
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 88(1) (2024), Pages 97–108

Chorded pancyclicity with distance two degree
condition and doubly chorded pancyclicity

Megan Cream

Department of Mathematics, Lehigh University
Bethlehem, PA 18015, U.S.A.

macd19@lehigh.edu

Ronald J. Gould

Department of Mathematics, Emory University
Atlanta, GA 30322, U.S.A.

rg@emory.edu

Kazuhide Hirohata

Department of Industrial Engineering, Computer Science
National Institute of Technology, Ibaraki College

Hitachinaka, Ibaraki 312-8508, Japan
hirohata@ibaraki-ct.ac.jp

Abstract

A graph G of order n ≥ 3 is pancyclic if G contains a cycle of each length
from 3 to n, and vertex pancyclic (edge pancyclic) if every vertex (edge)
is contained on a cycle of each length from 3 to n. A chord of a cycle
is an edge between two nonadjacent vertices of the cycle, and a chorded
cycle is a cycle containing at least one chord. We define a graph G of
order n ≥ 4 to be chorded pancyclic if G contains a chorded cycle of each
length from 4 to n. In this paper, we improve some known results on
chorded pancyclic, chorded vertex pancyclic, and chorded edge pancyclic
graphs.

1 Introduction

We consider only simple graphs in this paper. Let G be a graph and let H be a
subgraph of G. For u ∈ V (G), the set of neighbors of u in G is denoted by NG(u),
and we denote dG(u) = |NG(u)|, NH(u) = NG(u)∩V (H), and dH(u) = |NH(u)|. Let
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S ⊆ V (G). For u ∈ V (G) − S, NS(u) = NG(u) ∩ S. The subgraph of G induced
by S is denoted by 〈S〉, G − S = 〈V (G) − S〉, and G − H = 〈V (G) − V (H)〉. If
S = {u}, then we write G − u for G − S. If C is a cycle with a given orientation
and x ∈ V (C), then x+ (x−) denotes the first successor (predecessor) of x on C. If
x, y ∈ V (C), then C[x, y] denotes the subpath of C from x to y (including x and y) in
the given direction. The reverse sequence of C[x, y] is denoted by C−[y, x]. We also
write C(x, y] = C[x+, y], C[x, y) = C[x, y−], and C(x, y) = C[x+, y−], and consider
them as both paths and vertex sets. If C is a cycle, say C = x1, x2, . . . , xt, x1, then
we assume that an orientation of C is given from x1 to xt clockwise. For two disjoint
graphs G1 and G2, G1 ∪G2, G1 +G2, and G1 ×G2 denote the union, the join, and
the cartesian product of G1 and G2, respectively. A graph is claw-free if no vertex
has three pairwise nonadjacent neighbors. For an integer k ≥ 3, a cycle of length k
is called a k-cycle. Let Pt be a path on t vertices for an integer t ≥ 1. We denote the
distance between two vertices x and y in G by distG(x, y). For a graph G, we let

σ2(G) = min{dG(u) + dG(v) | u, v ∈ V (G), uv 	∈ E(G)},
μ2(G) = min{dG(u) + dG(v) | u, v ∈ V (G), distG(u, v) = 2}, and

σ2(G) and μ2(G) are both equal to ∞ when G is complete. For terminology and
notation not defined here, see [10].

In 1960, Ore proved the following theorem which is one of the most fundamental
results on Hamiltonian graphs.

Theorem 1.1 (Ore [12]). Let G be a graph of order n ≥ 3. If σ2(G) ≥ n, then G is
Hamiltonian.

A graphG of order n ≥ 3 is said to be pancyclic ifG contains a cycle of each length
from 3 to n. In 1971, Bondy [2] proposed the following famous meta-conjecture.

Bondy’s Meta-Conjecture. Almost any nontrivial condition on a graph which
implies that the graph is Hamiltonian also implies that the graph is pancyclic. There
may be a simple family of exceptional graphs.

The following extension of Ore’s theorem (Theorem 1.1) by Bondy supports the
meta-conjecture.

Theorem 1.2 (Bondy [3]). Let G be a graph of order n ≥ 3. If σ2(G) ≥ n, then G
is pancyclic or G = Kn/2, n/2 (n is even).

Let G be a graph of order n ≥ 3, and let r ≥ 3 be an integer. A graph G is
called vertex pancyclic (edge pancyclic) if every vertex (edge) is contained on a k-
cycle for each 3 ≤ k ≤ n in G. A graph G is r-pancyclic if G contains a k-cycle for
each r ≤ k ≤ n, and G is also called vertex r-pancyclic (edge r-pancyclic) if every
vertex (edge) is contained on a k-cycle for each r ≤ k ≤ n in G.
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Recently, chorded pancyclic properties have been well-studied (see [1, 4–7, 9]). A
chord of a cycle is an edge between two nonadjacent vertices of the cycle. We say
a cycle is chorded (doubly chorded) if the cycle has at least one chord (at least two
chords), and we call such a cycle a chorded cycle (doubly chorded cycle). Further, we
say a graph G of order n ≥ 4 is chorded pancyclic (doubly chorded pancyclic) if G
contains a chorded cycle (doubly chorded cycle) of each length from 4 to n. In this
paper, we improve some known results on chorded pancyclic graphs.

A survey of results and problems on chorded cycles can be found in [11].

2 Chorded Pancyclic Graphs

Bondy’s meta-conjecture was extended in [6] to almost any nontrivial condition that
implies a graph is Hamiltonian will imply it is chorded pancyclic, possibly with some
class of well-defined exceptional graphs, and some small order exceptional graphs. As
support for this extension, the following theorem which is the extension of Theorems
1.1 and 1.2 was proved.

Theorem 2.1 (Cream et al. [6]). Let G be a graph of order n ≥ 4. If σ2(G) ≥ n,
then G is chorded pancyclic, G = Kn/2, n/2 (n is even), or G = K2 ×K3.

We improve Theorem 2.1 by considering the distance two degree condition. Since
μ2(G) ≥ σ2(G), the following theorem is stronger than Theorem 2.1.

Theorem 2.2. Let G be a graph of order n ≥ 4. If μ2(G) ≥ n, then G is chorded
pancyclic, G = Kn/2, n/2 (n is even), or G = K2 ×K3.

Remark 2.1. The degree condition of Theorem 2.2 is sharp. Let a, b be integers
such that a ≥ 1, b ≥ 1, and a + b ≥ 3. Consider the graph G = (Ka ∪Kb) +K1 of
order n. Then μ2(G) = a+ b = n− 1, and G does not contain a Hamiltonian cycle.
Thus μ2(G) ≥ n is necessary.

The following theorem by Zhang and Song will be used in the proof of Theo-
rem 2.2.

Theorem 2.3 (Zhang and Song [13]). Let G be a graph of order n ≥ 4. If μ2(G) ≥ n,
then G is vertex 4-pancyclic or G = Kn/2, n/2 (n is even).

Proof of Theorem 2.2. Let G, n be as described in Theorem 2.2. By Theorem 2.3,
G is Hamiltonian. If n = 4, then either G = K2,2 or G is a 4-cycle with chords
and is then chorded pancyclic. Suppose n = 5. Let C = v1, v2, v3, v4, v5, v1 be a
Hamiltonian cycle in G. If dG(vi) = 4 for some 1 ≤ i ≤ 5, then G is chorded
pancyclic. Thus, we may now assume that dG(vi) ≤ 3 for each 1 ≤ i ≤ 5. Without
loss of generality, we may assume that v1v3 	∈ E(G). Then distG(v1, v3) = 2. Since
μ2(G) ≥ n = 5, without loss of generality, we may assume that dG(v1) ≥ 3. Then we
have dG(v1) = 3, v1v4 ∈ E(G), and dG(v4) = 3. If v2v5 ∈ E(G), then there exists a
chorded 4-cycle, and G is chorded pancyclic. Thus we may assume that v2v5 	∈ E(G).
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By symmetry, v3v5 	∈ E(G). Thus dG(v2) = dG(v3) = 2. Therefore, dG(v5) = 2.
Since distG(v2, v5) = 2 and μ2(G) ≥ n = 5, this is a contradiction. Thus we suppose
n ≥ 6. It follows from Theorem 2.3 that G is 4-pancyclic or G = Kn/2, n/2 (n is
even). Suppose that G 	= Kn/2, n/2 (n is even) and G 	= K2 ×K3. If G is complete,
then Theorem 2.2 holds. Thus we may assume that G is not complete. Then there
exist two distinct vertices x, y ∈ V (G) with distG(x, y) = 2. We now choose two
such distinct vertices x, y with the smallest number of common neighbors. Partition
V (G)− {x, y} as follows:

M = NG(x) ∩NG(y),

X = NG(x)−M,

Y = NG(y)−M, and

D = V (G)− ({x, y} ∪M ∪X ∪ Y ).

Suppose |M | ≤ 1. Since distG(x, y) = 2 and μ2(G) ≥ n, we have

n ≤ μ2(G) ≤ dG(x) + dG(y) ≤ |V (G)− {x, y}|+ |M |
≤ (n− 2) + 1 = n− 1.

This is a contradiction. Thus |M | ≥ 2. Set |M | = 2 + r, r ≥ 0.

Claim 2.1. We have |D| ≤ r.

Proof. Suppose not, and let |D| = r + t, t ≥ 1. Then we have

n ≤ μ2(G) ≤ dG(x) + dG(y) ≤ |V (G)− {x, y}| − |D|+ |M |
= (n− 2)− (r + t) + (2 + r) = n− t.

Since t ≥ 1, this is a contradiction. Thus |D| ≤ r. �

Claim 2.2. There exists a chorded n-cycle in G.

Proof. Since n ≥ 6 and G contains a Hamiltonian cycle, say C, it is easy to see that
C is a chorded n-cycle by the distance two degree condition. �

Claim 2.3. There exists a chorded 4-cycle in G.

Proof. Suppose that the claim does not hold. Since |M | ≥ 2 by the above fact,
let a and b be any two distinct vertices in M . If ab ∈ E(G), then a, y, b, x, a is a
4-cycle with chord ab, a contradiction. Thus we may assume that ab 	∈ E(G). This
implies M is an independent set. Note distG(a, b) = 2. By the choice of x and y,
|NG(a) ∩ NG(b)| ≥ 2 + r, r ≥ 0. Let w ∈ NG(a) ∩ NG(b). Since M is independent,
w 	∈ M . If w ∈ X, then a, w, b, x, a is a 4-cycle with chord xw, a contradiction.
Thus w 	∈ X. Similarly, w 	∈ Y . Therefore, w ∈ {x, y} ∪ D and then |D| ≥ r. By
Claim 2.1, we obtain |D| = r. Since a and b are any two distinct vertices in M , we
have ND(v) = D for any v ∈ M if D 	= ∅. If D 	= ∅, then D is an independent
set, otherwise, when |D| ≥ 2, there exists a chorded 4-cycle in 〈M ∪ D〉. Thus
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〈M ∪ D〉 = K2+r, r if D 	= ∅. If X = ∅ = Y , then G = K2+r, 2+r = Kn/2, n/2, a
contradiction. Thus we may assume that X ∪ Y 	= ∅, and then, without loss of
generality, we may also assume that |X| ≥ |Y |. Since distG(a, b) = 2, we have

|M |+ |{x, y}|+ |X|+ |Y |+ |D| = n ≤ μ2(G) ≤ dG(a) + dG(b)

≤ 2(|{x, y}|+ |D|) + |NX∪Y (a)|+ |NX∪Y (b)|.
Since |M | = 2 + r and |D| = r,

(2 + r) + 2 + |X|+ |Y |+ r ≤ 2(2 + r) + |NX∪Y (a)|+ |NX∪Y (b)|,
and therefore,

|X|+ |Y | ≤ |NX∪Y (a)|+ |NX∪Y (b)|. (1)

Since NX∪Y (a) ∩NX∪Y (b) = ∅, it follows from (1) that

NX∪Y (a) ∪NX∪Y (b) = X ∪ Y. (2)

Let w1 ∈ X, and without loss of generality, we may assume that aw1 ∈ E(G).
Note that w1v 	∈ E(G) for any v ∈ X − {w1}, otherwise, say w1v

′ ∈ E(G) for some
v′ ∈ X−{w1}, then w1, v

′, x, a, w1 is a 4-cycle with chord xw1, a contradiction. Note
that w1y /∈ E(G) by the definition of X . Also w1t /∈ E(G) for any t ∈ M − {a},
otherwise, again a chorded 4-cycle exists. Thus NG(w1) ⊆ {a, x} ∪ Y ∪D. If Y = ∅,
then since distG(w1, y) = 2,

|M |+ |{x, y}|+ |X|+ |D| = n ≤ μ2(G) ≤ dG(w1) + dG(y) ≤ (|{a, x}|+ |D|) + |M |,
and thus |X| ≤ 0, a contradiction. Therefore, Y 	= ∅. If NY (w1) = ∅, then similarly,
|X| ≤ 0, again a contradiction. Therefore, NY (w1) 	= ∅. Let w1z1 ∈ E(G) for
z1 ∈ Y . By (2), we have bz1 ∈ E(G), as otherwise, if az1 ∈ E(G), then a, y, z1, w1, a
is a 4-cycle with chord az1, a contradiction.

We now claim that |M | = 2. Suppose that this claim does not hold. Then
|M | ≥ 3, and let v ∈ M − {a, b}. Since M is independent, av 	∈ E(G). By the same
argument as (2), NX∪Y (a) ∪ NX∪Y (v) = X ∪ Y . Since az1 	∈ E(G), vz1 ∈ E(G).
Then v, y, b, z1, v is a 4-cycle with chord yz1, a contradiction. Thus |M | = 2 and so
r = 0. By Claim 2.1, D = ∅.

We note that |NX(u)| ≤ 1 and |NY (u)| ≤ 1 for any u ∈ {a, b}, otherwise, there
exists a chorded 4-cycle, a contradiction. If |X| ≥ 3, then by (2), one of a and b has
at least two adjacencies in X, a contradiction. Thus |X| ≤ 2, and similarly, |Y | ≤ 2.

If |X ∪ Y | = 2, then G = K2 ×K3, a contradiction. Thus we may assume that
|X ∪Y | ≥ 3. Then by |X| ≥ |Y | which is our previous assumption, we have |X| = 2.
Let w2 ∈ X − {w1}. Then note bw2 ∈ E(G) since aw2 	∈ E(G). Suppose |Y | = 1.
Then n = 7. Since distG(y, w1) = 2, dG(y) + dG(w1) ≥ n = 7. On the other hand,
since dG(y) = 3 and dG(w1) = 3, we have dG(y)+ dG(w1) = 6, a contradiction. Thus
|Y | = 2. Now n = 8. Let z2 ∈ Y − {z1}. Then az2 ∈ E(G) since bz2 	∈ E(G). If
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w1z2 ∈ E(G), then a, z2, w1, x, a is a 4-cycle with chord aw1, a contradiction. Hence
w1z2 /∈ E(G). Since distG(y, w1) = 2, dG(y) + dG(w1) ≥ n = 8. On the other hand,
since dG(y) = 4 and dG(w1) = 3, we have dG(y) + dG(w1) = 7, a contradiction. This
completes the proof of Claim 2.3. �

Claim 2.4. If G contains a chorded 4-cycle, then there exists a chorded 5-cycle in G.

Proof. Suppose that C = v1, v2, v3, v4, v1 is a 4-cycle in G with chord v2v4. Recall
that G is connected. Since n ≥ 6, there exists some x ∈ V (G − C) such that
xv ∈ E(G) for some v ∈ V (C). By symmetry, we may assume that v = v1 or v = v2.

Case 1. Suppose v = v1, that is, xv1 ∈ E(G).

If xv′ ∈ E(G) for some v′ ∈ V (C) − {v1}, then there exists a chorded 5-cycle.
Thus xv 	∈ E(G) for any v ∈ V (C)−{v1}. Note distG(x, v2) = 2. By the distance two
degree condition, x and v2 share at least two common neighbors, and the common
neighbors except v1 must be off of C. Let y ∈ V (G − C) − {x} be such a common
neighbor. Then v1, x, y, v2, v4, v1 is a 5-cycle with chord v1v2.

Case 2. Suppose v = v2, that is, xv2 ∈ E(G).

Considering Case 1, we may assume that xv1, xv3 	∈ E(G). Note distG(x, v1) = 2.
By the distance two degree condition, x and v1 share at least two common neighbors,
and let y be such a common neighbor except v2. If y ∈ V (G − C) − {x}, then
y, x, v2, v4, v1, y is a 5-cycle with chord v1v2. This implies y = v4, and then xv4 ∈
E(G). If v1v3 ∈ E(G), then x, v2, v3, v1, v4, x is a 5-cycle with chord v1v2. Thus we
may assume that v1v3 	∈ E(G). Then distG(v1, v3) = 2. Since dG(v1) + dG(v3) ≥ n ≥
6, there exists some z ∈ V (G−C)−{x} such that zv′ ∈ E(G) for some v′ ∈ {v1, v3}.
By symmetry, we may assume that zv1 ∈ E(G). Then we are now in a case analogous
to Case 1.

This completes the proof of Claim 2.4. �

If n = 6, G 	= K3, 3 and G 	= K2 × K3, then G is chorded pancyclic by Claims
2.2–2.4. Thus we may assume that n ≥ 7.

Claim 2.5. There exists a chorded k-cycle for each 6 ≤ k ≤ n− 1 in G.

Proof. Recall that G is 4-pancyclic since G 	= Kn/2, n/2. Let 6 ≤ k ≤ n − 1 and
consider a chordless k-cycle C = v1, v2, . . . , vk, v1 in G. Let L = {v1, v3, v4, v6}. Now
we claim that |NL(x)| ≤ 2 for any x ∈ V (G−C). Suppose that |NL(x

′)| ≥ 3 for some
x′ ∈ V (G−C). By symmetry, it is sufficient to consider the cases when {v1, v3, v4} ⊆
NL(x

′) and {v1, v3, v6} ⊆ NL(x
′). If {v1, v3, v4} ⊆ NL(x

′), then x′, v3, v4, . . . , v1, x′ is
a k-cycle with chord x′v4. If {v1, v3, v6} ⊆ NL(x

′), then x′, v3, v4, . . . , v1, x′ is a k-cycle
with chord x′v6. Thus the claim holds. Since |NL(x)| ≤ 2 for any x ∈ V (G − C),



M. CREAM ET AL. /AUSTRALAS. J. COMBIN. 88 (1) (2024), 97–108 103

distG(v1, v3) = 2, and distG(v4, v6) = 2, we have

2n ≤ 2μ2(G) ≤ (dG(v1) + dG(v3)) + (dG(v4) + dG(v6))

=
∑

v∈L
dG−C(v) +

∑

v∈L
dC(v)

≤ 2(n− k) + 2 · 4
= 2n− 2k + 8,

and then k ≤ 4. Since k ≥ 6, this is a contradiction. Thus Claim 2.5 holds. �

Claims 2.2–2.5 imply that G is chorded pancyclic. This completes the proof of
Theorem 2.2. �

Finally, we consider an improvement of Bondy’s theorem (Theorem 1.2). If a
graph G contains a chorded 4-cycle, then G contains a 3-cycle. Thus if G is chorded
pancyclic, then G is pancyclic. Note that K2×K3 in Theorem 2.2 is pancyclic. Thus
the following corollary holds by Theorem 2.2.

Corollary 2.1. Let G be a graph of order n ≥ 3. If μ2(G) ≥ n, then G is pancyclic
or G = Kn/2, n/2 (n is even).

3 Doubly Chorded Edge (Vertex) Pancyclic Graphs

In this section, we first consider an extension of edge pancyclicity. Let r ≥ 4 be an
integer. A graph G of order n ≥ 4 is chorded edge r-pancyclic (doubly chorded edge
r-pancyclic) if every edge is contained on a chorded cycle (doubly chorded cycle) of
each length from r to n in G.

The following result is a consequence of a theorem in [8].

Theorem 3.1. (Faudree et al. [8, Theorem 2]) Let G be a graph of order n ≥ 3. If
σ2(G) ≥ n+ 1, then G is edge pancyclic.

In 2018, Cream et al. extended Theorem 3.1 as follows.

Theorem 3.2. (Cream et al. [7, Theorem 20]) Let G be a graph of order n ≥ 5. If
σ2(G) ≥ n+ 1, then G is chorded edge 5-pancyclic.

In this section we extend Theorems 3.1 and 3.2.

Theorem 3.3. Let G be a graph of order n ≥ 5. If σ2(G) ≥ n+ 1, then G is doubly
chorded edge 5-pancyclic.

Remark 3.1. The graph Kn/2, n/2 of even order n verifies that the σ2(G) condition
in Theorem 3.3 is sharp. Theorem 3.3 is sharp in terms of 5-pancyclicity. We
consider the graph G of order n, n ≡ 3 (mod 4), obtained from K(n−1)/2, (n+1)/2

along with a perfect matching in the larger partite set. Then G is (n+1)/2-regular,
and σ2(G) = n + 1. However, G does not contain K4. Hence there exist no doubly
chorded 4-cycles containing any specified edge in G.
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Proof of Theorem 3.3. Let G, n be as described in Theorem 3.3, and e be any
specified edge in G. If G is complete, then the theorem holds. Thus we may assume
that G is not complete.

Claim 3.1. Let a, b ∈ V (G) with ab 	∈ E(G), M = NG(a)∩NG(b), A = NG(a)−M ,
B = NG(b)−M , and D = V (G)− ({a, b} ∪M ∪A∪B). Then |M | ≥ |D|+ 3 ≥ 3.

Proof. Let a, b,M,A,B,D be as described in Claim 3.1. Since ab 	∈ E(G), by the
σ2(G) condition,

n+ 1 ≤ dG(a) + dG(b) = 2|M |+ |A|+ |B|.
Since n = |M |+ |{a, b}|+ |A|+ |B|+ |D|, we have |M | ≥ |D|+ 3 ≥ 3. �

Claim 3.2. There exists a doubly chorded n-cycle containing e in G.

Proof. By Theorem 3.2, there exists a chorded n-cycle (say C) containing e in G.
Since n ≥ 5 and σ2(G) ≥ n+ 1 ≥ 6, it is easy to see that C has at least two chords.
Thus the claim holds. �

Claim 3.3. There exists a doubly chorded 5-cycle containing e in G.

Proof. Let e = x1x2. We claim that there exists some y ∈ V (G)−{x1, x2} such that
x1y 	∈ E(G). Suppose not. Since σ2(G−x1) ≥ (n+1)−2 = n−1, G−x1 contains a
Hamiltonian cycle (say C) by Ore’s theorem (Theorem 1.1). Now it is trivial to find
a path of length 3 on C starting at x2, and then there exists a doubly chorded 5-cycle
containing e. Thus the claim holds. We partition V (G) as follows: M = NG(x1) ∩
NG(y), X = NG(x1)−M , Y = NG(y)−M , and D = V (G)− ({x1, y}∪M ∪X ∪Y ).

Case 1. Suppose x2 ∈ M .

If x2m
′ ∈ E(G) for some m′ ∈ M − {x2}, then for any m ∈ M − {x2, m

′},
x1, x2, m

′, y,m, x1 is a 5-cycle with chords x1m
′ and x2y containing e. If m1m2 ∈

E(G) for any m1, m2 ∈ M − {x2}, then x1, x2, y,m2, m1, x1 is a 5-cycle with chords
x1m2 and m1y containing e. Thus we may assume that M is an independent set.
If z ∈ NX(x2) ∩ NX(m

′) for some m′ ∈ M − {x2}, then x2, x1, z,m
′, y, x2 is a 5-

cycle with chords x1m
′ and x2z containing e. Thus NX(x2) ∩ NX(m) = ∅ for any

m ∈ M − {x2}. Similarly, NY (x2) ∩ NY (m) = ∅ for any m ∈ M − {x2}. Since
x2m 	∈ E(G) for any m ∈ M − {x2}, by the σ2(G) condition,

n+ 1 ≤ dG(x2) + dG(m) ≤ 2|{x1, y}|+ |X|+ |Y |+ 2|D|.
Since n = |M |+ |{x1, y}|+ |X|+ |Y |+ |D|, we have |M | ≤ |D|+1. This contradicts
Claim 3.1.

Case 2. Suppose x2 	∈ M .

In this case, note x2 ∈ X. If |NM(x2)| ≥ 2, then there exists a doubly chorded
5-cycle containing e. Thus we may assume that |NM(x2)| ≤ 1. Since |M | ≥ 3
by Claim 3.1, there exists m1 ∈ M such that x2m1 	∈ E(G). Now we consider
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x2 (respectively, m1) as x1 (respectively, y) in Case 1. Note that x1 is a common
neighbor of x2 and m1. Then we are in a case analogous to Case 1.

Hence Claim 3.3 holds. �

Claim 3.4. There exists a doubly chorded k-cycle for each 6 ≤ k ≤ n− 1 containing
e in G.

Proof. By Theorem 3.2, G is chorded edge 5-pancyclic. Let C = v1, v2, . . . , vk, v1,
6 ≤ k ≤ n − 1 be a chorded cycle of length k containing e in G. Without loss of
generality, we may assume that v1vi, 3 ≤ i ≤ k − 1 is a chord of C. Then note that
|C(v1, vi)| ≥ 1 and |C(vi, v1)| ≥ 1. Also we may assume that C[v1, vi] contains e. Let
e = vjvj+1 for 1 ≤ j ≤ i− 1.

Case 1. Suppose |C(v1, vi)| ≥ 5.

In this case, i ≥ 7. By symmetry, we may assume that 1 ≤ j ≤ i − 4. First
suppose j ≥ 2. If v2vi ∈ E(G), then C is the desired cycle. Thus we may as-
sume that v2vi 	∈ E(G). Similarly, vi−3vi+1 	∈ E(G). By Claim 3.1, there exist
x ∈ NG−C(v2) ∩ NG−C(vi) and y ∈ NG−C(vi−3) ∩ NG−C(vi+1) with x 	= y. Then
C[v2, vi−3], y, C[vi+1, v1], vi, x, v2 is a k-cycle with chords v1v2 and vivi+1 containing e.

Next suppose j = 1. We have v2v5, vi−1vk 	∈ E(G), otherwise, C is the desired
cycle. By Claim 3.1, there exist x ∈ NG−C(v2) ∩ NG−C(v5) and y ∈ NG−C(vi−1) ∩
NG−C(vk) with x 	= y. Then v1, v2, x, C[v5, vi−1], y, C

−[vk, vi], v1 is a k-cycle with
chords vi−1vi and vkv1 containing e.

Case 2. Suppose |C(v1, vi)| = 4.

In this case, i = 6. By symmetry, we may assume that 1 ≤ j ≤ 3. First
suppose j = 1, that is, e = v1v2. We have v2v5, v5vk 	∈ E(G). By Claim 3.1, there
exist x ∈ NG−C(v2) ∩ NG−C(v5) and y ∈ NG−C(v5) ∩ NG−C(vk) with x 	= y. Then
v1, v2, x, v5, y, C

−[vk, v6], v1 is a k-cycle with chords v5v6 and vkv1 containing e.

Next suppose j = 2, that is, e = v2v3. We have v2v6, v3v7 	∈ E(G). By Claim 3.1,
there exist x ∈ NG−C(v2) ∩ NG−C(v6) and y ∈ NG−C(v3) ∩ NG−C(v7) with x 	= y.
Then v2, v3, y, C[v7, v1], v6, x, v2 is a k-cycle with chords v1v2 and v6v7 containing e.

Finally, suppose j = 3, that is, e = v3v4. Assume |C(v6, v1)| ≥ 2. We have
v2v6, v5v9 	∈ E(G) (if k = 8, then v9 = v1). By Claim 3.1, there exist x ∈ NG−C(v2)∩
NG−C(v6) and y ∈ NG−C(v5) ∩ NG−C(v9) with x 	= y. Then C[v2, v5], y, C[v9, v1],
v6, x, v2 is a k-cycle with chords v1v2 and v5v6 containing e. Next assume that
|C(v6, v1)| = 1. We have v2v5, v4v6 	∈ E(G). By Claim 3.1, there exist x ∈ NG−C(v2)∩
NG−C(v5) and y ∈ NG−C(v4) ∩ NG−C(v6) with x 	= y. Now we make a new cycle
C ′ = v2, v3, v4, y, v6, v5, x, v2. Then C ′ is a k-cycle with chord v4v5 containing e =
v3v4, and yv5, v3v6 	∈ E(G). Since |NG−C′(y) ∩ NG−C′(v5)| ≥ 1, we first take z ∈
NG−C′(y) ∩NG−C′(v5). Next we take w ∈ NG−C′(v3) ∩NG−C′(v6) with w 	= z. Then
v3, w, v6, y, z, v5, v4, v3 is a k-cycle with chords v4y and v5v6 containing e.
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Case 3. Suppose |C(v1, vi)| = 3.

In this case, i = 5. By symmetry, we may assume that j ∈ {1, 2}. First suppose
j = 1, that is, e = v1v2. Assume |C(v5, v1)| ≥ 2. We have v5vk, v2v6 	∈ E(G).
Since |NG−C(v5) ∩ NG−C(v7)| ≥ 1 when |C(v5, v1)| = 2, i.e., k = 7, we first take
x ∈ NG−C(v5) ∩ NG−C(vk). Next we take y ∈ NG−C(v2) ∩ NG−C(v6) with x 	= y.
Then v1, v2, y, C[v6, vk], x, v5, v1 is a k-cycle with chords v5v6 and vkv1 containing e.
Next assume |C(v5, v1)| = 1. We have v1v3, v2v4 	∈ E(G). By Claim 3.1, there exist
x ∈ NG−C(v1)∩NG−C(v3) and y ∈ NG−C(v2)∩NG−C(v4) with x 	= y. Now we make a
new cycle C ′ = v1, v2, y, v4, v3, x, v1. Then C ′ is a k-cycle with chord v2v3 containing
e = v1v2, and v1v3, v2x 	∈ E(G). By Claim 3.1, there exist z ∈ NG−C(v1)∩NG−C(v3)
and w ∈ NG−C(v2) ∩ NG−C(x). If z 	= w, then v1, v2, w, x, v3, z, v1 is a k-cycle with
chords v1x and v2v3 containing e. If z = w, then v1, v2, y, v4, v3, z, v1 is a k-cycle with
chords v2v3 and zv2 containing e.

Next suppose j = 2, that is, e = v2v3. Assume |C(v5, v1)| ≥ 2. We have
v2v4, v3v8 	∈ E(G) (if k = 7, then v8 = v1). By Claim 3.1, there exist x ∈ NG−C(v2)∩
NG−C(v4) and y ∈ NG−C(v3) ∩NG−C(v8) with x 	= y. Then

v2, v3, y, C[v8, v1], v5, v4, x, v2

is a k-cycle with chords v1v2 and v3v4 containing e. Next assume |C(v5, v1)| = 1.
We have v2v4, v3v5 	∈ E(G). By Claim 3.1, there exist x ∈ NG−C(v2) ∩ NG−C(v4)
and y ∈ NG−C(v3) ∩ NG−C(v5) with x 	= y. Now we make a new cycle C ′′ =
v2, v3, y, v5, v4, x, v2. Then C ′′ is a k-cycle with chord v3v4 containing e = v2v3, and
this case is the same as C ′ above.

Case 4. Suppose |C(v1, vi)| = 2.

In this case, i = 4. Since k ≥ 6, |C(v4, v1)| ≥ 2. By symmetry, we may assume
that j ∈ {1, 2}. First suppose j = 1, that is, e = v1v2. Assume |C(v4, v1)| ≥ 3.
We have v2v4, v3v7 	∈ E(G). By Claim 3.1, we first take x ∈ NG−C(v2) ∩ NG−C(v4).
Next we take y ∈ NG−C(v3) ∩NG−C(v7) with x 	= y. Then v1, v2, x, v4, v3, y, C[v7, v1]
is a k-cycle with chords v1v4 and v2v3 containing e. Next assume |C(v4, v1)| = 2.
We have v1v3, v2v4 	∈ E(G). By Claim 3.1, there exist x ∈ NG−C(v1) ∩ NG−C(v3)
and y ∈ NG−C(v2) ∩ NG−C(v4). If x 	= y, then v1, v2, y, v4, v3, x, v1 is a k-cycle with
chords v1v4 and v2v3 containing e. If x = y, then v1, v2, x, v4, v5, v6, v1 is a k-cycle
with chords v1x and v1v4 containing e.

Next suppose j = 2, that is, e = v2v3. Assume |C(v4, v1)| ≥ 3. We have
v2v4, v3v7 	∈ E(G). Since |NG−C(v2) ∩ NG−C(v4)| ≥ 1, we first take x ∈ NG−C(v2) ∩
NG−C(v4). Next we take y ∈ NG−C(v3) ∩ NG−C(v7) with x 	= y. Then v2, v3, y,
C[v7, v1], v4, x, v2 is a k-cycle with chords v1v2 and v3v4 containing e. Next assume
|C(v4, v1)| = 2. We have v1v3, v2v4 	∈ E(G). By Claim 3.1, there exist x ∈ NG−C(v1)∩
NG−C(v3) and y ∈ NG−C(v2) ∩ NG−C(v4). If x 	= y, then v1, x, v3, v2, y, v4, v1 is a k-
cycle with chords v1v2 and v3v4 containing e. Thus we may assume that x = y.
Noting v2v6 	∈ E(G), by Claim 3.1, there exists z ∈ NG−C(v2) ∩ NG−C(v6) with
z 	= x. Then v1, x, v3, v2, z, v6, v1 is a k-cycle with chords v1v2 and xv2 containing e.
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Case 5. Suppose |C(v1, vi)| = 1.

In this case, i = 3. By symmetry, we may assume that j = 1, that is, e = v1v2.
Since k ≥ 6, |C(v3, v1)| ≥ 3. We have v2vk, v3v6 	∈ E(G). By Claim 3.1, there
exist x ∈ NG−C(v2) ∩ NG−C(vk) and y ∈ NG−C(v3) ∩ NG−C(v6) with x 	= y. Then
v1, v3, y, C[v6, vk], x, v2, v1 is a k-cycle with chords v1vk and v2v3 containing e.

Thus Claim 3.4 holds. �

By Claims 3.2–3.4, Theorem 3.3 holds. �

Let m ≥ 4 and k ≥ 1 be integers, and let G be a graph of order n ≥ m. We
say G is doubly chorded (Pk, m)-pancyclic if any path Pk is contained on a doubly
chorded cycle of each length from m to n in G.

Corollary 3.1. Let k ≥ 2 be an integer, and let G be a graph of order n ≥ k+ 3. If
σ2(G) ≥ n+ 2k − 3, then G is doubly chorded (Pk, k + 3)-pancyclic.

Proof. Contract Pk to an edge e to obtain a new graph G′ of order n− (k − 2) ≥ 5.
Then σ2(G

′) ≥ n+2k− 3− 2(k− 2) = n+1, and n+1 ≥ (n− k+ 2)+ 1 = |G′|+1
since k ≥ 2. By Theorem 3.3, G′ is doubly chorded edge 5-pancyclic. Thus e is
contained on a doubly chorded cycle of each length from 5 to n − (k − 2). Now we
expand e back to Pk. Then each doubly chorded cycle in G′ containing e expands
to a doubly chorded cycle in G containing Pk. These cycles have each length from
5 + (k − 2) = k + 3 to n. Thus the corollary holds. �

Finally, we consider an extension of vertex pancyclicity. Similar to the definitions
of (doubly) chorded edge r-pancyclic graphs (r ≥ 4), we define (doubly) chorded ver-
tex r-pancyclic graphs.

Theorem 3.4 (Cream et al. [7, Theorem 6]). Let G be a graph of order n ≥ 5. If
σ2(G) ≥ n+ 1, then G is chorded vertex 5-pancyclic.

On the assumption that G in Theorem 3.4 is claw-free, Beck et al. proved the
following theorem.

Theorem 3.5 (Beck et al. [1, Theorem 4.4]). Let G be a claw-free graph of order
n ≥ 5. If σ2(G) ≥ n+ 1, then G is doubly chorded vertex 5-pancyclic.

We show that the same result as Theorem 3.5 holds, even if G is not claw-free.

Corollary 3.2. Let G be a graph of order n ≥ 5. If σ2(G) ≥ n+1, then G is doubly
chorded vertex 5-pancyclic.

Remark 3.2. The two graphs in Remark 3.1 show that the σ2(G) condition and
5-pancyclicity in Corollary 3.2 are sharp.

Proof of Corollary 3.2. We consider any edge e in G such that an endvertex of e
is any specified vertex. Then we can prove Corollary 3.2 by Theorem 3.3. �
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