010), 1079–1089.

[17] V.G. Vizing, The Cartesian product of graphs, Vyčisl. Sistemy No. 9 (1963), 30–43.

[18] Wolfram Research, GraphData, Wolfram language function, (updated 2023),
https://reference.wolfram.com/language/ref/GraphData.html, 2007.

[19] M. Zhao, L. Kang and G. J. Chang, Power domination in graphs, Discrete Math.
306 (15) (2006), 1812–1816.

(Received 13 Jan 2023; revised 19 Aug 2023, 8 Jan 2024)

https://github.com/fkenter/leakyforcing
https://github.com/fkenter/leakyforcing
https://reference.wolfram.com/language/ref/GraphData.html

	Introduction
	Preliminaries, Introduction to Leaks
	Leaky Forcing For Certain Families of Graphs
	Paths
	Trees
	Cycles
	Complete Graphs
	Wheels

	Cartesian Products
	Leaky Forcing on Hypercubes
	Leaky Forcing on Grids

	Integer Program Methods For Leaky Forcing
	Computational Results

	Conclusion

