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Abstract

Given two positive integers n and k, we obtain a formula for the base
size of the symmetric group of degree n in its action on k-subsets. Then
we use this formula to compute explicitly the base size for each n and for
each k ≤ 14.

1 Introduction

Let G be a permutation group on Ω. For Λ = {ω1, . . . , ωk} ⊆ Ω, we write G(Λ) for
the pointwise stabilizer of Λ in G. If G(Λ) = {1}, then we say that Λ is a base. The
size of a smallest possible base is known as the base size of G and it is customary
to denote it by b(G) or (more precisely) by bΩ(G). Bases of small cardinality are
relevant in computational group theory, because they are used in many algorithms
for dealing with permutation groups.

Much of the research on base sizes is focused on primitive groups. There are
various reasons for this. First, the classic result of Jordan [12] bounds from above
the cardinality of a primitive group in terms of its base size. Second, in the 90s
Cameron and Kantor [7] conjectured that there exists an absolute constant b with
b(G) ≤ b, for every almost simple primitive group in a non-standard action; we
refer to [7] for undefined terminology. This conjecture was settled in the positive
in [3, 4, 5, 6] with b = 7. In turn, this result has stimulated two lines of research:
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determining the base size of almost simple primitive groups in their standard actions;
and determining, for each b ≤ 7, the almost simple primitive groups in non-standard
actions having base size exactly b.

The symmetric group Sym(n) has two types of standard actions: the action on
uniform partitions and the action on subsets of {1, . . . , n}. The base size of Sym(n)
for the action on uniform partitions has been determined in [13]. In this paper, we
are interested in the base size of the symmetric group Sym(n) in its natural action
on the collection of k-subsets of {1, . . . , n}. Hence this paper is a contribution to the
determination of the base size of almost simple primitive groups in their standard
actions.

For simplicity, we denote this number by b(n, k). Since the action of Sym(n) on
k-subsets is permutation equivalent to the action on (n− k)-subsets, we have

b(n, k) = b(n, n− k)

and hence we assume 2k ≤ n.

There is a natural graph theoretic interpretation of b(n, k), which makes b(n, k)
of interest to group and to graph theorists. i A determining set of a graph Γ is a
subset S of its vertices for which the only automorphism of Γ that fixes every vertex
in S is the identity. The minimum cardinality of a determining set for Γ is said to be
the determining number of Γ. Now, the Kneser graph K(n, k) is the graph having
vertex set the collection of all k-subsets of {1, . . . , n} where two distinct k-subsets are
declared to be adjacent if they are disjoint. Since the automorphism group ofK(n, k)
is the symmetric group Sym(n) in its action on k-subsets (see [10, Theorem 7.8.2]),
we deduce that the determining number of K(n, k) equals b(n, k). Therefore, our
results can be interpreted in terms of the determining number of Kneser graphs.

There are many partial results on b(n, k); see [1, 2, 8, 11]. For instance, Halasi [11,
Theorem 3.2] has proved that

b(n, k) =

⌈
2(n− 1)

k + 1

⌉
, (1)

when n ≥ �k(k+1)/2�+1. Strictly speaking, this formula for b(n, k) is proved in [11]
when n ≥ k2 and has been improved in [2] to n ≥ �k(k + 1)/2� + 1. This result
has been improved further in [1, 2, 11], but currently there is no explicit formula for
b(n, k), valid for every value of n and k. Our current methods do not seem able to
determine b(n, k) when k is asymptotically larger than

√
n.

Using the principle of inclusion-exclusion, we prove an implicit formula for b(n, k)
in terms of integer partitions of n. It is not clear at the moment if this formula can
be used to extract substantial new information on b(n, k). However, besides theoretic
interest, we have implemented this formula in a computer and we are reporting in
Table 1 the values of b(n, k), for every k ≤ 14. We hope that these values can be of
some help to shed some light on b(n, k), when k is large.

Observe that in Table 1, for a given k ≤ 14, we are reporting only the values of
b(n, k) when n ≤ �k(k + 1)/2�, because when n ≥ �k(k + 1)/2� + 1 we may simply
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use (1) to compute b(n, k). In particular, when k = 1, we have �k(k+1)/2� = 1 ≤ 2k
and hence b(n, k) = �2(n − 1)/2	 = n − 1, for every n ≥ 2. When k = 2, we have
�k(k + 1)/2� = 3 ≤ 2k and hence b(n, k) = �2(n − 1)/3	, for every n ≥ 4. For this
reason, in Table 1, we are only including the values of k ≥ 3.

Theorem 1.1. Let n and k be positive integers with 2k ≤ n. Then b(n, k) is the
smallest positive integer � such that

∑
π partition of n
π=(1c1 ,2c2 ,...,ncn)

(−1)n−
∑n

i=1 ci
n!∏n

i=1 i
cici!

⎛
⎜⎜⎜⎝

∑
η partition of k

η=(1b1 ,2b2 ,...,kbk)

k∏
j=1

(
cj
bj

)
⎞
⎟⎟⎟⎠

�


= 0. (2)

A result similar to Theorem 1.1 was very recently determined independently by
Coen del Valle and Colva Roney-Dougal [9], their proof is remarkably different from
ours.

In Section 3, we give a surprising consequence of (2) in the character theory of
Sym(n). This application of Theorem 1.1 in this context was brought to our attention
by one of the referees during the evaluation process. We express our sincere gratitude
for their valuable contribution and for generously sharing their insights.

n\k 3 4 5 6 7 8 9 10 11 12 13 14
6 3
7 -
8 - 3
9 - 4
10 - 4 4
11 - - 4
12 - - 4 4
13 - - 5 4
14 - - 5 5 4
15 - - 5 5 4
16 - - - 5 5 4
17 - - - 5 5 5
18 - - - 6 5 5 5
19 - - - 6 5 5 5
20 - - - 6 6 5 5 5
21 - - - 6 6 5 5 5
22 - - - - 6 6 5 5 5
23 - - - - 6 6 6 5 5
24 - - - - 6 6 6 5 5 5
25 - - - - 7 6 6 6 5 5
26 - - - - 7 6 6 6 5 5 5
27 - - - - 7 7 6 6 6 5 5
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28 - - - - 7 7 6 6 6 6 5 5
29 - - - - - 7 7 6 6 6 6 5
30 - - - - - 7 7 6 6 6 6 6
31 - - - - - 7 7 7 6 6 6 6
32 - - - - - 8 7 7 6 6 6 6
33 - - - - - 8 7 7 7 6 6 6
34 - - - - - 8 8 7 7 6 6 6
35 - - - - - 8 8 7 7 7 6 6
36 - - - - - 8 8 7 7 7 6 6
37 - - - - - - 8 8 7 7 7 6
38 - - - - - - 8 8 7 7 7 6
39 - - - - - - 8 8 8 7 7 7
40 - - - - - - 9 8 8 7 7 7
41 - - - - - - 9 8 8 8 7 7
42 - - - - - - 9 8 8 8 7 7
43 - - - - - - 9 9 8 8 7 7
44 - - - - - - 9 9 8 8 8 7
45 - - - - - - 9 9 8 8 8 7
46 - - - - - - - 9 9 8 8 8
47 - - - - - - - 9 9 8 8 8
48 - - - - - - - 9 9 9 8 8
49 - - - - - - - 9 9 9 8 8
50 - - - - - - - 10 9 9 8 8
51 - - - - - - - 10 9 9 9 8
52 - - - - - - - 10 9 9 9 8
53 - - - - - - - 10 10 9 9 8
54 - - - - - - - 10 10 9 9 9
55 - - - - - - - 10 10 9 9 9
56 - - - - - - - - 10 10 9 9
57 - - - - - - - - 10 10 9 9
58 - - - - - - - - 10 10 9 9
59 - - - - - - - - 10 10 10 9
60 - - - - - - - - 11 10 10 9
61 - - - - - - - - 11 10 10 9
62 - - - - - - - - 11 10 10 10
63 - - - - - - - - 11 11 10 10
64 - - - - - - - - 11 11 10 10
65 - - - - - - - - 11 11 10 10
66 - - - - - - - - 11 11 10 10
67 - - - - - - - - - 11 11 10
68 - - - - - - - - - 11 11 10
69 - - - - - - - - - 11 11 10
70 - - - - - - - - - 11 11 11
71 - - - - - - - - - 12 11 11
72 - - - - - - - - - 12 11 11
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73 - - - - - - - - - 12 11 11
74 - - - - - - - - - 12 11 11
75 - - - - - - - - - 12 12 11
76 - - - - - - - - - 12 12 11
77 - - - - - - - - - 12 12 11
78 - - - - - - - - - 12 12 11
79 - - - - - - - - - - 12 12
80 - - - - - - - - - - 12 12
81 - - - - - - - - - - 12 12
82 - - - - - - - - - - 12 12
83 - - - - - - - - - - 12 12
84 - - - - - - - - - - 13 12
85 - - - - - - - - - - 13 12
86 - - - - - - - - - - 13 12
87 - - - - - - - - - - 13 12
88 - - - - - - - - - - 13 13
89 - - - - - - - - - - 13 13
90 - - - - - - - - - - 13 13
91 - - - - - - - - - - 13 13
92 - - - - - - - - - - - 13
93 - - - - - - - - - - - 13
94 - - - - - - - - - - - 13
95 - - - - - - - - - - - 13
96 - - - - - - - - - - - 13
97 - - - - - - - - - - - 14
98 - - - - - - - - - - - 14
99 - - - - - - - - - - - 14
100 - - - - - - - - - - - 14
101 - - - - - - - - - - - 14
102 - - - - - - - - - - - 14
103 - - - - - - - - - - - 14
104 - - - - - - - - - - - 14
105 - - - - - - - - - - - 14

Table 1: Some values for b(n, k)

2 Proof of Theorem 1.1

Let n, k and � be positive integers with 1 ≤ k ≤ n/2. We let

F =

({1, . . . , n}
k

)
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be the collection of all k-subsets of {1, . . . , n} and we let F � be the collection of all
�-tuples of k-subsets of {1, . . . , n}. In particular,

|F �| =
(
n

k

)�

.

For each g ∈ Sym(n), we let

Fg = {α ∈ F | αg = α}

be the collection of all k-subsets of {1, . . . , n} fixed setwise by g. Therefore, the
cartesian product F �

g is the collection of all �-tuples of k-subsets of {1, . . . , n} fixed
setwise by g. For instance, for each 1 ≤ i < j ≤ n, F(i j) is the collection of all
k-subsets of {1, . . . , n} fixed by the transposition swapping i and j. Moreover we let

H� = {(α1, . . . , α�) ∈ F � | if αg
i = αi ∀i, then g = 1}

denote the collection of all �-tuples of k-subsets of {1, . . . , n} which are only fixed by
the identity, and h� = |H�|.
Since each element of F � is either fixed by some non-identity element of Sym(n) or
is only fixed by the identity, exclusively, we have

F � \H� =
⋃

g∈Sym(n)\{1}
F �
g . (3)

Observe that
h� = 0 if and only if � < b(n, k). (4)

In fact, by definition of b(n, k), there exists an �-tuple of k-subsets which is only fixed
by the identity if and only if � ≥ b(n, k).

Lemma 2.1. Given a non-identity permutation g ∈ Sym(n), there exists a transpo-
sition τ such that, for every S ⊆ {1, . . . , n} fixed by g, S is also fixed by τ .

Proof. Let (a1, a2, . . . , ai) be one of the cycles of g in its decomposition in disjoint
cycles. As g is not the identity, we may suppose that i ≥ 2. Let τ be the transposition
(a1, a2).

Let S be a subset of {1, . . . , n} with Sg = S. Then either S ∩ {a1, . . . , ai} = ∅ or
S ∩{a1, . . . , ai} = {a1, . . . , ai}. In either case, a1 and a2 are either both in S or both
not in S. Therefore τ fixes S.

From (3) and Lemma 2.1, we obtain

F � \H� =
⋃

1≤i<j≤n

F �
(i j). (5)
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Now, we let
({1,...,n}

2

)
denote the set of all 2-subsets of {1, . . . , n}. From (5) and

the definition of h�, using inclusion-exclusion, we obtain

(
n

k

)�

− h� = |F � \H�| =
∑

∅�=Γ⊆({1,...,n}
2 )

(−1)|Γ|−1

∣∣∣∣∣∣
⋂

{i,j}∈Γ
F �
(i j)

∣∣∣∣∣∣ . (6)

Now, given a subset ∅ 
= Γ ⊆ ({1,...,n}
2

)
, we write

F �
Γ =

⋂
{i,j}∈Γ

F �
(i j)

and, with a slight abuse of terminology, we let F �
∅ := F �. With this notation, from (6),

we get

h� =
∑

Γ⊆({1,...,n}
2 )

(−1)|Γ||F �
Γ|. (7)

In what follows, we identify Γ ⊆ ({1,...,n}
2

)
with a graph on {1, . . . , n} having edge

set Γ. In particular, we borrow some notation from graph theory.

Given Γ ⊆ ({1,...,n}
2

)
, we let π(Γ) be the partition of n where the parts are the

cardinalities of the connected components of Γ. In other words, let X1, X2, . . . , Xt

be the connected components of Γ ordered with |X1| ≥ |X2| ≥ · · · ≥ |Xt|. Then

π(Γ) := (|X1|, |X2|, . . . , |Xt|).

We now make two important remarks.

Lemma 2.2. Let Γ be a graph having vertex set {1, . . . , n} and having connected
components X1, . . . , Xt. Then

〈(i j) | {i, j} ∈ Γ〉 = Sym(X1)× Sym(X2)× · · · × Sym(Xt).

In other words, the group generated by the transpositions corresponding to ele-
ments in Γ generate a group which is a direct product of symmetric groups.

Proof. For each i ∈ {1, . . . , t}, let Γi be the restriction of Γ to Xi. Suppose first
t = 1, that is, Γ is connected. In this case, we prove the lemma by indution on n.
When n = 1, the lemma holds true because the group generated by the empty set
is the identity symmetric group Sym(1). Suppose n ≥ 2. Let {a, b} be a leaf of a
spanning tree for Γ. Without loss of generality we may suppose n ∈ {a, b} and that
n is a leaf of the spanning tree. The restriction Γ̃ of Γ to {1, . . . , n− 1} is connected
and hence, by our inductive hypothesis, we have

〈(i j) | {i, j} ∈ Γ̃〉 = Sym(n− 1).



G. MECENERO AND P. SPIGA/AUSTRALAS. J. COMBIN. 88 (2) (2024), 244–255 251

Now,
Sym(n) ≥ 〈(i j) | {i, j} ∈ Γ〉 ≥ 〈Sym(n− 1), (a, b)〉 = Sym(n).

Assume now t ≥ 2. As Xi ∩Xj = ∅ for i 
= j and as every edge in Γ is in Γi for
some i, we deduce

〈(i j) | {i, j} ∈ Γ〉 = 〈(i j) | {i, j} ∈ Γ1〉 × · · · × 〈(i j) | {i, j} ∈ Γt〉.

Now, the lemma follows by applying the case of connected graphs.

From Lemma 2.2, it immediately follows that, for every Γ1,Γ2 ⊆ ({1,...,n}
2

)
with

π(Γ1) = π(Γ2), we have |F �
Γ1
| = |F �

Γ2
|. Since the cardinality of these sets depends

only on an integer partition, for each partition π of n, we let f �
π be the cardinality

of |F �
Γ|, where Γ is an arbitrary graph with π = π(Γ).

Fix a partition π of n. We write π in “exponential” notation, that is, π =
(1c1, 2c2, . . . , ncn) where ci denotes the number of parts in π equal to i.

Lemma 2.3. Given an integer partition π = (1c1, · · · , ncn) of n, we have

∑
Γ⊆({1,...,n}

2 )
π(Γ)=π

(−1)|Γ| = (−1)n−
∑n

i=1 ci
n!∏n

i=1 i
cici!

. (8)

Proof. First, we show (8) in the special case π = (10, 20, . . . , n1), that is, the trivial
partition consisting of one part of size n. In particular we show

∑
Γ⊆({1,...,n}

2 )
π(Γ)=(n)

(−1)|Γ| = (−1)n−1(n− 1)!.

This equality has a combinatorial interpretation: among all connected graphs on n
labelled vertices, the difference between the number of those with an even number
of edges and those with an odd number of edges is (−1)n−1(n− 1)!.

We show this by induction on n. Assume n = 1: the only graph on 1 vertex has
an even number of edges, and (−1)00! = 1. Assume now n ≥ 2 and assume the result
to be true for integer partitions of n− 1.

Let pn and dn be the number of connected graphs on n labelled vertices with an
even number of edges and with an odd number of edges, respectively.

Let Pn and Dn be the number of graphs on n labelled vertices with an even
number of edges and with an odd number of edges, respectively. In fact

Pn =

((n
2

)
0

)
+

((n
2

)
2

)
+ · · · ,

Dn =

((n
2

)
1

)
+

((n
2

)
3

)
+ · · · .



G. MECENERO AND P. SPIGA/AUSTRALAS. J. COMBIN. 88 (2) (2024), 244–255 252

We can count the number of disconnected graphs with an even (odd) number of
edges on n labelled vertices in two ways: on the one hand it is Pn − pn (respectively
Dn − dn), and on the other hand we can count the number of rooted disconnected
graphs with an even (odd) number of edges on n labelled vertices (rooted means with
a highlighted vertex, the root) and then divide this number by n, as a graph can be
rooted in n different ways.

To count the number of rooted disconnected graphs, we first choose the connected
component containing the root: for every possible cardinality i = 1, . . . , n−1 we can
choose the connected component in

(
n
i

)
ways, inside which we have i ways to choose

the root.

If we want the graph to have an even number of edges then either both the
connected component of the root and the rest have an even number of edges, or
they both have an odd number of edges. Similarly, if we want the graph to have an
odd number of edges then either the connected component of the root has an even
number of edges and the rest has an odd number of edges, or vice versa. Therefore,
we have

Pn − pn =
1

n

n−1∑
i=1

i

(
n

i

)
(piPn−i + diDn−i), (9)

Dn − dn =
1

n

n−1∑
i=1

i

(
n

i

)
(piDn−i + diPn−i). (10)

Taking (10)–(9) we get

pn − dn +Dn − Pn =
1

n

n−1∑
i=1

i

(
n

i

)
(Dn−i − Pn−i)(pi − di). (11)

From the binomial theorem, we have

m∑
k=0

(−1)k
(
m

k

)
= 0 ∀m > 0.

This implies Dn − Pn = 0 whenever
(
n
2

)
> 0, that is, for every n ≥ 2. For n = 1,

D1 − P1 = −1, because the only graph on one vertex has an even number of edges.
So (11) becomes

pn − dn =
1

n
(n− 1)n(−1)(pn−1 − dn−1) = (−1)n−1(n− 1)!,

where the last equality follows by our inductive hypothesis.

Now that we have concluded the special case, we need to deduce the general
case. Given π = (1c1, . . . , ncn), the number of ways that the set {1, . . . , n} can be
partitioned into π is

n!∏n
i=1 ci!(i!)

ci
.
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Now, given a specific partition P of {1, . . . , n} realizing π, the sum among all graphs
Γ with connected components P is∑

Γ⊆({1,...,n}
2 )

with conn. comp.s
P

(−1)|Γ| =
∏
S∈P

∑
γ⊆(S2)

π(γ)=(|S|)

(−1)|γ| =
∏
S∈P

(−1)|S|−1(|S| − 1)!

=

n∏
i=1

(−1)(i−1)ci(i− 1)!ci = (−1)n−
∑n

i=1 ci

n∏
i=1

(i− 1)!ci.

In conclusion
∑

Γ⊆({1,...,n}
2 )

π(Γ)=π

(−1)|Γ| =
n!∏n

i=1 ci!i!
ci
(−1)n−

∑n
i=1 ci

n∏
i=1

(i− 1)!ci

= (−1)n−
∑n

i=1 ci
n!∏n

i=1 i
cici!

.

By a combined use of Lemma 2.3 and (7), we get

h� =
∑

π partition of n
π=(1c1 ,2c2 ,...,ncn)

(−1)n−
∑n

i=1 ci
n!∏n

i=1 i
cici!

f �
π. (12)

Lemma 2.4. Given an integer partition π = (1c1, . . . , ncn), we have

f �
π =

⎛
⎜⎜⎜⎝

∑
η partition of k

η=(1b1 ,2b2 ,...,kbk )

k∏
j=1

(
cj
bj

)
⎞
⎟⎟⎟⎠

�

. (13)

Proof. Given Γ ⊆ ({1,...,n}
2

)
with π(Γ) = π and connected components X1, . . . , Xt, we

want to calculate how many elements of F � are fixed by 〈(i j) | {i, j} ∈ Γ〉. This is
the number of k-subsets of {1, . . . , n} that are fixed by 〈(i j) | {i, j} ∈ Γ〉, raised to
the �, since in order for an element of F � to be fixed, each of its coordinates has to
be fixed.

To calculate this number, we first notice that in order for a k-subset S to be fixed,
either Xi ⊆ S or Xi ∩ S = ∅ must hold for each i. Thus the number we are looking
for is the number of ways we can create a set of order k combining different Xis.

From (12) and (13), we find the beautiful equality

h� =
∑

π partition of n
π=(1c1 ,2c2 ,...,ncn)

(−1)n−
∑n

i=1 ci
n!∏n

i=1 i
cici!

⎛
⎜⎜⎜⎝

∑
η partition of k

η=(1b1 ,2b2 ,...,kbk )

k∏
j=1

(
cj
bj

)
⎞
⎟⎟⎟⎠

�

.

Now Theorem 1.1 follows from (4).
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3 A character theoretic consequence

The formula in Theorem 1.1 (2) has an immediate consequence regarding the char-
acter theory of the symmetric group Sym(n).

For g ∈ Sym(n), let πg be the cycle structure of g, that is, the partition of n
defined by the disjoint cycles of g. Furthermore, for a partition π of n, let Cπ be the
conjugacy class of Sym(n) consisting of the permutations having cycle type π, that
is, Cπ = {g ∈ Sym(n) | πg = π}.

Arguing inductively on n, we see that for g ∈ Sym(n) with πg = (1c1, 2c2, . . . , ncn)

(−1)n−
∑n

i=1 ci

equals sgn(g), where sgn : Sym(n) → C is the sign character of Sym(n). Furthermore,
for π = (1c1, 2c2, . . . , ncn), we have

|Cπ| = n!∏n
i=1 i

cici!
.

Therefore, using this notation, (12) becomes

h� =
∑

π partition of n
π=(1c1 ,2c2 ,...,ncn)

sgn(g)|Cπ|f �
π =

∑
g∈Sym(n)

sgn(g)f �
πg
.

Let χ be the permutation character of Sym(n) in its action on the k-element
subsets of {1, . . . , n}, so

χ = 1
Sym(n)
Sym(k)×Sym(n−k).

Then χ(g) = fπg , for every g ∈ Sym(n). Therefore, we obtain

h� =
∑

g∈Sym(n)

sgn(g)χ(g)� = n! · 〈sgn, χ�〉.

Thus, one has the following surprising consequence.

Theorem 3.1. Let χ be the permutation character of Sym(n) in its action on the
k-element subsets. Then the following are equivalent:

1. � = b(n, k);

2. � is the smallest positive integer such that 〈ϕ, χ�〉 ≥ ϕ(1) for every ϕ ∈
Irr(Sym(n));

3. � is the smallest positive integer such that 〈sgn, χ�〉 
= 0.
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