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Abstract

Archdeacon, in his seminal paper in Electron. J. Combin. (2015), defined
the concept of Heffter array to provide explicit constructions of biem-
beddings of the complete graph Kv into orientable surfaces, the so-called
Archdeacon embeddings, and proved that these embeddings are Zv-reg-
ular. In this paper, we show that an Archdeacon embedding may admit
an automorphism group that is strictly larger than Zv. Indeed, as an ap-
plication of the interesting class of arrays recently introduced by Buratti
in https://arxiv.org/abs/2210.16672, we exhibit, for infinitely many
values of v, an embedding of this type having full automorphism group
of size

(
v
2

)
that is the largest possible one.

1 Introduction

An m× n partially filled (p.f., for short) array on a set Ω is an m× n matrix whose
elements belong to Ω and where some cells can be empty. In 2015, Archdeacon (see
[1]) introduced a class of p.f. arrays that have been extensively studied: the Heffter
arrays.

Definition 1.1 A Heffter array H(m,n; h, k) is an m× n p.f. array with entries in
the cyclic group (Z2nk+1,+) such that:

(a) each row contains h filled cells and each column contains k filled cells,

(b) for every x ∈ Z2nk+1 \ {0}, either x or −x appears in the array,
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(c) the elements in every row and column sum to 0 (in Z2nk+1).

These arrays have been introduced because of their vast variety of applications and
links to other problems and concepts, such as orthogonal cycle decompositions and
2-colorable embeddings (briefly biembeddings), see for instance [1, 5, 9, 12]. The
existence problem of Heffter arrays has been also deeply investigated starting with
[2]: we refer to the survey [20] for the known results in this direction. This paper
will focus mainly on the connection between p.f. arrays and embeddings. To explain
this link, we first recall some basic definitions, see [18, 19].

Definition 1.2 Given a graph Γ and a surface Σ, an embedding of Γ in Σ is a
continuous injective mapping ψ : Γ → Σ, where Γ is viewed with the usual topology
as a 1-dimensional simplicial complex.

The connected components of Σ \ ψ(Γ) are called ψ-faces. Also, with a slight abuse
of notation, we say that a circuit F of Γ is a face (induced by the embedding ψ)
if ψ(F ) is the boundary of a ψ-face. Then, if each ψ-face is homeomorphic to an
open disc, the embedding ψ is said to be cellular. In this context, we say that two
embeddings ψ : Γ → Σ and ψ′ : Γ′ → Σ′ are isomorphic whenever there exists a
graph isomorphism σ : Γ → Γ′ such that σ(F ) is a ψ′-face if and only if F is a ψ-
face. Here we say that σ is an embedding isomorphism or, if ψ = ψ′, an embedding
automorphism.

Archdeacon, in his seminal paper [1], showed that, if some additional technical
conditions are satisfied, Heffter arrays provide explicit constructions of Zv-regular
biembeddings of complete graphs Kv into orientable surfaces. Here Zv-regular means
that Zv acts sharply regularly on the vertex set, hence Zv is contained in the group of
the embedding automorphisms of ψ, denoted by Aut(ψ). Following [6], the embed-
dings defined using this construction via p.f. arrays will be denoted as embeddings of
Archdeacon type or, more simply, Archdeacon embeddings.

Indeed, this kind of embedding can be considered also for variations of the concept
of Heffter arrays, such as the non-zero sum Heffter arrays discussed in [8, 16, 17]
(see also [20] for other variations and generalizations). In [6], the author provided a
generalization of both the Heffter and the non-zero sum Heffter arrays and showed
that the Archdeacon embedding can be also defined in this more general context.
Given a finite group (G,+) of odd order v = 2nk + 1, he defined a so-called quasi -
Heffter array over G1 (denoted as QH(m,n; h, k)) by considering an m×n p.f. array
A with elements in G such that:

(a1) each row contains h filled cells and each column contains k filled cells,

(b1) the multiset [±a | a ∈ E(A)] contains each element of G \ {0} exactly once,

where by E(A) we mean the multiset of the elements of the filled cells of A. If every
row and every column of a quasi-Heffter sum to zero, consistently with the classical

1The concept of quasi-Heffter arrays was defined in [6] only in the case G = Zv but, following
[11], we provide the definition for generic groups.
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Heffter arrays nomenclature, we denote this array by H(m,n; h, k) over G and, if also
m = k and n = h, by H(m,n) over G.

Using such arrays, the Archdeacon embedding into orientable surfaces is still well
defined, with essentially the same construction of [1]. Then, again in [6], it was
proved that for an embedding constructed from a QH(m,n; h, k) over Z2nk+1, its full
automorphism group, which acts sharply transitively on the vertex set, is almost
always exactly Z2nk+1. Note that several examples of Zv-regular embeddings whose
full automorphism group is larger than Zv are known (see for instance [6, Example
3.4] or [10]), but none of them arises from the Archdeacon construction. For this
reason, we find it is natural to investigate this existence problem. The main result
here presented is indeed the existence of an infinite family of such embeddings whose
automorphism groups are strictly larger than Zv.

In Section 2 we will provide a formal definition of the Archdeacon embedding,
starting from a Heffter array over a group G. Then, in Section 3 we will analyze
one of the interesting classes of Heffter arrays over the additive group of a finite field
Fq of q elements, recently introduced by Buratti in [3]. We will show that using
these arrays it is possible to obtain infinitely many embeddings of Archdeacon type
with a rich automorphism group: more precisely the stabilizer of a given point in
the automorphism group has size (v − 1)/2 and we will show that this is the largest
possible one for such embeddings. Moreover, since Fp = Zp (assuming p is a prime),
infinitely many of these embeddings arise from classical Heffter arrays.

2 The Archdeacon Embedding and its Automorphisms

Following [13, 14, 21], we provide an equivalent, but purely combinatorial, definition
of a graph embedding into a surface. Here we denote by D(Γ) the set of all the
oriented edges of the graph Γ and, given a vertex x of Γ, N(Γ, x) denotes the set of
vertices adjacent to x in Γ.

Definition 2.1 A combinatorial embedding (into an orientable surface) is a pair
Π = (Γ, ρ), where Γ is a connected multigraph and ρ : D(Γ) → D(Γ) satisfies the
following properties:

(a) for any y ∈ N(Γ, x), there exists y′ ∈ N(Γ, x) such that ρ(x, y) = (x, y′),

(b) we define ρx as the permutation of N(Γ, x) such that, given y ∈ N(Γ, x),
ρ(x, y) = (x, ρx(y)). Then the permutation ρx is a cycle of order |N(Γ, x)|.

If properties (a) and (b) hold, the map ρ is said to be a rotation of Γ.

As reported in [13], a combinatorial embedding Π = (Γ, ρ) is equivalent to a cellular
embedding ψ of Γ into an orientable surface Σ (see also [1], Theorem 3.1).

Now we recall the definition of Archdeacon embedding. Here we report it in the
case of Heffter arrays over a group G, but we remark that the same embedding is still
well-defined also for quasi-Heffter arrays (see [6], Definition 2.4). We first introduce
some notation. The rows and the columns of an m × n array A are denoted by
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R1, . . . , Rm and by C1, . . . , Cn, respectively. Also, by E(A), E(Ri), E(Cj) we mean
the list of the elements of the filled cells of A, of the i-th row and of the j-th
column, respectively. Given an m × n p.f. array A, we denote by ωRi

(respectively
ωCj

) an ordering of E(Ri) (respectively E(Cj)), viewed as a cyclic permutation of its
elements. Then we define by ωr = ωR1 ◦ · · · ◦ ωRm the ordering for the rows and by
ωc = ωC1 ◦ · · · ◦ ωCn the ordering for the columns.

Definition 2.2 Given a Heffter array A, the orderings ωr and ωc are said to be
compatible if ωc ◦ ωr is a cycle of order |E(A)|.

Now we are ready to recall the definition of Archdeacon embedding; see [1].

Definition 2.3 Let A be an H(m,n; h, k) over a groupG that admits two compatible
orderings ωr and ωc. Let ρ0 be the following permutation on ±E(A) = G \ {0}:

ρ0(a) =

{
−ωr(a) if a ∈ E(A),
ωc(−a) if a ∈ −E(A). (1)

Let ρ be the map on the set D(Kv) of the oriented edges of Kv defined as follows

ρ((x, x+ a)) = (x, x+ ρ0(a)). (2)

Then, the pair Π = (Kv, ρ) is said to be an Archdeacon embedding.

Indeed, Archdeacon proved in [1] that, since the orderings ωr and ωc are compatible,
the map ρ is a rotation of Kv (he considered the case G = Zv but, as noted in
[11], the same proof holds in general), and thus the pair (Kv, ρ) is a combinatorial
embedding of Kv. More precisely he showed the following theorem.

Theorem 2.4 Let A be an H(m,n; h, k) over a group G that admits two compatible
orderings ωr and ωc. Then there exists a biembedding Π of K2nk+1, such that every
edge is on a face whose boundary length is h and on a face whose boundary length
is k.

Moreover, Π admits G as a sharply transitive automorphism group.

He also described the faces induced by the Archdeacon embedding under the condi-
tions of Theorem 2.4.

For this purpose, we take a p.f. array A that is an H(m,n; h, k) admitting two
compatible orderings ωr and ωc. We consider the oriented edge (x, x + a) with
a ∈ E(A). Due to Theorem 1.1 of [1], the directed edge (x, x+ a) belongs to the face
F1 whose boundary is(

x, x+ a, x+ a+ ωc(a), . . . , x+

k−1∑
i=0

ωi
c(a)

)
. (3)

Let us now consider the oriented edge (x, x+a) with a �∈ E(A). In this case, (x, x+a)
belongs to the face F2 whose boundary is(

x, x+
h−1∑
i=1

ω−i
r (−a), x+

h−2∑
i=1

ω−i
r (−a), . . . , x+ ω−1

r (−a)
)
. (4)
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A priori these faces are circuits but, under suitable conditions, we can prove that they
are simple cycles. To be more precise we need to introduce some further definitions.

Given a finite subset T of an abelian group G and an ordering ω = (t1, t2, . . . , tk)
of the elements in T , for any i ∈ [1, k] let si =

∑i
j=1 tj be the i-th partial sum of

ω. The ordering ω is said to be simple if sb �= sc for any 1 ≤ b < c ≤ k. Given an
m × n p.f. array A whose entries belong to a given group G, and given an ordering
ωCi

for any column Ci where 1 ≤ i ≤ n and an ordering ωRj
for any row Rj where

1 ≤ j ≤ m, we say that ωr = ωR1 ◦ · · · ◦ ωRm and ωc = ωC1 ◦ · · · ◦ ωCn are simple
if each ωCi

and ωRj
is simple. If the natural orderings, from top to bottom for each

column and from left to right for each row are simple we say that the array is globally
simple. We can restate the main result of Archdeacon [1] as follows:

Theorem 2.5 Let A be an H(m,n; h, k) over a group G that admits two compatible
and simple orderings ωr and ωc. Then there exists a biembedding Π of K2nk+1 such
that every edge is on a face whose boundary is an h-cycle (i.e. on a simple face whose
length is h) and on a face whose boundary is a k-cycle (i.e. on a simple face whose
length is k).

Moreover, Π admits G as a sharply transitive automorphism group.

Now, in order to investigate the automorphism group of an embedding of Archdea-
con type, we revisit the necessary conditions stated in [6].

We first recall that also the notions of embedding isomorphism and automorphism
can be defined purely combinatorially as follows (see Korzhik and Voss [15], page 61).

Definition 2.6 Let Π := (Γ, ρ) and Π′ := (Γ′, ρ′) be two combinatorial embeddings
of Γ and Γ′, respectively. We say that Π is isomorphic to Π′ if there exists a graph
isomorphism σ : Γ → Γ′ such that, for any (x, y) ∈ D(Γ), we have either

σ ◦ ρ(x, y) = ρ′ ◦ σ(x, y) (5)

or
σ ◦ ρ(x, y) = (ρ′)−1 ◦ σ(x, y). (6)

We also say, with abuse of notation, that σ is an embedding isomorphism between
Π and Π′. Moreover, if equation (5) holds, σ is said to be an orientation preserving
isomorphism while, if (6) holds, σ is said to be an orientation reversing isomorphism.

Let Π be an Archdeacon embedding ofKv obtained from a Heffter array A. Then,
we denote by Aut(Π) the group of all automorphisms of Π, and by Aut+(Π) we
mean its subgroup of orientation-preserving automorphisms. Similarly, by Aut0(Π)
and Aut+0 (Π) we respectively denote the subgroups of Aut(Π) and of Aut+(Π) of
automorphisms that fix 0. We also call by Aut−(Π) the set of the orientation reversing
automorphisms of Π and by Aut−0 (Π) its subset of the automorphisms that fix 0. Note
that Aut−(Π) and Aut−0 (Π) are not groups.

Here we have that Aut+(Π) and Aut+0 (Π) are, respectively, normal subgroups of
Aut(Π) and Aut0(Π) (their index is either 1 or 2). Moreover, if for every g ∈ G we
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denote by τg the translation action by g, i.e. τg(x) = x+g, it is clear from Definition
2.3 that we have

τg ◦ ρ(x, x+ a) = (x+ g, x+ g + ρ0(a)) = ρ ◦ τg(x, x+ a).

This means that τg ∈ Aut+(Π), hence G is a subgroup of Aut+(Π). Thus, the au-
tomorphism group of an embedding of Archdeacon type is never trivial. On the
other hand, in the case G = Zv it has been proven in [6] that, if we start from a
quasi-Heffter array, Aut(Π) is almost always exactly Zv. Hence we find it is nat-
ural to investigate whether, given a biembedding of Archdeacon type Π, the only
automorphism of Π fixing 0 must be the identity.

Now, we recall some necessary conditions (see [6]) that have to be satisfied by an
automorphism of Π that fixes zero.

Remark 2.7 Let Π = (Kv, ρ) be a biembedding of Archdeacon type, where v =
2nk + 1. Then, σ ∈ Aut0(Π) (respectively Aut

+
0 (Π)) acts on G \ {0} as an element

of the dihedral group Dih2nk (respectively the cyclic group Z2nk).
More precisely, set ρ0 = (x1, x2, . . . , x2nk), and by reading the indices modulo

2nk, we have that:

• given σ ∈ Aut+0 (Π),

σ|Kv\{0} = ρ�0 for some � ∈ {1, . . . , 2nk};

• given σ ∈ Aut−0 (Π),

σ(xj) = x�−j for some � ∈ {1, . . . , 2nk}.

3 A class of highly symmetric embeddings

In this section we provide for infinitely many values of q (that here is an odd prime
power) an embedding of Archdeacon kind, defined over the additive group of Fq (the
field of order q), whose full automorphism group is of size

(
q
2

)
: more precisely this

embedding admits Fq as a regular automorphism group and the stabilizer of 0 is
isomorphic to Z(q−1)/2.

We begin by recalling some definitions introduced in [3]. Given a prime power of
the form q = 2mn+1, an H(m,n) over Fq is rank-one if every row is a multiple over
Fq of some non-zero vector X = (x1, . . . , xn) of F

n
q . Note that this implies that every

column of the array is a multiple of a suitable non-zero vector Y = (y1, . . . , ym) of
F
m
q .
In the same paper, Buratti provided a construction of rank-one Heffter arrays

over Fq, where q = 2mn + 1 is a prime power, in several cases: we consider here his
construction when m and n are odd coprime integers and m,n ≥ 3.

In this case, given ξ of order n and ε of order m in F
∗
q = Fq \{0}, after considering

the vectors X and Y
X = (1, ξ, ξ2, ξ3, . . . , ξn−1),

Y = (1, ε, ε2, ε3, . . . , εm−1),
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and the m × n array Am,n = (ai,j) whose (i, j)-cell is ai,j := εi−1ξj−1, he proved the
following (see [3], Theorem 5.2):

Theorem 3.1 Let q = 2mn + 1 be a prime power with m,n ≥ 3 odd and coprime.
Then the array Am,n is a rank-one globally simple H(m,n) over Fq.

Buratti also noticed that these arrays have many symmetries (the so-called au-
tomorphisms of the array). Our goal is now to consider a family of embeddings
that arise from these arrays and to prove that also these embeddings have a lot of
symmetries. In particular, we will see that the full automorphism groups of these
embeddings are the largest possible.

First of all, in order to define the Archdeacon embeddings induced by such arrays,
we need to recall the following result of [12] (see also [7]) about compatible orderings
of totally filled m× n arrays.

Proposition 3.2 Let A be a totally filled m×n array, where at least one between m
and n is odd, and let � be such that m−2� and n are coprime. Let ωCi

be the natural
ordering from top to bottom for every i ∈ {1, . . . , n}, and let ωRj

be the natural
ordering from left to right for j ∈ {1, . . . , m − �}, and from right to left otherwise.
Then the orderings ωc and ωr are compatible.

This means that, if m and n are coprime, we can choose � = 0, obtaining:

Theorem 3.3 Let q = 2mn + 1 be a prime power, with m,n ≥ 3 odd and coprime.
Let ωc and ωr be the natural orderings from top to bottom and from left to right, and
let Am,n be the array defined in Theorem 3.1.

Then ωr and ωc are simple and compatible orderings of Am,n, and they induce an
Archdeacon embedding Πm,n whose faces are simple cycles of length m and n.

Now we want to investigate the automorphism group of such an embedding. We
begin by considering the orientation-preserving automorphisms.

Proposition 3.4 Let q = 2mn+1 be a prime power, with m,n ≥ 3 odd and coprime,
and let Πm,n be the Archdeacon embedding defined in Theorem 3.3. Then we have

Aut+0 (Πm,n) ∼= Zmn.

Proof: We recall that the array Am,n has, in position (i, j), the element εi−1ξj−1,
where ξ and ε have respectively order n and m in F

∗
q = Fq \ {0}. Now, given

1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n, we define the map λi′,j′ : Fq → Fq such that λi′,j′(z) =
ai′,j′z = (εi

′−1ξj
′−1)z. Clearly, this map is a graph automorphism of Kq that fixes 0.

In the following, we will denote for simplicity ai′,j′ by η.

We want to prove that λi′,j′ is also an orientation preserving automorphism of Πm,n,
i.e. we need to check that, given (x, y) ∈ D(Kq), we have:

λi′,j′ ◦ ρ(x, y) = ρ ◦ λi′,j′(x, y). (7)
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Because of the definition of Archdeacon embedding associated with ωr and ωc, we
have

ρ ◦ λi′,j′(x, y) = ρ(ηx, ηy) = ρ(ηx, ηx+ (ηy − ηx)) = (ηx, ηx+ ρ0(ηy − ηx)).

Here we have two cases:

ρ ◦ λi′,j′(x, y) =
{
(ηx, ηx− ωr(ηy − ηx)) if (ηy − ηx) ∈ E(A);
(ηx, ηy + ωc(ηx− ηy)) otherwise.

(8)

Then, by considering the row indices modulo m and the column indices modulo n,
and by recalling that η = ai′,j′ = εi

′−1ξj
′−1, we have

• ηai,j = ai′+i−1,j′+j−1;

• ωr(ai,j) = ai,j+1;

• ωc(ai,j) = ai+1,j.

Hence, if z = ai,j,

ηωr(z) = ηωr(ai,j) = ai′+i−1,j′+j = ωr(ai′+i−1,j′+j−1) = ωr(ηz).

Reasoning similarly on the columns of A, we also have

ηωc(z) = ωc(ηz).

We now notice that (y − x) ∈ E(A) if and only if (ηy − ηx) ∈ E(A). Therefore, for
(y − x) ∈ E(A) we have

λi′,j′ ◦ ρ(x, x+ (y − x)) = λi′,j′(x, x+ ρ0(y − x)) = λi′,j′(x, x− ωr(y − x)) =

(ηx, ηx− ηωr(y − x)) = (ηx, ηx− ωr(ηy − ηx))

and, due to Equation (8),

(ηx, ηx− ωr(ηy − ηx)) = ρ(ηx, ηx+ (ηy − ηx)) = ρ ◦ λi′,j′(x, y).

Instead, if (y − x) �∈ E(A), again because of (8), we derive that

λi′,j′ ◦ ρ(x, x+ (y − x)) = (ηx, ηx+ ηωc(x− y))

= (ηx, ηx+ ωc(ηx− ηy))

= ρ(ηx, ηx+ (ηy − ηx)) = ρ ◦ λi′,j′(x, y).

Hence, in both cases, Equation (7) is satisfied and λi′,j′ ∈ Aut0(Πm,n).

Now, since for every η = ai′,j′ = εi
′−1ξj

′−1 the associated graph automorphism λi′,j′
is an automorphism of the embedding Πm,n, the automorphism group Aut0(Πm,n)
contains a subgroup isomorphic to Zm ⊕ Zn = Zmn as m and n are coprime.
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Now we prove that this is exactly the group of the orientation-preserving automor-
phisms that fix zero. We first recall from Remark 2.7 that Aut+0 (Πm,n) is isomorphic
to a subgroup of the cyclic group of order 2mn. Moreover, from the definition
of the Π we deduce that for every x ∈ F

∗
q the edge {0, x} belongs to a face F1,

whose length is m, and to a face F2, whose length is n. Since m �= n, any element
σ ∈ Aut+0 (Πm,n) must preserve the face-length. This means that σ is of the form ρ2�0
for some � ∈ {1, . . . , mn}. Therefore we have at most mn elements in Aut+0 (Πm,n).

It follows that Aut+0 (Πm,n) is isomorphic to Zmn. �

Now we will show that these embeddings do not admit orientation-reversing au-
tomorphisms. We begin by proving a technical lemma:

Lemma 3.5 Let Π be an Archdeacon embedding of K2mn+1 such that every edge is
on a face whose boundary is an m-cycle and on a face whose boundary is an n-cycle,
where m �= n. Then, any σ ∈ Aut−0 (Π) fixes only the vertex 0.

Proof: Let Π, m and n be as in the statement, and choose any σ ∈ Aut−0 (Π). Set
ρ0 = (x1, x2, . . . , x2mn) to be the local rotation around 0. Then, by Remark 2.7, we
have that σ(xj) = x�−j for some � ∈ {1, . . . , 2mn}.
Assume now that σ fixes a vertex xi for some i ∈ {1, . . . , 2mn}. Hence, the edge
{0, xi} is fixed by the action of σ. Let F1 and F2 be the faces of length m and n
respectively containing {0, xi}. Since F1 and F2 have different lengths, it follows that
both faces are pointwise fixed by the action of σ. In particular σ fixes xi+1. On the
other hand we have that σ(xi) = x�−i = xi, that implies

σ(xi+1) = x�−(i+1) = xi−1 �= xi+1

where the last relation holds because 2mn > 3. It follows that σ does not have any
fixed point other than 0. �

Proposition 3.6 Let Π be an Archdeacon embedding of K2mn+1 such that every edge
is on a face whose boundary is an m-cycle and on a face whose boundary is an n-
cycle, where m and n are distinct odd integers and m,n ≥ 3. Then Aut−0 (Π) is
empty.

Proof: Let Π, m and n be as in the statement, and let σ be an automorphism in
Aut−0 (Π). By Lemma 3.5, it follows that σ has no fixed vertices other than 0, hence
by Remark 2.7 we have σ(xi) = x�−i for some � ∈ {1, . . . , 2mn}. Here � must be
odd, since otherwise we would have i such that � − i ≡ i (mod 2mn), and hence
σ(xi) = x�−i = xi. Given an odd � ∈ {1, . . . , 2mn}, the equation � − i ≡ i + 1
(mod 2mn) has two solutions in {1, . . . , 2mn}, thus there exist exactly two indexes
j and k such that σ(xj) = xj+1, σ(xj+1) = xj and σ(xk) = xk+1, σ(xk+1) = xk.

Now we assume, without loss of generality, that m > n. We also assume that n > 3
(the case where n = 3 will be considered later).

Let F1 be the face of length m containing the edge {xj , xj+1}. Since σ exchanges xj
and xj+1, and F1 is the unique face of length m containing these vertices, we have



S. COSTA AND L. MELLA/AUSTRALAS. J. COMBIN. 88 (3) (2024), 294–307 303

that F1 is fixed by the action of σ. Now, as m is odd, exactly one vertex of F1

is fixed by σ, and from Lemma 3.5 we deduce that this vertex is 0, hence 0 ∈ F1.
Moreover, the vertices that are adjacent to 0 in F1 are exchanged by the action of σ,
and, since m > 3 and F1 is simple, they must be xk and xk+1. Similarly, if F2 is the
face of length n > 3 containing the edge {xj , xj+1}, we obtain again that 0 ∈ F2 and
that xk and xk+1 are adjacent to 0 in F2 as well. We then gain a contradiction by
noticing that ρ0(xk+1) �= xk and hence the path (xk, 0, xk+1) can not be contained in
two different faces.

Finally, let us suppose n = 3. In this case, sincem > n, we still have that (xk, 0, xk+1)
belongs to a face F1 of length m. Here we have that, considering the face F2 of length
n = 3 that contains the edge {xk, xk+1}, σ must exchange xk and xk+1, and thus
it fixes the third point of F2 that must be 0. But this means that (xk, 0, xk+1) also
belongs to a face F2 of length n = 3. Since this path can not be contained in two
different faces we obtain a contradiction also in this case.

It follows that Aut−0 (Π) is empty. �

Remark 3.7 For every Archdeacon embedding Π and integers m, n that satisfy the
hypothesis of Proposition 3.6, the following holds:

|Aut0(Π)| = |Aut+0 (Π)| ≤ mn.

Indeed any automorphism that fixes zero is in Aut+0 (Π) and, since each edge belongs
to two faces of different lengths, any element of Aut+0 (Π) is of the form ρ2�0 with
� ∈ {1, . . . , mn}.

We are then able to derive the following result, that exactly determines the size of
the full automorphism group of this class of Archdeacon embedding.

Theorem 3.8 Let q = 2mn + 1 be a prime power, with m,n ≥ 3 odd and coprime.
Let ωc and ωr be the natural orderings from top to bottom and from left to right and
let Am,n be the array defined in Theorem 3.1. Then, the Archdeacon embedding Πm,n

induced by ωr, ωc and Am,n is such that:

Aut0(Πm,n) ∼= Zmn and |Aut(Πm,n)| =
(
2mn+ 1

2

)
.

Moreover, the faces of Πm,n are simple cycles of lengths m and n.

Proof: The statement follows from Propositions 3.4 and 3.6. �

Remark 3.9 This theorem shows that an Archdeacon embedding Π over Fq can
have a group Aut0(Π) whose size reaches the upper bound mn = q−1

2
of Remark 3.7,

and we note that this upper bound can be chosen to be arbitrarily large. Indeed, the
embeddings considered here have been obtained using Heffter arrays over the group
Fq, but if q = p is a prime, they can be obtained using classical Heffter arrays (over
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Zp). This happens infinitely many times since there are infinitely many primes p of
the form p = 2mn+ 1 where m,n ≥ 3 are odd and coprime.

To prove this statement, it suffices to fix n = 3 and look for primes p of the form
6m+ 1 with m coprime with 3, that is m ≡ 1, 2 (mod 3). This is equivalent to look
for p ≡ 7, 13 (mod 18), and it is well known that there are infinitely many primes in
these congruence classes.

In a very recent paper, Buratti presented a construction of a rank-one H(m,n)
for a wide spectrum of prime powers q = 2mn + 1, which he plans to complete in a
future paper. He found Heffter arrays with a large group of symmetries (multipliers),
and many of these arrays can be used to construct Archdeacon embeddings. Here,
we focused on the case where m and n are odd and coprime because, under this
assumption, the array has group of multipliers of maximum order (see Proposition 4.3
of [3]), and we obtain an Archdeacon embedding whose automorphism group is the
largest possible.

We conclude the paper by discussing the Archdeacon embedding (and its auto-
morphisms) associated to the rank-one Heffter array of Example 3.3 of [3].

Example 3.10 Consider the pair (m,n) = (3, 5). These two numbers are coprime
and odd, and since q = 2mn + 1 = 31 is prime, we can apply Theorem 3.3 and
construct the following H(3, 5):

A =
1 2 4 8 16
5 10 20 9 18
25 19 7 14 28

where X = (1, 2, 4, 8, 16) and Y = (1, 5, 25) are the subgroups of the multiplicative
group (F∗

31, ·) of order 5 and 3, respectively. Since 3 and 5 are coprime, we can
consider the natural orderings of each row from left to right, and of each column
from top to bottom. From these orderings and the array A we can then construct an
Archdeacon embedding Π3,5 of the complete graph K31, whose vertices are identified
with the elements of F31.

Starting from the cell filled with the element 1, we can write the rotation:

ρ0 = (1,−2, 10,−20, 7,−14, 8,−16, 18,−5, 25,−19, 2,−4, 20,−9,

14,−28, 16,−1, 5,−10, 19,−7, 4,−8, 9,−18, 28,−25).

What can then be noticed is that ρ0 is invariant under conjugation by λη where λη is
the multiplication by an element η ∈ F31 that is contained in A. Let us, for example,
consider η = 9 and note that 9 ∈ A and let us define λη(x) = ηx. Here

λη =(1, 9, 19, 16, 20, 25, 8, 10, 28, 4, 5, 14, 2, 18, 7)

(−28,−4,−5,−14,−2,−18,−7,−1,−9,−19,−16,−20,−25,−8,−10).

Then, if ρ0 = (x1, . . . , x2mn), with x1 = 1, the following holds:

λη ◦ ρ0 =(1,−18, 4,−10, 16,−9, 2,−5, 8,−20)(−2, 28,−8, 19,−1, 14,−4, 25,−16, 7)

(5,−28, 20,−19, 18,−14, 10,−25, 9,−7) = ρ0 ◦ λη.
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This implies:
λη ◦ ρ0(x) = ρ0 ◦ λη(x),

and hence we can see that λη is an automorphism since

λη ◦ ρ(x, y) = λη ◦ ρ(x, x+ (y − x))

= (ηx, ηx+ ηρ0(y − x))

= (ηx, ηx+ ρ0(ηy − ηx)) = ρ ◦ λη(x, y).

The action of η can be also seen directly on every cell of the array A. Let ai,j denote
the element of A in the (i, j)-th cell, and assume that η = ai′,j′ for some pair (i′, j′).
Then:

ηai,j = ai′+i−1,j′+j−1,

where the row and column indexes are viewed modulo m and n respectively. Let
then ηA3,5 denote the array whose (i, j)-th cell is filled by ηai,j.

Then, for η = ai′,j′, and for any face F given by, say, the j-th column of A3,5, we
have that ηF is one of the faces obtained from the j-th column of ηA3,5. Moreover,
this is also a face F ′ obtained from the (j + j′ − 1)-th column of A3,5 consistently
with the fact that λη maps faces into faces.

Here, setting again η = 9, we note that, since 9 ≡ 52−124−1 (mod 31), 9 is in
position (2, 4) of A3,5. We can also see that:

η ·
1 2 4 8 16
5 10 20 9 18
25 19 7 14 28

=

9 18 5 10 20
14 28 25 19 7
8 16 1 2 4

.

Now, as an example, we verify that a face of Π3,5 is mapped into another face by the
action of η. For instance, we pick F1 = (0, 2, 12) that is the face obtained from the
second column of A3,5. Then we consider ηF1 = (0, 18, 15), that is obtained from the
second column of ηA3,5. We conclude by recognising that the face obtained from the
fifth column of A3,5 is (16, 3, 0) and ηF1 is also obtained by translating it, indeed

ηF1 = (0, 18, 15) ≡ (16, 3, 0) + 15 (mod 31).
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