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Abstract

For a connected graph G and a, b ∈ R, the general degree-eccentricity in-
dex is defined as DEIa,b(G) =

∑
v∈V (G) d

a
G(v)ecc

b
G(v), where V (G) is the

vertex set of G, dG(v) is the degree of a vertex v and eccG(v) is the ec-
centricity of v in G, i.e. the maximum distance from v to another vertex
of the graph. This index generalizes several well-known ’topological in-
dices’ of graphs such as the eccentric connectivity index. We characterize
the unique trees with the maximum and the minimum general degree-
eccentricity index among all n-vertex trees with fixed maximum degree
for the cases a ≥ 1, b ≤ 0 and 0 ≤ a ≤ 1, b ≥ 0. This complements previ-
ous results on the general degree-eccentricity index for various classes of
trees.

1 Introduction

In organic chemistry, topological indices of graphs have been found to be useful
in chemical documentation, isomer discrimination, structure-property relationships,
structure-activity (SAR) relationships, and pharmaceutical drug design. Eccentricity-
based indices have shown very good correlations with respect to both physical and
biological properties of chemical substances [3]. They provide excellent predictive
power for pharmaceutical properties, for example, for predicting the anti-HIV activ-
ity of chemical substances [1].
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For a, b ∈ R, the general degree-eccentricity index is defined for a connected graph
G as

DEIa,b(G) =
∑

v∈V (G)

daG(v)ecc
b
G(v),

where eccG(v) is the eccentricity of v, that is, the greatest distance between v and
another vertex of G.

Several important eccentricity-based indices are special cases of this general index:

• DEIa,1(G) is the general eccentric connectivity index introduced in [8],

• DEI1,1(G) is the classical eccentric connectivity index,

• DEI1,−1(G) is the connective eccentricity index,

• DEI0,1(G) is the total eccentricity index and

• DEI0,2(G) is the first Zagreb eccentricity index of G.

Mathematical properties of eccentricity-based indices have been studied due to
the extensive applications of these indices. Let us briefly review some results on
eccentricity-based topological indices of graphs.

Morgan, Mukwembi and Swart [7] obtained sharp lower and upper bounds on the
eccentric connectivity index for trees with given order and diameter. Zhou and Du
[11] found sharp upper bounds for this invariant, and bounds for trees with given
maximum degree were obtained in [2].

Upper bounds on the connective eccentricity index for graphs of given order and
matching number were given by Xu et al. [10], a lower bound for graphs of given
order and clique number was proved by Wang et al. [9]. In [8], sharp upper and lower
bounds on the general eccentric connectivity index of trees with prescribed order and
diameter/number of pendant vertices were given.

In [5], Masre and Vertrik introduced and studied the general degree-eccentricity
index of a graph; in particular, they proved a sharp upper bound on this index for
graphs of given order for the case a > 0, b < 0, and a sharp lower bound for the
case a < 0, b > 0. In [6], the same authors studied the general degree-eccentricity
index for trees of various kinds. In particular, they proved upper and lower bounds
on DEIa,b for trees of given order for the cases 0 < a < 1, b > 0 and a > 1, b < 0.
This line of investigation was continued in [4] where similar questions with regards
to trees with given diameter are studied.

In this short note we continue the investigation of the general degree-eccentricity
index for trees with a particular focus on trees with given maximum degree. First
we give a short proof for the following theorem, which is a slight generalization of a
main result of [6]. Denote by Sn the star K1,n−1 on n vertices, and by Pn the path
on n vertices. Our first result is the following, which is slightly more general than
the result in [6].
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Theorem 1.1. Let T be a tree of order n.

(i) For a ≥ 1 and b ≤ 0, DEIa,b(Pn) ≤ DEIa,b(T ) ≤ DEIa,b(Sn).

(ii) For 0 ≤ a ≤ 1 and b ≥ 0, DEIa,b(Sn) ≤ DEIa,b(T ) ≤ DEIa,b(Pn).

As we shall see, if a /∈ {0, 1} or b �= 0, then equalities in the lower and upper
bounds in (i) and (ii) hold if and only if T is isomorphic to Pn and Sn, respectively.

Denote by Bn,d the tree of order n obtained from a path with n−d+1 vertices by
adding d− 1 pendant vertices to one endpoint of the path, and by Vn,d the complete
(d−1)-ary tree, that is, a (d−1)-ary tree where every level is completely filled except
the last one, but the children of the last level fill this level consecutively. For trees
with fixed maximum degree we prove the following.

Theorem 1.2. Let T be a tree with maximum degree d and order n.

(i) For a ≥ 1 and b ≤ 0, DEIa,b(Bn,d) ≤ DEIa,b(T ) ≤ DEIa,b(Vn,d).

(ii) For 0 ≤ a ≤ 1 and b ≥ 0, DEIa,b(Vn,d) ≤ DEIa,b(T ) ≤ DEIa,b(Bn,d).

Similarly to Theorem 1.1, we shall prove that if a �∈ {0, 1} and b �= 0, then
equalities in the lower and upper bounds in (i) and (ii) hold if and only if T is
isomorphic to Vn,d, and to Bn,d, respectively.

We further remark that for the case when a, b ≥ 1, we cannot prove any general
upper and lower bounds. For instance, it is intuitively clear that for large n, if a
is substantially larger than b, then having large degrees is beneficial for maximizing
DEIa,b, so Vn,d should be extremal with respect to maximizing DEIa,b, while Bn,d

should give the smallest value of DEIa,b. On the other hand, if b is much larger than
a, then the converse should hold.

Finally, let us mention that for a, b ≥ 1 a similar phenomenon naturally should
hold for trees of large order, but then with respect to the graphs Sn and Pn as in
Theorem 1.1.

In Section 2 we prove Theorems 1.1 and 1.2, and in Section 3 we give some
conclusions and further problems.

2 Proofs of the main results

We shall use standard graph theory notation and terminology. The order of a graph
is its number of vertices. The notation G ∼= H means that G and H are isomorphic.

The shortest path between any two vertices of greatest distance in a connected
graph G is called a diametral path. A vertex of a path P which is adjacent to an
endpoint of the path is called a near-extremal vertex of P .
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The neighbor set of a vertex v in G is denote by NG(v), and the distance between
two vertices u, v in G is denoted by dG(u, v). We denote the degree of a vertex v in
G by dG(v).

We shall need the following lemma from [8].

Lemma 2.1. [8] Let 1 ≤ x < y and c > 0. For a > 1 and a < 0, we have

(x+ c)a − xa < (y + c)a − ya.

If 0 < a < 1, then
(x+ c)a − xa > (y + c)a − ya.

Let us now prove Theorem 1.1.

Proof of Theorem 1.1. We shall prove part (ii) of the theorem. Then we explain how
part (i) can be proved using similar arguments.

Let us first prove the lower bound in (ii). So assume that 0 ≤ a ≤ 1, b ≥ 0 and
let us show that Sn is extremal with respect to having minimum value of DEIa,b for
trees of order n. The proof is by contradiction. Suppose that T is a tree of order n
with minimum value of DEIa,b among trees of order n, and that T is not isomorpic
to Sn. Moreover, among all such trees that minimizes DEIa,b, we assume that T is a
tree where a near-extremal vertex of a diametral path has largest degree.

Let P = u0u1 . . . uk be a diametral path in T . Among such paths in T , we assume
that P is the one where a near-extremal vertex has largest degree. Since T is not
isomorphic to Sn, k ≥ 3. Furthermore, assume that u1 has larger (or equal) degree
than uk−1.

Consider the tree T ′ = T − uk−1uk + u1uk. In T ′, every vertex has at most the
same eccentricity as in T , and u1 and uk−1 have the same eccentricity in T and T ′.
Moreover, dT ′(u1) = dT (u1) + 1 and dT ′(uk−1) = dT (uk−1)− 1, and all other vertices
have the same degree in T ′ as in T . Thus,

daT ′(u1) + daT ′(uk−1) ≤ daT (u1) + daT (uk−1) (1)

by Lemma 2.1. It follows that DEIa,b(T
′) ≤ DEIa,b(T ), and T ′ has a diametral path

where a near-extremal vertex has larger degree than in T , which contradicts the
choice of T . Hence, T ∼= Sn.

Let us now turn to the upper bound in (ii). Suppose that 0 ≤ a ≤ 1, b ≥ 0 and
let us show that Pn is extremal with respect to having maximum value of DEIa,b
for trees of order n. The proof is again by contradiction. Suppose that T is a tree
of order n that maximizes DEIa,b and that T is not isomorphic to Pn. Moreover,
among all such trees that maximize DEIa,b, we assume that T is a tree with a longest
diametral path.

Let P = u0u1 . . . uk be a diametral path in T , and suppose that there is a vertex
up on P with degree at least 3. Let x /∈ V (P ) be a vertex that is adjacent to
up and consider the tree T ′ = T − upx + u0x. In T ′, every vertex has at least as



C.J. CASSELGREN AND M. MASRE/AUSTRALAS. J. COMBIN. 88 (2) (2024), 212–220 216

large eccentricity as in T , and u0 has greater eccentricity than up in T . Moreover,
2 = dT ′(u0) = dT (u0) + 1 and dT ′(up) = dT (up) − 1 ≥ 2, and all other vertices have
the same degree in T ′ as in T . Thus,

daT ′(u0) + daT ′(up) ≥ daT (u0) + daT (up) (2)

by Lemma 2.1. It follows that DEIa,b(T
′) ≥ DEIa,b(T ), and T ′ has a diametral path

that is longer than the one in T . This is a contradiction, and we conclude that
T ∼= Pn.

Now, the proofs of the lower and upper bounds in (i) are completely analogous to
the proofs of the upper and lower bounds of (ii), respectively, so we omit the details
here.

Let us now check that if a �∈ {0, 1} or b �= 0, then we have equality in the
upper and lower bounds in Theorem 1.1 if and only if T is isomorphic to Sn or Pn,
respectively. We shall be content with verifying this for part (ii); for (i) the argument
is completely analogous.

Regarding the lower bound, we have equality in (1) precisely when a = 0 or a = 1.
Moreover, continuing this process of “moving” pendant vertices as in the proof of
Theorem 1.1 will eventually decrease the length of the diametral path and thus yield
a smaller value of DEIa,b if b > 0. Hence, for the lower bound in (ii), equality holds
if and only if T ∼= Sn for the case when a /∈ {0, 1} or b �= 0.

As for the upper bound, we have equality in (2) precisely when a = 0 or a = 1.
Moreover, since T ′ has greater diameter than T , DEIa,b(T

′) < DEIa,b(T ) unless b = 0.
In conclusion, for the case when a /∈ {0, 1} or b �= 0, equality holds in the upper bound
in (ii) if and only if T ∼= Pn.

Next, we turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We shall be content with proving part (i). As in the proof of
Theorem 1.1, the proof of part (ii) is analogous and we omit it.

We first prove the upper bound in (i). Suppose that T is an extremal tree for the
upper bound. We prove by contradiction that T must be isomorphic to Vn,d.

Let P = u0u1 . . . uk be a diametral path in T , and set r = �k/2�. Without loss of
generality, we assume that among the trees of order n that maximize DEIa,b, T has
a shortest diametral path. Moreover, among all such trees, we assume that T is the
one where ur has the largest degree; in turn, among all such graphs we choose T to
be the one with the largest number of vertices of largest degree among the vertices
adjacent to ur; etc. for the vertices of distance s to ur, s = 2, 3, . . . .

If there are vertices x and y such that d(x, ur) > d(y, ur) and dT (x) > dT (y),
then let x1, . . . , xl, where l = min{d− dT (y), dT (x)− 2}, be l neighbors of x not on
P . Consider the graph

T ′ = T − {xx1, . . . , xxl}+ {yx1, . . . , yxl}.
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Every vertex in T ′ has smaller or equal eccentricity as in T . Moreover, dT ′(y) ≥
dT (x), dT ′(x) ≤ dT (y) and dT ′(y)− dT (x) = dT (y)− dT ′(x), so

daT ′(y) + daT ′(x) ≥ daT (y) + daT (x)

by Lemma 2.1. Hence, DEIa,b(T
′) ≥ DEIa,b(T ), which contradicts the choice of T ,

and we can conclude that there are no vertices x, y ∈ V (T ) such that d(x, ur) >
d(y, ur) and dT (x) > dT (y).

Next, we prove that there cannot be any vertex x in T of degree at most d − 1
and a pendant vertex v such that dT (ur, v) > dT (ur, x) + 1. Let x be a vertex of
degree at most d−1 with shortest distance to ur, and assume that there is a pendant
vertex v of T such that dT (ur, v) > dT (ur, x) + 1. Suppose v is adjacent to w in T .
Consider the tree T ′′ = T − vw + xv. Then every vertex of T ′′ has smaller or equal
eccentricity than in T . Moreover, since dT (w) ≤ dT (x) (by the argument in the
preceding paragraph),

daT ′′(x) + daT ′′(w) ≥ daT (x) + daT (w)

by Lemma 2.1. Thus DEIa,b(T
′′) ≥ DEIa,b(T ), which again contradicts the choice of

T , so there cannot be any vertex x in T of degree at most d−1 and a pendant vertex
v such that dT (ur, v) > dT (ur, x) + 1.

From the preceding paragraphs, we conclude that all vertices in T have degree d,
except the ones in the last and second to last layer of T , if we view T as a d-ary tree
with root ur. It remains to prove that all vertices in the second to last layer have
degree 1 or d, except for at most one vertex. So suppose that there are two vertices x
and y such that d(x, ur) = d(y, ur) and d > dT (x) ≥ dT (y) > 1. Similar calculations
as before shows that “moving” pendant vertices from the vertex y to the vertex x
yields a tree T ′ with DEIa,b(T

′) ≥ DEIa,b(T ). We omit these details and conclude
that T ∼= Vn,d.

Next, we prove the lower bound in (i). Suppose that T is an extremal tree for
the lower bound. We prove by contradiction that T must be isomorphic to Bn,d. We
assume that T is an extremal graph with as large diameter as possible, and among
all these graphs we assume that T is one where a near-extremal vertex of a diametral
path has as large degree as possible.

Let P = u0u1 . . . uk be such a diametral path in T . Suppose first that there is
a vertex not on P of degree at least two. Then there is such a vertex x which is
adjacent to s ≥ 1 pendant vertices y1, . . . , ys. Consider the graph

T ′ = T − {xy1, . . . , xys}+ {u0y1, . . . , u0ys}.
Every vertex in T ′ has equal or larger eccentricity than in T . Moreover, dT ′(u0) =
dT (x) and dT ′(x) = dT (u0), and all other vertices have the same degree in T ′ than in
T . Hence, DEIa,b(T

′) ≤ DEIa,b(T ) and T ′ has a longer path than T , a contradiction.

Suppose now that only pendant vertices in T are adjacent to vertices in P , and
that there is a vertex up distinct from u1, uk−1 with degree at least 3 in T . If up is
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the only vertex of degree d in P then we consider the tree T ′′ obtained from T by
joining d − dT (uk−1) pendant vertices adjacent to up to uk−1 instead, and removing
the edges between up and these adjacent pendant vertices. As in the preceding
paragraph, DEIa,b(T

′′) ≤ DEIa,b(T ), which contradicts the choice of T .

Assume now instead that there are several vertices of degree d in P . Furthermore,
we assume that up has smallest degree among the vertices in T with degrees in
{3, . . . , d} that are distinct from uk−1 and u1. Let y be a pendant vertex adjacent
to up. We form the new tree T ′′ = T − up−1up + up−1y from T . Every vertex in
T ′′ has at least the same eccentricity as in T . Moreover, dT ′(up) = dT (up) − 1 and
dT ′(y) = dT (y) + 1 = 2, and every other vertex has the same degree in T ′ as in T .
Thus

daT ′(up) + daT ′(y) ≤ daT (up) + daT (y)

by Lemma 2.1. This implies that DEIa,b(T
′′) ≤ DEIa,b(T ), which is a contradiction

to the choice of T . It follows that the only vertices of T that may have degree greater
than 2 are uk−1 and u1.

Now, if both these vertices have degree at least 3, then assume that uk−1 has
smaller degree than u1. Let y be a pendant vertex adjacent to uk−1, and consider the
tree T (3) = T − uk−1y + uky. Then every vertex in T (3) has at least the same eccen-
tricity as in T . Moreover, dT (3)(uk) = 2 = dT (uk)+1 and dT (3)(uk−1) = dT (uk−1)−1,
so

daT (3)(uk−1) + daT (3)(uk) ≤ daT (uk−1) + daT (uk)

by Lemma 2.1. Since all other vertex degrees are the same in T and T (3), DEIa,b(T
(3))

≤ DEIa,b(T ), which again contradicts the choice of T .

This implies that there is only one vertex in T that has degree greater than 2,
which in fact has degree d, and we conclude that T must be isomorphic to Bn,d.

Let us now prove that if a > 1 and b < 0, then we have strict inequalities in (i) in
Theorem 1.2 if T is not isomorphic to Bn,d or Vn,d, respectively. The corresponding
statement for part (ii) can be proved similarly and is omitted.

Consider the proof of the upper bound in (i). In the third paragraph of the proof,
we have that DEIa,b(T

′) = DEIa,b(T ) only if b = 0. Moreover, the same clearly holds
for the trees T ′′ and T considered in the fourth paragraph of the proof. Thirdly, as
for the trees T ′ and T considered in the fifth paragraph of the proof we have that
DEIa,b(T

′) = DEIa,b(T ) only holds if a = 1. In conclusion, if a > 1 and b < 0, then
we have strict inequality in the upper bound in part (i) in Theorem 1.2 if T is not
isomorphic to Vn,d, respectively.

Let us now turn to the lower bound in the proof of part (i) of Theorem 1.2. In
the second paragraph of the proof, we compare T ′ and T , and get that DEIa,b(T

′) ≤
DEIa,b(T ) and equality holds only if b = 0. Then the tree T ′′ is formed and we
clearly have DEIa,b(T

′′) = DEIa,b(T ) precisely when b = 0 and a = 1. Finally, in the
second to last paragraph a tree T (3) is defined, and we have DEIa,b(T

(3)) = DEIa,b(T )
precisely when a = 1. We conclude that if a > 1 and b < 0, then we have equality in
the lower bound in part (i) of Theorem 1.2 if and only if T ∼= Bn,d.
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3 Conclusion and Open Problems

In this paper, we have obtained upper and lower bounds on the general degree-
eccentricity index

DEIa,b(G) =
∑

v∈V (G)

daG(v)ecc
b
G(v),

for n-vertex trees T with a fixed maximum degree for the cases when a ≥ 1, b ≤ 0
and 0 ≤ a ≤ 1, b ≥ 1. Our results complement previous results on trees of general
order and trees with given diameter [4, 5] (as well as other families of trees considered
in [4, 5]).

Moreover, we have noted that for the case when a, b ≥ 1, it is not possible to
prove general upper and lower bounds for DEIa,b. However, it remains to consider
the general degree-eccentricity index for other values of a and b. For instance, we
have the following open problem.

Problem 3.1. Determine upper and lower bounds on DEIa,b(T ) for trees T of given
order and maximum degree, when a < 0, b > 0.

Naturally, this question can be studied for the more general family of trees with
given order, as well as more restricted families obtained by fixing other graph invari-
ants as well.
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