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Abstract

In 2017 the current authors gave a complete solution for the existence
problem of group divisible designs (or PBIBDs) with block size k = 3
with four groups of sizes (n, n, n, 1) and any two indices (λ1, λ2). In this
paper, we solve the problem for four groups of sizes (n, n, n, 2) with any
two indices (λ1, λ2). The key elements in our construction of these group
divisible designs are quasigroups with holes, while the construction in the
original paper used orthogonal latin squares and maximal packings.

1 Introduction

Group divisible designs are pairwise balanced incomplete block designs (PBIBDs)
where the set of symbols is partitioned into groups with two different associates.
Formally, a group divisible design GDD(g = g1+g2+· · ·+gs, s, k;λ1, λ2) is an ordered
pair (G,B) where G is a g-set of symbols that is partitioned into s sets, called groups,
of sizes g1, g2, . . . , gs, and B is a collection of k-subsets of G, called blocks, such that
each pair of symbols from the same group appears together in exactly λ1 blocks, and
each pair of symbols from distinct groups appears together in exactly λ2 blocks. Such
pairs of elements in the same group are known to statisticians as first associates,
and pairs of elements from the different groups are called second associates. (See
[4, 5].) The parameters λ1 and λ2 are referred to as the first index and second index,
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respectively. The interest in the existence of group divisible designs has been strong
over the years, leading Colbourn et al. in [3] to state that “Group divisible designs
are one of the most basic ingredients in the construction of combinatorial designs of
many types; consequently much effort has gone into the construction of large classes
of GDDs”.

Many papers in the literature have focused on the designs with k = 3. When all
groups are of the same size, the existence of GDD(g = n + n + · · · + n, s, 3;λ1, λ2)
was completely solved for any pair of λ1 and λ2 by Fu, Rodger and Sarvate [4, 5].
The problem becomes more complicated when not all groups have the same size. We
mention some notable results in this particular case. Colbourn, Hoffman, and Rees
[3] provided a necessary and sufficient condition for the existence of GDD(g = n+n+
· · ·+n+t, s+1, 3; 0, 1). When λ1 ≥ λ2 the existence of GDD(g = n+m, 2, 3;λ1, λ2) had
been solved form �= 2, n �= 2, as seen in the work by Pabhapote et al. [2, 11, 12, 14, 15]
in 2009–2012 using Steiner triple systems and related designs. Generally, the problem
becomes difficult if there is a group of size less than the size of the blocks. Therefore,
when k = 3, it is often challenging to construct designs with some groups of size 1 or
2. In 2013, Chaffee and Rodger [1] provided a complete solution of the design with
two groups GDD(g = n + m, 2, 3;λ1, λ2) for m = 2 or n = 2, using a classic result
of Colbourn and Rosa on quadratic leaves. For designs with three groups, Hurd
and Sarvate [7] made some progress concerning the existence of GDD(g = n + 2 +
1, 3, 3;λ1, λ2) when λ1 ≥ λ2. Subsequently, Lapchinda et al. provided a solution for
the existence of GDD(g = n+n+1, 3, 3;λ1, λ2) for all (λ1, λ2), as seen in [8, 9]. Designs
with four groups, where one group has a different size from the others, are also worth
discussing, as one can construct these designs using Latin squares, which generally
does not work for other cases. GDD(g = n + n + n+ 1, 4, 3;λ1, λ2)s are constructed
using orthogonal Latin squares and maximal packings, as presented in [13]. In this
paper, we solve the existence problem of GDD(g = n + n + n + 2, 4, 3;λ1, λ2) for
all (λ1, λ2). Unlike in [13], orthogonal Latin squares do not work; here, we present
a new construction technique that uses idempotent quasigroups with holes. These
quasigroups with holes can also be viewed as Latin squares with holes.

Since we are dealing only with GDDs having four groups and block size three, for
the sake of brevity, GDD(n, n, n, 2;λ1, λ2) is used to present GDD(g = n + n + n +
2, 4, 3;λ1, λ2) from this point forward, and we refer to blocks as triples. Our nec-
essary conditions for the existence problem of a GDD(n, n, n, 2;λ1, λ2) can be easily
obtained from a graph model by describing it graphically as follows. Let λKv denote
the graph with v vertices, where each pair of vertices is joined by λ edges. Consider
two graphs, G1 and G2. The graph G1 ∨λ G2 is formed from the union of G1 and G2

by joining each vertex in G1 to each vertex in G2 with λ edges. A G-decomposition
of a graph H is a partition of the edges of H such that each element of the parti-
tion induces a copy of G. The existence of a GDD(n, n, n, 2;λ1, λ2) is equivalent to
the existence of a K3-decomposition of λ1Kn ∨λ2 (λ1Kn ∨λ2 (λ1Kn ∨λ2 λ1K2)), with
the blocks or triples of this design being the triangles K3 in the graph decomposi-
tion. We provide necessary conditions for the existence of a GDD(n, n, n, 2;λ1, λ2)
in Lemma 3.1, obtained straightforwardly from a graphical point of view. Further-
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more, the following main theorem establishes that these necessary conditions are also
sufficient, providing a complete solution to the existence problem of our designs.

Theorem 1.1 (Main Theorem). Let n ≥ 1 and λ1, λ2 ≥ 0 be integers. There exists
a GDD(n, n, n, 2; λ1, λ2) if and only if

(i) λ1 = λ2 = 0, or
(ii) λ2 �= 0, n = 2, 6 | λ1 and λ1 ≤ 3λ2, or
(iii) λ2 �= 0, n �= 2, 2 | (λ1 + nλ2), 3 | λ1 and λ1 ≤ 3nλ2.

Using our main result, we can similarly apply the construction of a GDD(g =
n + · · · + n + 1, t + 1, 3;λ1, λ2) as outlined in the last section of [13] to construct a
GDD(g = n + · · · + n + 2, t + 1, 3;λ1, λ2) where t is divisible by 3. Furthermore, if
a GDD(g = n + n + 2, 3, 3;λ1, λ2) also exists, we obtain the GDDs where t ≡ 1, 2
(mod 3) as well.

2 Preliminary Background

In this section, we describe the two main tools used in our construction of GDDs,
namely quasigroups with holes and triple systems. A triple system TS(n, λ) of index
λ and order n is an ordered pair (S, T ), where S is an n-set, and T is a collection of
3-subsets of S called triples or blocks, such that each pair of distinct elements of S
appears together in λ triples. A triple system TS(n, λ) can be also considered as a
GDD(g = n, 1, 3;λ, λ2) or a GDD(g = 1 + 1 + 1 + · · ·+ 1, n, 3;λ1, λ) when λ1 and λ2

are nonnegative integers. The existence of the triple systems is assured by Theorem
2.1. See more details in [6, 10].

Theorem 2.1. [6] Let n be any positive integer and λ a nonnegative integer. Then
a TS(n, λ) exists if and only if λ and n satisfy either one of the followings:

(i) λ ≡ 0 (mod 6) for all positive integers n �= 2,
(ii) λ ≡ 1 or 5 (mod 6) for all n with n ≡ 1 or 3 (mod 6),
(iii) λ ≡ 2 or 4 (mod 6) for all n with n ≡ 0 or 1 (mod 3), and
(iv) λ ≡ 3 (mod 6) for all odd integers.

A quasigroup of order n is a pair (Q, ◦), where Q is a set of size n and ◦ is a binary
operation on Q such that for each pair of elements a, b ∈ Q, both equations a◦x = b
and y ◦ a = b have a unique solution. Let P ⊆ Q; then (P, ◦) is a subquasigroup of
(Q, ◦) provided (P, ◦) is also a quasigroup. If i ◦ i = i for all i ∈ Q, then (Q, ◦) is
called an idempotent quasigroup. A quasigroup is just a Latin square with a headline
and a sideline. ([10], p. 4.) It is well known that for every positive integer n there
exists a quasigroup of order n, and there exists an idempotent quasigroup of order
n for all n, n �= 2, 6. i (See Chapter 8 in [16].) Let Q = {1, 2, . . . , 2k} and let
H = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}. In what follows, the two-element subsets
{2i − 1, 2i} ∈ H are called holes. A quasigroup with holes H is a quasigroup (Q, ◦)
of order 2k in which for each h ∈ H, the pair (h, ◦) is a subquasigroup of (Q, ◦). We
list two relevant results used in this paper. For further details, see [10] and [16].
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Theorem 2.2. [16] If (P, ◦) is a quasigroup of order s and n ≥ 2s, then there exists
a quasigroup (Q, ◦) of order n with (P, ◦) as a subquasigroup.

Theorem 2.3. [10] For all k ≥ 3 there exists a quasigroup of order 2k with the holes
H = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.

Theorems 2.2 and 2.3 can also be interpreted as statements about Latin squares.

3 Proof of Theorem 1.1

We begin by establishing necessary conditions for the existence of the designs. We
remark that edges joining vertices from the same group are called pure edges, while
edges joining vertices from different group are called cross edges.

Lemma 3.1 (Necessary Conditions). Let n ≥ 1 and λ1, λ2 ≥ 0 be integers. If there
exists a GDD(n, n, n, 2;λ1, λ2) then

(i) 2 | (λ1 + nλ2),
(ii) 3 | λ1,
(iii) λ1 ≤ 3nλ2, and
(iv) if n = 2 then λ1 ≤ 3λ2.

Proof. Let G = λ1Kn∨λ2 (λ1Kn∨λ2 (λ1Kn∨λ2 λ1K2)). Since G has a K3-decomposi-
tion, each vertex has even degree, and the number of edges is divisible by three. It is
worth noting that G contains vertices of degree (n−1)λ1+(2n+2)λ2 and λ1+3nλ2.

The number of edges is (3n(n−1)
2

+ 1)λ1 + 3(n2 + 2n)λ2. These observations imply
that 2 | (λ1 + nλ2) and 3 | λ1, which correspond to conditions (i) and (ii).

Now, let W be the group of size two in the given design. Each pure edge in
W must be contained in a triangle with two other cross edges. Thus, the number
of pure edges in W must be at most half of the number of cross edges, satisfying
condition (iii). Similarly, if all four groups have size two, condition (iv) holds due
to the condition on the pure edges in all groups.

We devote the rest of the paper to show that the conditions in Lemma 3.1
are sufficient. Unless stated otherwise, for any positive integer n, we let Xn =
{x1, x2, . . . , xn}, Yn = {y1, y2, . . . , yn}, Zn = {z1, z2, . . . , zn}, and W = {w1, w2} be
disjoint sets, and define Vn = Xn ∪ Yn ∪ Zn ∪ W . Note that a collection of blocks
may have repeated blocks; thus, the union symbol “∪” in our construction will be
used for the union of multi-sets.

If λ2 = 0, then the two elements in any group of size 2 cannot be in any triple.
Therefore, there is no GDD(n, n, n, 2;λ1, 0) for any n if λ1 > 0. Thus, Theorem
1.1(i) holds; so, we consider only a construction of a GDD(n, n, n, 2;λ1, λ2) where
λ2 > 0. Moreover, it can be noted from Lemma 3.1 that we have an extra necessary
condition (iv) when n = 2. Therefore, we will consider the case n = 2 separately.
Lemma 3.2 implies that the condition in Theorem 1.1(ii) is sufficient.
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Lemma 3.2. Let λ1 ≥ 0 and λ2 > 0 be integers such that λ1 ≤ 3λ2 and 6|λ1.Then
there exists a GDD(2, 2, 2, 2;λ1, λ2).

Proof. Let λ1 and λ2 be such that 6|λ1 and λ1 ≤ 3λ2. Then there exist nonnegative
integers x, y such that λ1 = 6x and λ2 = 2x+y, and hence, we can construct a desired
GDD(2, 2, 2, 2; 6x, 2x + y) by using x copies of all triples of a GDD(2, 2, 2, 2; 6, 2)
and y copies of all triples of a GDD(2, 2, 2, 2; 0, 1). Thus it suffices to construct a
GDD(2, 2, 2, 2; 6, 2) and a GDD(2, 2, 2, 2; 0, 1).

Let B1 be the collection of all triples of V2 containing two elements from the
one group and one element from the other, and let B2 = {{w1, x1, y2}, {w1, y1, z2},
{w1, z1, x2}, {w2, x2, y1}, {w2, y2, z1}, {w2, z2, x1}, {x1, y1, z1}, {x2, y2, z2}}. It can be
verified that (V2,B1) is a GDD(2, 2, 2, 2; 6, 2) and (V2,B2) is a GDD(2, 2, 2, 2; 0, 1).

Now we consider the construction of a GDD(n, n, n, 2;λ1, λ2) wherever n �= 2
and (n, λ1, λ2) satisfies all necessary conditions in Lemma 3.1. Lemmas 3.8–3.9 and
Corollary 3.10 are used to prove Theorem 1.1(iii). We first construct several special
cases for small GDDs in Lemmas 3.3 through 3.7, where the technique used here
differs slightly from the construction of larger GDDs in general cases.

Let n �= 2 and (n, λ1, λ2) satisfy our necessary conditions in Lemma 3.1. We
begin by considering the case λ2 = 1. It follows that λ1 ≤ 3n by condition (iii).
Moreover, the necessary conditions (i) and (ii) imply the following two statements.

If n is even, then λ1 ≡ 0 (mod 6), and thus λ1 ≡ 3n (mod 6).
If n is odd, then λ1 is odd and λ1 ≡ 0 (mod 3), and thus λ1 ≡ 3n (mod 6).

Hence for λ2 = 1, we can always write λ1 = 3n − 6t for some t ∈ {0, 1, 2, . . . , �n
2
}.

In particular, if λ2 = 1 and n ≤ 5, then (n, λ1) must be one of the following:

S = {(1, 3), (3, 3), (3, 9), (4, 0), (4, 6), (4, 12), (5, 3), (5, 9), (5, 15)}.

Lemma 3.3 will construct the desired GDDs where (n, λ1) ∈ {(1, 3), (3, 9), (4, 12),
(5, 15)}, while GDDs with the rest of (n, λ1) in S will be constructed in Lemmas
3.4–3.7.

Lemma 3.3. There exists a GDD(n, n, n, 2; 3n, 1) for all positive integer n �= 2.

Proof. Let (Q, ◦) be a quasigroup of order n where Q = {1, 2, . . . , n}. For i ∈
{1, 2, . . . , n}, let

Bi = {{w1, w2, xi}, {w1, w2, yi}, {w1, w2, zi}}, and

Ci = {{xi, y1, zi◦1}, {xi, y2, zi◦2}, . . . , {xi, yn, zi◦n}}.

By Theorem 2.1(i) and (iv), there exists a TS(n, 3n). Let (Xn, T1), (Yn, T2) and
(Zn, T3) be those TS(n, 3n)’s obtained from the theorem. Then (Vn,B∪C∪T1∪T2∪T3),
where B is the union of all Bi and C is the union of all Ci, is the desired GDD.
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Lemma 3.4. There exist a GDD(3, 3, 3, 2; 3, 1) and a GDD(4, 4, 4, 2; 0, 1).

Proof. (i) (V3,B) is a GDD(3, 3, 3, 2; 3, 1) where

B = {{w1, w2, x3}, {w1, w2, y3}, {w1, w2, z3}, {w1, x1, y2}, {w1, y1, z2}, {w1, z1, x2},
{w2, x2, y1}, {w2, y2, z1}, {w2, z2, x1}, {x1, x2, x3}, {x1, x2, x3}, {x1, x2, x3},
{x3, y1, z1}, {x3, y2, z2}, {y3, x1, z1}, {y3, x2, z2}, {z3, x1, y1}, {z3, x2, y2},
{y1, y2, y3}, {y1, y2, y3}, {y1, y2, y3}, {z1, z2, z3}, {z1, z2, z3}, {z1, z2, z3},
{x3, y3, z3}}.

(ii) (V4, C1 ∪ C2) is a GDD(4, 4, 4, 2; 0, 1) where

C1 = {{w1, x1, y4}, {w1, y1, z4}, {w1, z1, x4}, {w1, x2, y3}, {w1, y2, z3}, {w1, z2, x3},
{w2, x3, y2}, {w2, y3, z2}, {w2, z3, x2}, {w2, x4, y1}, {w2, y4, z1}, {w2, z4, x1}};

C2 = {{xi, yj, z(5−i−j) mod 5} : i, j ∈ {1, 2, 3, 4} and i+ j �= 5}.

Lemma 3.5. There exists a GDD(4, 4, 4, 2; 6, 1).

Proof. Let

B = {{w1, w2, x3}, {w1, w2, x4}, {w1, w2, y3}, {w1, w2, y4}, {w1, w2, z3}, {w1, w2, z4},
{w1, x1, y2}, {w1, y1, z2}, {w1, z1, x2}, {w2, x2, y1}, {w2, y2, z1}, {w2, z2, x1},
{x1, y1, z1}, {x2, y2, z2}}.

For Q = {1, 2, 3, 4} and by Theorem 2.2, there exists a quasigroup (Q, ◦) with sub-
quasigroup (P, ◦) where P = {1, 2} . Now let

C = {{xi, yj, zi◦j} : i, j ∈ {1, 2, 3, 4} and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)}}.

By Theorem 2.1(i), there exists a TS(4,6). Let (X3, T1), (Y3, T2) and (Z3, T3) be
those TS(4, 6)’s obtained from the theorem. Then (V4,B ∪ C ∪ T1 ∪ T2 ∪ T3) is a
GDD(4, 4, 4, 2; 6, 1) as desired.

Lemma 3.6. There exists a GDD(5, 5, 5, 2; 3, 1).

Proof. Let

B1 = {{w1, w2, x5}, {w1, w2, y5}, {w1, w2, z5}, {w1, x3, y1}, {w1, x4, y2}, {w1, y3, z1},
{w1, y4, z2}, {w1, z3, x1}, {w1, z4, x2}, {w2, x1, y3}, {w2, x2, y4}, {w2, y1, z3},
{w2, y2, z4}, {w2, z1, x3}, {w2, z2, x4}};

B2 = {{x5, y1, z4}, {x5, y2, z3}, {x5, y3, z2}, {x5, y4, z1},
{y5, x1, z4}, {y5, x2, z3}, {y5, x3, z2}, {y5, x4, z1},
{z5, x1, y4}, {z5, x2, y3}, {z5, x3, y2}, {z5, x4, y1}, {x5, y5, z5}};

B3 = {{x1, y1, z1}, {x1, y2, z2}, {x2, y1, z2}, {x2, y2, z1},
{x3, y3, z3}, {x3, y4, z4}, {x4, y3, z4}, {x4, y4, z3}}.
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By Theorem 2.1(iv), there exists a TS(5, 3). Let (X5, T1), (Y5, T2) and (Z5, T3) be
those TS(5, 3)’s obtained from the theorem. Then (V5,B1 ∪ B2 ∪ B3 ∪ T1 ∪ T2 ∪ T3)
is a GDD(5, 5, 5, 2; 3, 1).

Lemma 3.7. There exists a GDD(5, 5, 5, 2; 9, 1).

Proof. Let

B = {{w1, w2, x3}, {w1, w2, y3}, {w1, w2, z3}, {w1, w2, x4}, {w1, w2, y4}, {w1, w2, z4},
{w1, w2, x5}, {w1, w2, y5}, {w1, w2, z5}, {w1, x1, y2}, {w1, y1, z2}, {w1, z1, x2},
{w2, x2, y1}, {w2, y2, z1}, {w2, z2, x1}, {x1, y1, z1}, {x2, y2, z2}}.

For Q = {1, 2, 3, 4, 5} and by Theorem 2.2, there exists a quasigroup (Q, ◦) of order
5 with subquasigroup (P, ◦) where P = {1, 2} is of order 2. Let

C = {{xi, yj, zi◦j} : i, j ∈ {1, 2, . . . , 5} and (i, j) /∈ {(1, 1), (1, 2), (2, 1), (2, 2)}}.

By Theorem 2.1(iv), there exists a TS(5, 9). Let (X5, T1), (Y5, T2) and (Z5, T3) be
those TS(5, 9)’s obtained from the theorem. Then (V5,B ∪ C ∪ T1 ∪ T2 ∪ T3) is a
GDD(5, 5, 5, 2; 9, 1) as desired.

Lemma 3.8. There exists a GDD(n, n, n, 2; 3n − 6t, 1) for every positive integer
n �= 2 and all nonnegative integers t ≤ n

2
.

Proof. Let n �= 2 be a positive integer, and t ≤ n
2
a nonnegative integer. The

existence of the GDDs when n ≤ 5 is already covered by Lemmas 3.3 through 3.7.
Now, assuming that n ≥ 6, the construction is carried out separately depending on
the parity of n.

Case 1. n is even. Let

B1 = {{w1, w2, xi}, {w1, w2, yi}, {w1, w2, zi} : i ∈ {2t+ 1, 2t+ 2, . . . , n}};
B2 = {{w1, x2i−1, y2i}, {w1, y2i−1, z2i}, {w1, z2i−1, x2i},

{w2, x2i, y2i−1}, {w2, y2i, z2i−1}, {w2, z2i, x2i−1},
{x2i−1, y2i−1, z2i−1}, {x2i, y2i, z2i} : i ∈ {1, 2, . . . , t}}.

According to Theorem 2.3, for n ≥ 6, there exists a quasigroup with holes. Let
Q1 = {1, 2, . . . , n}, H1 = {{1, 2}, {3, 4}, . . . , {2t − 1, 2t}}, and (Q1, ◦) be such a
quasigroup of order n with holes H1. Define

B3 = {{xi, yj, zi◦j} : i, j ∈ Q1, and i and j are not in the same hole in H1}.

By Theorem 2.1(i), there exists a TS(n, 3n − 6t). Let (Xn, T1), (Yn, T2), and
(Zn, T3) be those TS(n, 3n − 6t)’s obtained from the theorem. Then (V3,B1 ∪ B2 ∪
B3 ∪ T1 ∪ T2 ∪ T3) is a GDD(n, n, n, 2; 3n− 6t, 1).
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Case 2. n is odd. Let

C1 = {{w1, w2, xi}, {w1, w2, yi}, {w1, w2, zi} : i ∈ {2t+ 1, 2t+ 2, . . . , n}}
∪ {{xn, yn, zn}};

C2 = {{w1, x2i−1, y2i−1}, {w1, y2i, z2i}, {w1, x2i, z2i−1},
{w2, x2i, y2i}, {w2, y2i−1, z2i−1}, {w2, x2i−1, z2i},
{xn, y2i, z2i−1}, {xn, y2i−1, z2i}, {yn, x2i−1, z2i−1},
{yn, x2i, z2i}, {zn, x2i−1, y2i}, {zn, x2i, y2i−1} : i ∈ {1, 2, . . . , t}};

C3 = {{xn, y2i, z2i−1}, {xn, y2i−1, z2i}, {yn, x2i−1, z2i},
{yn, x2i, z2i−1}, {zn, x2i−1, y2i}, {zn, x2i, y2i−1},
{x2i−1, y2i−1, z2i−1}, {x2i, y2i, z2i} : i ∈ {t+ 1, t+ 2, . . . , n−1

2
}}.

Let Q2 = {1, 2, 3, . . . , n−1}, H2 = {{1, 2}, {3, 4}, . . . , {n−2, n−1}}, and (Q2, ◦)
be a quasigroup of order n− 1 with hole H2. Define

C4 = {{xi, yj, zi◦j} : i, j ∈ Q2, and {i, j} /∈ H2}.

By Theorem 2.1(iv), there exists a TS(n, 3n − 6t). Then let (Xn, T4), (Yn, T5) and
(Zn, T6) be those TS(n, 3n − 6t)’s obtained from the theorem. Thus (V3, C1 ∪ C2 ∪
C3 ∪ C4 ∪ T4 ∪ T5 ∪ T6) is a GDD(n, n, n, 2; 3n− 6t, 1).

Lemma 3.9. There exists a GDD(n, n, n, 2; 0, λ) for every positive integer n �= 2
and every even integer λ.

Proof. It suffices to construct a GDD(n, n, n, 2; 0, 2) because a GDD(n, n, n, 2; 0, λ)
can be constructed by using λ

2
copies of all blocks of a GDD(n, n, n, 2; 0, 2).

For i ∈ {1, 2, . . . , n}, let

Bi = {{w1, xi, yi}, {w1, yi, zi}, {w1, zi, xi}, {w2, xi, yi}, {w2, yi, zi}, {w2, zi, xi}};

Q = {1, 2, . . . , n}, and (Q, ◦) be an idempotent quasigroup of order n. Define

C = {{xi, yj, zi◦j} : i, j ∈ Q and i �= j}}.

Then (Vn,B ∪ C ∪ C), where B is the union of all Bi, is a GDD(n, n, n, 2; 0, 2) as
desired.

Lemmas 3.8 and 3.9 lead to the following corollary, which is crucial for the proof
of the main result.

Corollary 3.10. Let n �= 2 be a positive integer.
(i) If n is even, then there exists a GDD(n, n, n, 2; 6s, 1) where s ∈ {0, 1, 2, . . . , n

2
}.

There exists a GDD(n, n, n, 2; 0, λ) for any even n and nonnegative integer λ.

(ii) If n is odd, then there exist a GDD(n, n, n, 2; 6s+3, 1) where s ∈ {0, 1, 2, . . . , n−1
2
}

and a GDD(n, n, n, 2; 6s, 2) where s ∈ {0, 1, 2, . . . , n}.
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Proof. (i) Since n is even and 6s ≤ 3n, we have 3n − 6s ≡ 0 (mod 6). Write
3n − 6s = 6t, and so 6s = 3n − 6t. By Lemma 3.8 when t ≤ n

2
, there exists a

GDD(n, n, n, 2; 6s, 1). The second statement follows immediately by setting s = 0.
(ii) Since n is odd and 6s + 3 ≤ 3n, we have 3n − (6s + 3) ≡ 0 (mod 6).

Write 3n − (6s + 3) = 6t, and so 6s + 3 = 3n − 6t. Again by Lemma 3.8 when
t ≤ n−1

2
, there exists a GDD(n, n, n, 2; 6s+ 3, 1). Moreover, by choosing any s1 and

s2 in {0, 1, 2, . . . , n−1
2
} such that s = s1+s2, we can construct a GDD(n, n, n, 2; 6s, 2),

where 1 ≤ s ≤ n−1, from a GDD(n, n, n, 2; 6s1+3, 1) and a GDD(n, n, n, 2; 6s2+3, 1).
Together with Lemma 3.3 and Lemma 3.9, there exists a GDD(n, n, n, 2; 6s, 2) where
0 ≤ s ≤ n as desired.

Finally, we are ready for the construction of our designs when n �= 2. The
construction in Lemma 3.11 guarantees that the condition in Theorem 1.1(iii) is
sufficient, which completes the proof of Theorem 1.1. This yields a complete solution
for the existence of a GDD(n, n, n, 2;λ1, λ2).

Lemma 3.11. Let n �= 2 be a positive integer, and λ1 ≥ 0 and λ2 > 0 be nonnegative
integers such that 2 | (λ1+nλ2), 3 | λ1 and λ1 ≤ 3nλ2. Then there exists a GDD(n, n,
n, 2; λ1, λ2).

Proof. Write λ1 = q(3n) + r, where 0 ≤ q and 0 ≤ r < 3n. By Lemma 3.1(iii),
we have q(3n) + r ≤ 3nλ2, and so λ2 ≥ q + r

3n
. Note that we can construct a

GDD(n, n, n, 2; q(3n), q) by using q copies of a GDD(n, n, n, 2; 3n, 1), which exists by
Lemma 3.3. Thus, it remains to construct a GDD(n, n, n, 2; r, λ2 − q).

Case r = 0. The construction depends on the parity of n. If n is even, by
Corollary 3.10(i), there exists a GDD(n, n, n, 2; 0, λ2 − q). Now, assume that n is
odd. Since λ1 = q(3n), we have λ1 ≡ q (mod 2). According to Lemma 3.1(i),
λ1 ≡ λ2 (mod 2), therefore we have λ2 ≡ q (mod 2). Hence, λ2 − q is even. By
Lemma 3.9, there exists a GDD(n, n, n, 2; 0, λ2 − q) as desired.

Case r > 0. Since λ2 ≥ q+ r
3n
, we have λ2 ≥ q+1. For an even n, we have λ1 ≡ 0

(mod 6) by Lemma 3.1(i) and (ii). It follows that r = λ1 − q(3n) ≡ 0 (mod 6). By
Corollary 3.10(i), there exist a GDD(n, n, n, 2; r, 1) and a GDD(n, n, n, 2; 0, λ2−(q+1))
as desired. Now, assume that n is odd. Since λ1 = q(3n) + r ≡ 0 (mod 3) by
Lemma 3.1(ii), we have r ≡ 0, 3 (mod 6). If r ≡ 3 (mod 6), then λ1 ≡ λ2 =
q(3n) + r ≡ q + r ≡ q + 1 (mod 2). Hence, by Corollary 3.10(ii), there exist a
GDD(n, n, n, 2; r, 1) and a GDD(n, n, n, 2; 0, λ2 − (q + 1)). If r ≡ 0 (mod 6), then
λ2 ≡ λ1 ≡ q(3n) ≡ q (mod 2). Furthermore, since λ2 ≥ q + 1, we have λ2 ≥
q + 2, and λ2 − (q + 2) ≡ 0 (mod 2). Hence, by Corollary 3.10(ii), there exist a
GDD(n, n, n, 2; r, 2) and a GDD(n, n, n, 2; 0, λ2 − (q + 2)). Therefore, for any cases,
there exists a GDD(n, n, n, 2; r, λ2 − q) as desired.
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