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Abstract

Given a finite quiver (directed graph) without loops and multiedges, the
convex hull of the column vector of the incidence matrix is called the di-
rected edge polytope and is an interesting example of a lattice polytope.
In this paper, we give a complete characterization of facets of the directed
edge polytope of an arbitrary finite quiver without loops and multiedges
in terms of the connectivity and the existence of a rank function. Our
result can be regarded as an extension of the result on facets of sym-
metric edge polytopes to directed edge polytopes, shown by Higashitani,
Jochemko and Micha�lek. When the quiver in question has a rank func-
tion, we obtain a characterization of faces of arbitrary dimensions.

1 Introduction

Motivated by optimal transportation problems, Vershik [14] proposed to study the
convex polytope KR(X, d) constructed from a finite metric space (X, d). When
X = {1, . . . , n}, it is defined by

KR(X, d) = conv
(

ei−ej
d(i,j)

∣∣∣ 1 ≤ i, j ≤ n
)
,
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where {e1, . . . , en} is the standard orthonormal basis of Rn. This is called the fun-
damental polytope in Vershik’s paper. It is also called the Kantorovich–Rubinstein
polytope [8, 9]. When X is a tree-like metric space, Delucchi and Hoessley [4] proved a
nice formula of the f -vector by using the relation between tree-like metric spaces and
hyperplane arrangements. The starting point of this work was the second author’s
attempt to extend their work to graphs with cycles.

Given a finite simple graph G, define a metric dgraph on the vertex set G0 by
the shortest length of paths, where each edge is equipped with length one. It turns
out that the Kantorovich–Rubinstein polytope of the metric space (G0, dgraph) has
already been studied under different names. It coincides with the symmetric edge
polytope SE(G) introduced by Matsui et al. [10]. When G is the complete graph
Kn, it is called the root polytope of the root system An and its faces are completely
determined by Cho [2].

We may also generalize the definition of a symmetric edge polytope to a finite
quiver (directed graph) Q = (Q0, Q1) without loops and multiedges by

DE(Q) = conv
(
ε(i,j) = ei − ej

∣∣ (i, j) ∈ Q1

)
.

Here Q0 is the set of vertices and the set of edges Q1 is regarded as a subset of
Q0 × Q0. The polytope DE(Q) is called the directed edge polytope of Q in [6]. The
symmetric edge polytope SE(G) is nothing but DE(D(G)), where D(G) is the double
of G, i.e. the quiver obtained from G by replacing each edge v − w by two directed
edges v → w and v ← w.

The aim of this paper is to find an explicit combinatorial description of all
facets of DE(Q) and thus obtain combinatorial descriptions of facets of SE(G) =
KR(G0, dgraph) for a finite simple graph.

In general, the directed edge polytope DE(Q) is defined as a convex polytope in
the vector space R

Q0 = {ρ : Q0 → R}. Since the vertex set of DE(Q) is given by{
ε(v,w)

∣∣ (v, w) ∈ Q1

}
, any face of DE(Q) can be written in the form DE(R) for a

subquiver R with R0 = Q0. Let us call such a subquiver a lluf subquiver 1.
Given a lluf subquiver R of Q, our problem is thus to determine when DE(R) is a

facet of DE(Q), i.e. DE(R) is a face of DE(Q) and dim DE(R) = dim DE(Q)− 1. It
turns out that the existence of a rank function, i.e. a function ρ : Q0 → R satisfying
ρ(v) + 1 = ρ(w) for any edge v → w, plays a key role in both problems. As we see
in Proposition 3.8, such a function makes the vertex set Q0 into a graded poset.

Theorem 1.1. For a finite quiver Q without loops and multiedges, we have

dim(DE(Q)) =

{
|Q0| − |π0(Q)| − 1 (if Q has a rank function)

|Q0| − |π0(Q)| (otherwise),

where π0(Q) is the set of connected components of Q.
1In category theory, a subcategory containing all possible morphisms of a parent category is

called a full subcategory. On the other hand, a subcategory containing all objects of a parent
category is called a wide subcategory. It is also called a lluf subcategory, which is an anagram
of ‘full’. Since the term ‘wide’ in graph theory is sometimes used as another meaning, we call a
subquiver containing all vertices a lluf quiver in this paper.
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Remark 1.2. In [12], Ohsugi and Hibi obtained essentially the same notion as the
directed edge polytope for a tournament obtained from an orientation of a complete
graph. A tournament is equvalent to an asymmetric quiver whose underlying graph
is a complete graph. They calculate the dimension of them.

It should be noted that, even if Q is connected, a subquiver R representing a
facet of DE(Q) as DE(R) might not be connected. In fact, the number of connected
components is another key player in our work.

Theorem 1.3. Let Q be a finite quiver without loops and multiedges. For a lluf
subquiver R of Q with dim(DE(R)) = dim(DE(Q))− 1, DE(R) is a facet of DE(Q)
if and only if one of the following conditions holds:

1. |π0(R)| = |π0(Q)| + 1, R is a component-wise full subquiver of Q (Defini-
tion 2.6), and the contraction of R in Q (Definition 4.2) Q/R is acyclic.

2. |π0(R)| = |π0(Q)| and there exists a rank function ρ of R such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ Q1 \R1.

Note that lower dimensional faces can be obtained from facets by iterating the
process of taking facets. Thus we obtain the following characterization of all faces of
DE(Q) for any quiver Q with a rank function.

Theorem 1.4. Suppose Q has a rank function. For a proper subquiver R of Q,
the polytope DE(R) is a face of DE(Q), if and only if R is a component-wise full
subquiver of Q and Q/R is acyclic.

When Q = D(G) for a simple graph G, it does not have a rank function and the
condition (2) in Theorem 1.3 applies. It is immediate to translate the condition (2)
into the following form.

Corollary 1.5 (Corollary 5.4). For a connected lluf subquiver R of D(G) with
dim(DE(R)) = dim(SE(G))− 1, DE(R) is a facet of SE(G) if and only if |π0(R)| =
|π0(D(G))| and there exists a function ρ ∈ R

G0 such that

ρ(v)− ρ(w) =

⎧⎪⎨
⎪⎩

1 if (v, w) ∈ R1,

−1 if (w, v) ∈ R1,

0 otherwise

for (v, w) ∈ D(G)1.

This is essentially equivalent to a characterization of facets of symmetric edge
polytopes in [7] when G is connected.

After fixing notation and terminology in Section 2, Theorem 1.1 is proved in
Section 3, and Theorems 1.3 and 1.4 are proved in Section 4. We end this paper
with sample computations in Section 5. In particular, a complete characterization
of all faces of the symmetric edge polytope of a cyclic graph is obtained, which
was previously done by the second author without using the characterization in this
paper and became the starting point of this work. This is a full version of the results
announced as an extended abstract [11].
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2 Notation and terminology

First we fix notation and terminology for quivers.

Definition 2.1. We call a pair Q = (Q0, Q1) a quiver if Q0 is a finite set and Q1 is
a subset of Q0 × Q0 \ { (v, v) | v ∈ Q0 }. An element of Q0 is called a vertex of Q,
and an element (v, w) in Q1 is called an edge of Q from v to w.

The following classes of quivers play essential roles in this paper.

Definition 2.2. A quiver Q is said to be

1. acyclic if there does not exist v0, . . . , vn ∈ Q0 such that n > 1, vn = v0, and
(vt, vt+1) ∈ Q1 for t = 0, . . . , n− 1,

2. asymmetric if

(v, w) ∈ Q1 =⇒ (w, v) �∈ Q1,

and

3. symmetric if

(v, w) ∈ Q1 ⇐⇒ (w, v) ∈ Q1.

Note that a quiver may be neither symmetric nor asymmetric.

Definition 2.3. We define the underlying graph of a quiver Q to be the (undirected)
graph obtained from Q by using all vertices of Q and by replacing all directed edges
of Q with undirected edges.

Underlying graphs may have multiple edges. The underlying graph of Q is simple
if and only if Q is asymmetric.

In order to describe faces of directed edge polytopes, we need subquivers.

Definition 2.4. A quiver R is called a subquiver of Q if R0 ⊂ Q0 and R1 ⊂ Q1. We
say that a subquiver R of Q is

1. proper if R1 is a proper subset of Q1,

2. full if R1 = { (v, w) ∈ Q1 | v, w ∈ R0 }, and

3. lluf if R0 = Q0.

We make use of (undirected) walks to define connectivity of quivers.

Definition 2.5. Let Q be a quiver. An undirected walk from v0 to vn in Q is a
sequence (v0, v1, . . . , vn) of vertices in Q such that (vt, vt+1) ∈ Q1 or (vt+1, vt) ∈ Q1

for all t.
An undirected walk (v0, v1, . . . , vn) is called
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1. closed if v0 = vn, and

2. an undirected cycle if it is closed and vi �= vj for any pair (i, j) with 0 ≤ i <
j < n.

Definition 2.6. We say a quiver Q is connected if, for any pair (v, w) of vertices of
Q, there exists an undirected walk from v to w. A connected maximal subquiver of
Q is called a connected component of Q. The set of all connected components of Q
is denoted by π0(Q). The number |Q0| − |π0(Q)| is denoted by c(Q) and is called
the coconnectivity of Q. We say that a luff subquiver R of Q is component-wise full
if C1 = { (v, w) ∈ Q1 | v, w ∈ C0 } for each connected component C ∈ π0(R) of R.
In the other words, a luff subquiver R of Q is said to be component-wise full if each
connected component of R is a full subquiver of Q.

Note that a quiver is connected if and only if the underlying graph is connected.

Definition 2.7. For a connected quiver Q, we call a lluf asymmetric subquiver R
of Q a spanning polytree in Q if the underlying graph of R is a tree, i.e. an acyclic
connected simple undirected graph. For a quiver Q, we call a lluf subquiver R of Q
a spanning polyforest in Q if each connected component of R is a spanning polytree
in some connected component of Q.

We also need directed walks and cycles.

Definition 2.8. A directed walk from v0 to vn in a quiver Q is a sequence (v0, v1, . . . ,
vn) of vertices in Q such that (vt, vt+1) ∈ Q1 for all t. A directed walk (v0, v1, . . . , vn)
is called a directed cycle if v0 = vn and vi �= vj for any pair (i, j) with 0 ≤ i < j < n.

By definition, a quiver is acyclic if and only if it does not contain a directed cycle.

3 Dimension

Here is our main object of study.

Definition 3.1. Let Q be a quiver. The vector space of maps from Q0 to R is
denoted by R

Q0 . It is equipped with an inner product 〈 , 〉 defined by

〈ρ, δ〉 =
∑
v∈Q0

ρ(v)δ(v)

for ρ, δ ∈ R
Q0. For a subset V ⊂ Q0, we define an element κV ∈ R

Q0 by

κV (v) =

{
1 (v ∈ V ),

0 (v �∈ V ).

The set { κ{ v } | v ∈ Q0 } is a standard basis for the vector space R
Q0. For (v, w) ∈

Q0 ×Q0, we define the vector ε(v,w) by

ε(v,w) = κ{ v } − κ{w }.
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Define a convex polytope in R
Q0 by

DE(Q) = conv { ε(v,w) | (v, w) ∈ Q1 } .

This is called the directed edge polytope of Q.

Remark 3.2. For a quiver Q, define a map

δ : Q0 ×Q1 −→ {−1, 0, 1}

by

δ(v, e) =

⎧⎪⎨
⎪⎩

1 if e = (v, w) for some w ∈ Q0,

−1 if e = (w, v) for some w ∈ Q0,

0 otherwise.

The matrix obtained from this map by choosing appropriate total orders of Q0 and
Q1 is called the incidence matrix of Q and is denoted by I(Q). Note that the vectors
ε(v,w) are column vectors of I(Q) and the directed edge polytope DE(Q) is the convex
hull of these column vectors.

It is easy to determine the vertices of DE(Q). For a convex polytope P , let us
denote the set of vertices of P by vert(P ).

Lemma 3.3. For a quiver Q, we have

vert(DE(Q)) =
{
ε(v,w)

∣∣ (v, w) ∈ Q1

}
.

In general, any face of a convex polytope is the convex hull of a collection of ver-
tices of the original polytope. In particular, any face of DE(Q) is of the form DE(R)
for a subquiver R. The main purpose of this article is to give a characterization of
subquivers corresponding to faces.

Note that even if Q is connected, a subquiver R representing a face of DE(Q)
may not be connected. It turns out that the number of connected components is
closely related to the dimension of DE(R). In fact, an upper bound is given by the
coconnectivity c(R).

Lemma 3.4. Define a vector subspace VQ of RQ0 by

VQ =
⋂

R∈π0(Q)

κ⊥
R0
,

where κ⊥
R0

is the orthogonal complement of κR0 in R
Q0. Then DE(Q) ⊂ VQ and we

have dim DE(Q) ≤ |Q0| − |π0(Q)| = c(Q).

Proof. Let R be a connected component of Q. We show that DE(Q) is contained in
the hyperplane κ⊥

R0
. For each edge (v, w) in Q, either {v, w} ⊂ R0 or {v, w}∩R0 = ∅.

In the former case, 〈κR0, ε(v,w)〉 = 1 − 1 and in the latter case, 〈κR0 , ε(v,w)〉 = 0 − 0.
Thus DE(Q) ⊂ κ⊥

R0
.



Y. NUMATA ET AL. /AUSTRALAS. J. COMBIN. 88 (1) (2024), 77–96 83

Since the hyperplanes defined by the vertex sets of connected components inter-
sect transversally, we have

dim DE(Q) ≤ dim

⎛
⎝ ⋂

R∈π0(Q)

κ⊥
R0

⎞
⎠ = dimR

Q0 − |π0(Q)| = c(Q).

It turns out that dim DE(Q) varies depending on the existence of a rank function,
since such a function defines another hyperplane that contains the directed edge
polytope.

Definition 3.5. For a quiver Q, a function ρ ∈ R
Q0 is called a rank function of Q if

it satisfies ρ(v) + 1 = ρ(w) for each edge (v, w) ∈ Q1.

Lemma 3.6. When Q has a rank function ρ, choose an edge (v, w) ∈ Q1 and define
a hyperplane Hρ in R

Q0 by

Hρ = ρ⊥ + ε(v,w) =
{
δ + ε(v,w)

∣∣ δ ∈ ρ⊥
}
.

Then this is independent of the choice of an edge (v, w) and contains DE(Q).

Proof. For edges (v, w) and (v′, w′) in Q, we have

〈ρ, ε(v,w)〉 = ρ(v)− ρ(w) = −1 = ρ(v′)− ρ(w′) = 〈ρ, ε(v′,w′)〉,
which implies that ε(v,w) − ε(v′,w′) ∈ ρ⊥ and ρ⊥ + ε(v,w) = ρ⊥ + ε(v′,w′). It also implies
that all vertices of DE(Q) are contained in Hρ and thus DE(Q) ⊂ Hρ.

The hyperplane Hρ is transversal to the hyperplanes defined by connected com-
ponents of Q. And we have the following upper bound of dim DE(Q).

Corollary 3.7. If Q has a rank function, then dim(DE(Q)) ≤ c(Q)− 1.

The choice of the term “rank function” is justified by the following fact.

Proposition 3.8. The following are equivalent for a quiver Q:

1. Q has a rank function ρ.

2. Q is asymmetric and satisfies

|{ t | (vt, vt+1) ∈ Q1 }| = |{ t | (vt+1, vt) ∈ Q1 }|
for each undirected closed walk (v0, v1, . . . , vn) in Q.

3. Q is asymmetric and satisfies

|{ t | (vt, vt+1) ∈ Q1 }| = |{ t | (vt+1, vt) ∈ Q1 }|
for each undirected cycle (v0, v1, . . . , vn) in Q.

4. Q is the Hasse diagram of a graded poset (Q0,≤) with rank function ρ.
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Proof. Suppose Q has a rank function ρ. Then Q cannot have a pair (v, w) of vertices
with v → w and v ← w and hence is asymmetric. Let (v0, . . . , vn) be an undirected
closed walk or cycle in Q. Then

0 = ρ(v0)− ρ(vn) =
∑

t∈{ t | (vt,vt+1)∈Q1 }
1 +

∑
t∈{ t | (vt+1,vt)∈Q1 }

(−1)

and we have
|{ t | (vt, vt+1) ∈ Q1 }| = |{ t | (vt+1, vt) ∈ Q1 }| .

Conversely, suppose that the second condition is satisfied. Choose a vertex v0.
For a vertex w ∈ Q0, choose an undirected walk (v0, . . . , vn = w) from v0 to w and
define

ρ(w) = |{ t | (vt, vt+1) ∈ Q1 }| − |{ t | (vt+1, vt) ∈ Q1 }| .
The second condition guarantees that this is independent of the choice of a walk.

Since any undirected closed walk can be decomposed into undirected cycles, the
second and the third conditions are equivalent. Finally the first and the fourth
conditions are equivalent by definition.

In order to obtain lower bounds of dim DE(Q), we consider the case of acyclic
quivers.

Lemma 3.9. Let F be a quiver whose underlying graph is acyclic. Then the dimen-
sion of the vector space spanned by { ε(v,w) | (v, w) ∈ F1 } is given by c(F ). Thus we
obtain

dim DE(F ) = dim aff
(
ε(v,w)

∣∣ (v, w) ∈ F1

)
= c(F )− 1,

where aff denotes the affine hull.

Proof. Recall that I(F ) is the incidence matrix of F . Then the dimension of the
vector space spanned by

{
ε(v,w)

∣∣ (v, w) ∈ F1

}
is rank I(F ). By the additivity of

the rank of the incidence matrix with respect to disjoint unions, it suffices to prove
that rank I(F ) = |F0| − 1, when F is connected.

By the acyclicity assumption, the underlying graph of F is a tree. Let n = |F0|.
We may choose an ordering F0 = {v1, . . . , vn} in such a way that the underlying graph
of the full subquiver F (i) with vertices {vi, . . . , vn} is a tree for each i = 1, . . . , n− 1.
In other words, vi is connected to a vertex in {vi+1, . . . , vn} by a unique edge for each
i = 1, . . . , n− 1. With this ordering, I(F (i)) is of the form

I(F (i)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±1 0 · · · 0
0
...
0
∓1 I(F (i+1))
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and we obtain rank I(F ) = n− 1 = |F0| − 1 by induction.
Since the origin is not contained in the affine hull, we have

dim conv
(
ε(v,w)

∣∣ (v, w) ∈ F1

)
= dim aff

(
ε(v,w)

∣∣ (v, w) ∈ F1

)
= c(F )− 1.

Corollary 3.10. For any quiver Q, we have dim(DE(Q)) ≥ c(Q)− 1.

Proof. Choose a spanning polyforest F in Q. Then we have

dim(DE(Q)) ≥ dim(DE(F )) = c(F )− 1 ≥ c(Q)− 1,

since R0 = Q0.

For those quivers that do not have rank functions, we have the following lower
bound.

Lemma 3.11. If Q does not have a rank function, then dim(DE(Q)) ≥ c(Q).

Proof. Let F be spanning polyforest of Q. Then F0 = Q0 and |π0(F )| = |π0(Q)|. By
Lemma 3.9, we have dim(DE(F )) = c(F )− 1 = c(Q)− 1.

Since the underlying graph of F is acyclic, F has a rank function ρ. Let Hρ be
the hyperplane in Lemma 3.6. It is given by

Hρ = ρ⊥ + ε(v0,w0)

for an edge (v0, w0) in F . Since Q does not have a rank function, there exists an
edge (v, w) in Q such that ρ(v) + 1 �= ρ(w). Then we have

〈ρ, ε(v,w) − ε(v0,w0)〉 = ρ(v)− ρ(w)− (ρ(v0)− ρ(w0))

= ρ(v)− ρ(w) + 1 �= 0,

which implies that the vertex ε(v,w) is not contained in the hyperplane Hρ. It is not
contained in any one of hyperplanes of the form κG0 for a connected component G
of F , either. In other words, ε(v,w) �∈ Hρ ∩ VF . Since DE(F ) ⊂ Hρ ∩ VF , we have
dim(DE(Q)) ≥ dim(DE(F )) + 1 = c(Q).

Now Theorem 1.1 follows from Corollary 3.7, Corollary 3.10, Lemma 3.4 and
Lemma 3.11.

4 Facets

Let R be a lluf subquiver of Q so that both DE(R) and DE(Q) are contained in
R

Q0 . In order to prove Theorem 1.3, we would like to know when DE(R) is a face of
DE(Q) and dim(DE(R)) = dim(DE(Q))− 1.

We first obtain the following relation between the coconnectivities of Q and R
by the dimension condition.
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Lemma 4.1. Let R be a lluf subquiver of Q. If DE(R) is a facet of DE(Q), then
c(R) = c(Q) or c(R) = c(Q)− 1. Thus |π0(R)| = |π0(Q)| or |π0(R)| = |π0(Q)|+ 1.

Proof. When Q has a rank function, so does R. And we have

c(R)− 1 = dim(DE(R)) = dim(DE(Q))− 1 = c(Q)− 2

by Theorem 1.1, or c(R) = c(Q)−1. If Q does not have a rank function, dim(DE(Q))
= c(Q), and we have c(R) = c(Q) or c(R) = c(Q)− 1, depending on the existence of
a rank function on R.

One of the sufficient conditions for DE(R) being a facet is the acyclicity of the
quiver Q/R obtained from Q by “contracting” R.

Definition 4.2. Let R be a component-wise full subquiver of a quiver Q. Define an
equivalence relation ∼ on Q0 by

v ∼ w ⇐⇒ v and w are connected by an undirected walk in R.

The equivalence class of v ∈ Q0 is denoted by [v]. Define a quiver Q/R by

(Q/R)0 = Q0/∼
(Q/R)1 = { ([v], [w]) | (v, w) ∈ Q1 \R1 } .

Roughly speaking, Q/R is the quiver obtained from Q by collapsing each con-
nected component of R to a point.

Lemma 4.3. Let R be a component-wise full proper subquiver of a quiver Q. If Q/R
is acyclic, then DE(R) is a face of DE(Q).

Proof. Let us denote the connected components of R by

π0(R) = {R(1), . . . , R(n)}.

Since Q/R is acyclic, we may assume that, if v ∈ R
(i)
0 and w ∈ R

(j)
0 are connected

by an edge in Q, then i < j.
Denote Ck =

⋃k
i=1R

(i)
0 . Then, for v, w ∈ Q0,

〈κCk
, ε(v,w)〉 = κCk

(v)− κCk
(w)

=

⎧⎪⎨
⎪⎩

1 (v ∈ Ck and w �∈ Ck)

−1 (v �∈ Ck and w ∈ Ck)

0 (otherwise).

By our choice, the second case does not occur and we have 〈κCk
, ε(v,w)〉 ≥ 0. In other

words, the orthogonal complement κ⊥
Ck

is a supporting hyperplane of DE(Q) and
thus DE(Q) ∩ κ⊥

Ck
is a face of DE(Q) for each k.

We claim that

DE(Q) ∩
n⋂

i=1

κ⊥
Ck

= DE(R)
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or {
ε(v,w)

∣∣ (v, w) ∈ Q1

} ∩ n⋂
i=1

κ⊥
Ck

=
{
ε(v,w)

∣∣ (v, w) ∈ R
}
.

If (v, w) ∈ R1, 〈κCk
, ε(v,w)〉 = 0 for all k by the previous calculation. Conversely,

suppose that (v, w) ∈ Q1 \ R1 with v ∈ R
(i)
0 and w ∈ R

(j)
0 . By assumption, i < j,

which implies that
〈κCi

, ε(v,w)〉 = 1− 0 = 1 �= 0

and we have ε(v,w) �∈ κ⊥
Ci

.

Another sufficient condition for being a face is the following.

Lemma 4.4. Let R be a lluf proper subquiver of a quiver Q. If R has a rank function
ρ ∈ R

Q0 such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ Q1 \R1, then DE(R) is a face of DE(Q).

Proof. Suppose a lluf subquiver R of Q has such a rank function ρ. Fix (v0, w0) ∈ R1

and consider the hyperplane

Hρ = ρ⊥ + ε(v0,w0).

We claim that Hρ is a supporting hyperplane of DE(Q).
For (v, w) ∈ Q1, we have〈

ρ, ε(v,w) − ε(v0,w0)

〉
= ρ(v)− ρ(w)− ρ(v0) + ρ(w0) = ρ(v)− ρ(w) + 1.

Note that
〈
ρ, ε(v,w) − ε(v0,w0)

〉
= 0 for (v, w) ∈ R1. By our assumption on ρ we

have
〈
ρ, ε(v,w) − ε(v0,w0)

〉 ≥ 0 for any (v, w) ∈ Q1 or
〈
ρ, ε(v,w) − ε(v0,w0)

〉 ≤ 0 for any
(v, w) ∈ Q1 and Hρ is a supporting hyperplane of DE(Q).

It remains to show that DE(Q) ∩Hρ = DE(R). Again by the assumption on ρ,〈
ρ, ε(v,w) − ε(v0,w0)

〉
= ρ(v)− ρ(w) + 1 = 0 ⇐⇒ (v, w) ∈ R1

for (v, w) ∈ Q1. Hence the hyperplane Hρ contains DE(R), but the hyperplane does
not contain ε(v,w) for any (v, w) ∈ Q1 \ R1. Hence the face DE(Q) ∩ Hρ coincides
with DE(R).

We next consider necessary conditions for being facets.

Lemma 4.5. Let R be a subquiver of Q with |π0(R)| = |π0(Q)| + 1. If DE(R) is a
facet of DE(Q), then R is a component-wise full subquiver of R.
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Proof. Let n = |π0(R)| = |π0(Q)| + 1 and R(1), . . . , R(n) be the complete list of
connected components of R so that

VR =

n⋂
k=1

κ⊥
R(k) .

Let (v, w) ∈ Q1 satisfy v, w ∈ R
(k)
0 for some k. It suffices to show that ε(v,w) ∈ DE(R),

since it is equivalent to (v, w) ∈ R1 by Lemma 3.3.
By Lemma 3.4, VR is a c(R)-dimensional affine space, which is a hyperplane in

VQ by the assumption c(R) = c(Q)− 1. We have ε(v,w) ∈ VR, since

κ
R

(i)
0

(ε(v,w)) =

{
1− 1 (i = k)

0− 0 (i �= k)

= 0

for any i = 1, . . . , n.
If R does not have a rank function, then DE(R) is a c(R)-dimensional polytope

contained in VR. In other words, VR is a supporting hyperplane of DE(R) in VQ,
which implies that ε(v,w) ∈ DE(R).

Suppose that R has a rank function. DE(R) is of dimension c(R) − 1 by Theo-
rem 1.1. Since DE(R) is a facet of DE(Q),

dim(DE(Q)) = dim(DE(R)) + 1 = c(R) = c(Q)− 1.

By Theorem 1.1, Q also has a rank function, which is denoted by ρ. It defines a
hyperplane

Hρ = ρ⊥ + ε(v0,w0)

in R
Q0 for some (v0, w0) ∈ Q1. We may choose (v0, w0) ∈ R1. By Lemma 3.6, DE(R)

is contained in Hρ, hence in Hρ ∩ VR.

Since ρ is a rank function on Q, we have ε(v,w) ∈ Hρ for (v, w) ∈ Q1. If v, w ∈ R
(k)
1

for some k, we also have ε(v,w) ∈ VR, and hence ε(v,w) ∈ Hρ ∩ VR. Note that Hρ and
VR intersect transversally, and we have

dim(Hρ ∩ VR) = dim(VR)− 1 = c(R)− 1 = dim(DE(R)).

In other words, Hρ ∩ VR is the affine hull of DE(R) in Hρ and it should be the
supporting hyperplane of DE(R) in Hρ, since DE(R) is a facet of DE(Q). It implies
that ε(v,w) ∈ DE(R).

Lemma 4.6. Let R be a subquiver of Q with |π0(R)| = |π0(Q)| + 1. If DE(R) is a
facet of DE(Q), then Q/R is acyclic.

Proof. Denote

π0(Q) = {Q(1), . . . , Q(n−1)}
π0(R) = {R(1), . . . , R(n)}.
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Without loss of generality, we may assume that R(i) ⊂ Q(i) for i = 1, . . . , n− 2 and
R(n−1) ∪ R(n) ⊂ Q(n−1). Let us denote R′ = R(n−1) ∪ R(n) and Q′ = Q(n−1). We
should have R(i) = Q(i) for i = 1, . . . , n − 2 and DE(R′) is a facet of DE(Q′), since
dim(DE(R)) = dim(DE(Q)) − 1. It implies that Q/R is a union of (n − 2) quivers
consisting of a single vertex and Q′/R′.

If Q/R were to have a directed cycle, it should be contained in Q′/R′. By
Lemma 4.5, both R(n−1) and R(n) are full subquivers of Q′. Since R is lluf, such a di-
rected cycle contains edges (v, w), (v′, w′) ∈ Q′

1 with v, w′ ∈ R
(n−1)
0 and w, v′ ∈ R

(n)
0 .

Then we have 〈
κ
R

(n−1)
0

, ε(v,w)

〉
= 1 (1)〈

κ
R

(n−1)
0

, ε(v′,w′)

〉
= −1. (2)

If R′ does not have a rank function, this contracts to the fact that VR′ = κ⊥
R

(n−1)
0

∩
κ⊥
R

(n)
0

is a supporting hyperplane of DE(R′) in VQ′, as we have seen in the proof of

Lemma 4.5.
If R′ has a rank function, so does Q′ as is shown in the proof of Lemma 4.5. Let

ρ be a rank function of Q′. Then, again by the proof of Lemma 4.5, Hρ ∩ VR′ is a
supporting hyperplane of DE(R′), which contradicts to (1) and (2).

Hence Q/R is acyclic.

Lemma 4.7. Let R be a lluf subquiver of Q with |π0(R)| = |π0(Q)|. If DE(R) is a
facet of DE(Q), then the subquiver R has a rank function ρ ∈ R

Q0 such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0.

for (v, w), (v′, w′) ∈ Q1 \R1 and Q does not have a rank function.

Proof. Since c(R) = c(Q) and DE(R) is a facet of DE(Q),

c(Q) ≥ dim(DE(Q)) = dim(DE(R)) + 1 ≥ c(R) = c(Q),

Q does not have a rank function and R has a rank function by Theorem 1.1. We also
have dim(DE(Q)) = c(R) and dim(DE(R)) = c(R) − 1. Since |π0(Q)| = |π0(R)|, v
and w are in the same connected component of R for each (v, w) ∈ Q1. Hence VR

contains ε(v,w) for all (v, w) ∈ Q1. In other words, DE(Q) is a convex polytope in
VR.

Let ρ be a rank function of R. Fix (v0, w0) ∈ R1 and consider the hyperplane
Hρ = ρ⊥ + ε(v0,w0). Then Hρ ∩ VR is an affine space of dimension c(R) − 1 which
contains DE(R). It means that Hρ ∩ VR is a supporting hyperplane of DE(R) in VR.
Thus we have

(v, w) ∈ Q1 =⇒ 〈
ρ, ε(v,w) − ε(v0,w0)

〉
= ρ(v)− ρ(w) + 1 ≥ 0

or

(v, w) ∈ Q1 =⇒ 〈
ρ, ε(v,w) − ε(v0,w0)

〉
= ρ(v)− ρ(w) + 1 ≤ 0.
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It remains to show that these values are nonzero if (v, w) ∈ Q1 \ R1. If ρ(v) −
ρ(w) = 1, then Hρ ∩ VR contains ε(v,w). Since DE(R) is a facet of DE(Q), it follows
that DE(R) contains ε(v,w), which implies (v, w) ∈ R1.

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Let R be a lluf subquiver of Q with dim(DE(R)) =
dim(DE(Q))− 1.

Suppose that DE(R) is a facet of DE(Q). By Lemma 4.1, c(R) = c(Q) or
c(R) = c(Q) − 1. When c(R) = c(Q), Lemma 4.7 implies that the condition (2)
in Theorem 1.3 holds. If c(R) = c(Q)− 1, the condition (1) in Theorem 1.3 follows
from Lemmas 4.5 and 4.6.

Conversely, if a lluf subquiver R satisfies (1) in Theorem 1.3, then DE(R) is a
face of DE(Q) by Lemma 4.3. If R satisfies (2) in Theorem 1.3, DE(R) is a face of
DE(Q) by Lemma 4.4. Hence, in both cases, DE(R) is a facet.

Proof of Theorem 1.4. Suppose that DE(R) is a face of DE(Q). Then there exists a
descending sequence of subquivers

Q = Q(0) ⊃ Q(1) ⊃ · · · ⊃ Q(n−1) ⊃ Q(n) = R

such that DE(Q(i+1)) is a facet of DE(Q(i)) for each i = 0, . . . , n − 1. The rank
function of Q serves as a rank function of Q(i) and we have

c(Q(i+1)) = dim(DE(Q(i+1))) + 1 = dim(DE(Q(i)))− 1 + 1 = c(Q(i))− 1.

by Theorem 1.1. It implies by Theorem 1.3 that each connected component of Q(i+1)

is a full subquiver of Q(i) and that Q(i)/Q(i+1) is an acyclic quiver for all i. Hence
each connected component of Q(n) = R is a full subquiver of Q and Q(0)/Q(n) = Q/R
is acyclic.

The converse follows from Lemma 4.3.

5 Examples

Here we consider some special cases as applications of our results. First we consider
the case of an asymmetric quiver Q with no undirected closed walk. Namely the
underlying graph of Q is a forest. In this case, we have

|vert(DE(Q))| = |Q1|
= |Q0| − |π0(Q)|
= c(Q).

On the other hand, Q has a rank function and we have dim(DE(Q)) = c(Q)− 1 by
Theorem 1.1. Hence we have the following:

Corollary 5.1. Let Q be an asymmetric quiver with Q1 �= ∅. If the underlying graph
of Q is acyclic, then DE(Q) is a simplex of dimension |Q1| − 1 = c(Q)− 1.



Y. NUMATA ET AL. /AUSTRALAS. J. COMBIN. 88 (1) (2024), 77–96 91

Example 5.2. Let Q be an asymmetric quiver whose underlying graph is the Dynkin
graph An+1. Denote Q0 = { 0, 1, . . . , n } and Q1 = { e1, . . . , en } so that ei = (i−1, i)
or (i, i − 1) for i = 1, . . . , n. Then the directed edge polytope DE(Q) is an (n− 1)-
simplex. Hence DE(R) is a face for any luff proper subquiver R of Q.

One of the simplest cases in which the underlying graph is not a tree is the
following.

Example 5.3. Let Q be an asymmetric quiver whose underlying graph is the bound-
ary of a 2n-gon. Denote Q0 = Z/2nZ =

{
1, . . . , 2n = 0

}
and Q1 = { e1, . . . , e2n }

so that ei = (i− 1, i) or (i, i− 1) for each i ∈ { 1, . . . , 2n }.
Define Q+

1 and Q−
1 by

Q+
1 = Q1 ∩

{
(i− 1, i)

∣∣ i ∈ Q0

}
,

Q−
1 = Q1 ∩

{
(i, i− 1)

∣∣ i ∈ Q0

}
.

If
∣∣Q+

1

∣∣ =
∣∣Q−

1

∣∣ = n, then Q has a rank function. By Theorem 1.1,

dim(DE(Q)) = c(Q)− 1 = |Q0| − |π0(Q)| − 1 = 2n− 2.

Since |vert(DE(Q))| = |Q1| = 2n, DE(Q) is not a simplex.
Let R be a lluf subquiver of Q whose directed edge polytope DE(R) is a facet of

DE(Q). Since R also has a rank function,

2n− 3 = dim(DE(R)) = |Q0| − |π0(R)| − 1 = 2n− 1− |π0(R)| ,

which implies that Q1 \ R1 consists of two disjoint edges. Let Q1 \ R1 = { e′, e′′ }.
The acyclicity of Q/R following from Theorem 1.4 allows us to assume that e′ ∈ Q+

1

and e′′ ∈ Q−
1 . This is a characterization of facets of DE(Q).

For such a subquiver R, DE(R) is a simplex of dimension 2n−3 by Corollary 5.1.
Since faces of a simplex are in one-to-one correspondence with subsets of the vertex
set, for a lluf subquiver S of Q, DE(S) is a proper face of DE(Q) of dimension d if
and only if

∣∣S1 ∩Q+
1

∣∣ < n,
∣∣S1 ∩Q−

1

∣∣ < n, and |S1| = d+ 1. Hence the number fd of
faces of DE(Q) of dimension d is given by

fd =

(
2n

d + 1

)
− 2

(
n

d + 1− n

)
,

where the binomial coefficient
(
m
k

)
equals 0 if m < k or k < 0.

Finally we consider the case of symmetric edge polytopes. For a finite graph
G, the symmetric edge polytope SE(G) of G introduced by Matsui et al. [10] is, by
definition, the directed edge polytope DE(D(G)) of the double D(G) of G. Note
that any symmetric quiver in our sense is of the form D(G) for a finite graph G.

Since D(G) is a symmetric quiver, D(G)/R is not acyclic for any proper subquiver
R of D(G). Hence we have the following:
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Corollary 5.4. Let G be a finite simple graph whose vertex set is denoted by G0.
For a lluf subquiver R of D(G) with dim(DE(R)) = dim(SE(G)) − 1, the following
are equivalent:

1. DE(R) is a facet of SE(G).

2. c(R) = c(D(G)) and there exists a rank function ρ of R such that

(ρ(v)− ρ(w) + 1)(ρ(v′)− ρ(w′) + 1) > 0

for any (v, w), (v′, w′) ∈ D(G)1 \R1.

3. c(R) = c(D(G)) and there exists a function ρ ∈ R
G0 such that

ρ(v)− ρ(w) =

⎧⎪⎨
⎪⎩

1 ((v, w) ∈ R1)

−1 ((w, v) ∈ R1)

0 (otherwise)

for (v, w) ∈ D(G)1.

Proof. The equivalence of the first two conditions follows from Theorem 1.3. The
third condition is easily seen to be equivalent to the second condition.

Remark 5.5. In [7], Higashitani, Jochemko and Mateusz obtained a characterization
of facets of symmetric edge polytopes for a connected simple graph G as the existence
of a function ρ : G0 → Z satisfying the following two conditions:

1. ρ(v)− ρ(w) ∈ { −1, 0, 1 } for any edge (v, w) ∈ D(G), and

2. the underlying graph of the quiver Eρ defined by

Eρ
1 = { (v, w) ∈ SE(G)1 | ρ(v) = ρ(w) + 1 }

is a spanning subgraph of G.

Their characterization can be obtained from Corollary 5.4 as follows. Let ρ ∈ R
G0

be a function satisfying the third condition of Corollary 5.4. Then ρ(v) − ρ(w) ∈
{ −1, 0, 1 } for all (v, w) ∈ Q1 and we may assume that ρ takes values in Z. For such
a function ρ, the quiver Eρ can be easily seen to coincide with our subquiver R in
Corollary 5.4. Since G is connected, so is SE(G). The condition c(R) = c(D(G))
implies that R is also connected. Since R is a lluf subquiver, it implies that the
underlying graph of Eρ = R is a spanning subgraph of G.

Conversely, let ρ : G0 → Z be a function satisfying ρ(v) − ρ(w) ∈ { −1, 0, 1 }
for all (v, w) ∈ Q1 and suppose that the underlying graph of Eρ is a spanning
subgraph of G. In particular, Eρ is a lluf subquiver of D(G). By the connectivity
of Eρ, we see c(Eρ) = c(D(G)). Since ρ is a rank function on Eρ, it satisfies the
condition of the first case of the third condition of Corollary 5.4. The condition that
ρ(v)− ρ(w) ∈ { −1, 0, 1 } for (v, w) ∈ D(G), then, implies the condition of the other
cases.
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Remark 5.6. The Kantorovich–Rubinstein polytope KR([n], d) is defined as the
convex hull of the set E of vectors εd(i,j) =

ei−ej
d(i,j)

indexed by i �= j ∈ [n]. Note that the

set of vertices of KR([n], d) might be a proper subset of E. For a face F of KR([n], d),
the quiver with the edge set consisting of (i, j) satisfying εd(i,j) ∈ F is called the face

digraph. Note that the set of vertices of a facet of KR([n], d) is a subset of the set
of vectors εd(i,j) corresponding to edges (i, j) in the facet digraph. The face graph is
the undirected graph obtained from the face digraph by forgetting the orientation of
edges. In Gordon–Petrov [5, Theorem 3], subgraphs contained by a facet graph of
KR([n], d) are characterized by using existence of 1-Lipschitz functions. In the case
of the symmetric edge polytope SE(G), we define face and facet graphs as subgraphs
of G. We call them face and facet subgraphs of G. In Chen–Davis–Korchevskaia
[1], face and facet subgraphs are characterized in terms of bipartite graphs. These
characterization are essentially the same as the one in this article.

The following two examples were first studied by the second author in an ele-
mentary method analogous to that of Cho’s [2], whose analysis led to the current
work.

Example 5.7. Let C2n be the boundary of a 2n-gon regarded as a graph of 2n
vertices and edges. As in the case of Example 5.3, the vertex set is identified with
Z/2nZ =

{
1, . . . , 2n = 0

}
. The symmetric edge polytope SE(C2n) = DE(D(C2n))

is a (2n − 1)-dimensional polytope by Theorem 1.1. The faces of SE(C2n) can be
determined as follows.

Denote Q = D(C2n) for simplicity and define

Q+
1 =

{
(i− 1, i)

∣∣ i = 1, . . . , 2n
}
,

Q−
1 =

{
(i, i− 1)

∣∣ i = 1, . . . , 2n
}

so that Q1 = Q+
1 ∪Q−

1 .
By (3) of Corollary 5.4, for a lluf subquiver R of Q with

dim(DE(R)) = dim(SE(C2n))− 1 = 2n− 2,

DE(R) is a facet of SE(C2n) if and only if c(R) = c(Q) = 2n− 1 and there exists a
function ρ : Z/2nZ→ R such that

ρ(i− 1)− ρ(i) =

⎧⎪⎨
⎪⎩

1 ((i− 1, i) ∈ R1)

−1 ((i, i− 1) ∈ R1)

0 (otherwise),

which implies that only one of (i− 1, i) or (i, i− 1) belongs to R1 for each i. Denote

R+
1 = R1 ∩Q+

1 =
{

(i− 1, i)
∣∣ i ∈ I+

}
R−

1 = R1 ∩Q−
1 =

{
(i, i− 1)

∣∣ i ∈ I−
}
.
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Then

0 =

2n∑
i=1

(ρ(i− 1)− ρ(i))

=
∑
i∈I+

1 +
∑
i∈I−

(−1) +
∑

i �∈I+∪I−
0

= |I+| − |I−|
and we have |I+| = |I−|.

Since DE(R) is of dimension 2n− 2,

|R1| = |vert(DE(R))| ≥ 2n− 1.

By the condition on ρ, we see that the underlying graph of R must be the whole
C2n. Thus we have

∣∣R+
1

∣∣ =
∣∣R−

1

∣∣ = n and R+
1 ∩ (−R−

1 ) = ∅, where −R−
1 ={

(i− 1, i)
∣∣ (i, i− 1) ∈ R−

1

}
. In other words, facets of SE(C2n) are in bijective corre-

spondence with subsets of cardinality n in Q1 =
{

(i− 1, i), (i, i− 1)
∣∣ i = 1, . . . , 2n

}
.

Hence the number f2n−2 of facets of SE(C2n) is given by

f2n−2 =

(
2n

n

)
.

Note that facets of SE(C2n) are polytopes in Example 5.3. In particular, faces
of codimension 2 in SE(C2n) are simplices of dimension (2n− 3), which means that
all faces of SE(C2n) except for facets are simplices. In other words, for d < 2n − 2
and a lluf subquiver R of Q, DE(R) is a face of dimension d in SE(C2n) if and only
if |R1| = d + 1,

∣∣R1 ∩Q+
1

∣∣ < n,
∣∣R1 ∩Q−

1

∣∣ < n, and R+
1 ∩ (−R−

1 ) = ∅. Hence the
number fd of faces of DE(Q) of dimension d is given by

fd =
∑
i∈I

(
2n

i

)(
2n− i

d + 1− i

)

=

(
2n

d + 1

)∑
i∈I

(
d + 1

i

)
,

where I = { i ∈ Z | i < n, d + 1− i < n }. If d + 1 < n, then we have
∑

i∈I
(
d+1
i

)
=

2d+1, which implies

fd =

(
2n

d + 1

)
2d+1.

We remark that D’Ali, Delucchi, and Micha�lek [3] also performed the same com-
putation based on the characterization of facets by Higashitani et al. [7].

Example 5.8. Consider the case of an odd cycle C2n+1. As is the case of Exam-
ple 5.7, we identify the vertex set with Z/(2n+ 1)Z =

{
1, . . . , 2n, 2n + 1 = 0

}
. For

simplicity, we denote Q = D(C2n+1) and

Q+
1 =

{
(i− 1, i)

∣∣ i = 1, . . . , 2n + 1
}
,

Q−
1 =

{
(i, i− 1)

∣∣ i = 1, . . . , 2n + 1
}
.
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The symmetric edge polytope SE(C2n+1) = DE(Q) is a 2n-dimensional polytope by
Theorem 1.1.

For a lluf subquiver R of Q, suppose that dim(DE(R)) = 2n − 1. By the same
argument as in Example 5.7, DE(R) is a facet of SE(C2n+1) if and only if c(R) = c(Q),∣∣R+

1

∣∣ =
∣∣R−

1

∣∣ = n, and R+
1 ∩ (−R−

1 ) = ∅. Since |vert(DE(R))| = 2n, DE(R) is a
simplex of dimension 2n − 1 and all faces of SE(C2n+1) are simplices. We also see
that facets are in one-to-one correspondence with a pair (E, e) of a subset E of Q+

1

of cardinality n and an element e ∈ Q−
1 \ (−E) and the number f2n−1 of facets of

DE(Q) is given by

f2n−1 = (n + 1)

(
2n + 1

n

)
=

(2n + 1)!

n!n!
= (2n + 1)

(
2n

n

)
.

Thus, for d < 2n− 2 and a lluf subquiver R of Q, DE(R) is a face of SE(C2n+1)
of dimension d if and only if |R1| = d+ 1,

∣∣R+
1

∣∣ < n,
∣∣R−

1

∣∣ < n, and R+
1 ∩ (−R−

1 ) = ∅.
Hence the number fd of faces of dimension d in SE(C2n+1) is given by

fd =
∑
i∈I

(
2n + 1

i

)(
2n + 1− i

d + 1− i

)

=

(
2n + 1

d + 1

)∑
i∈I

(
d + 1

i

)
,

where I = { i ∈ Z | i < n, d + 1− i < n }. If d + 1 < n, then we have
∑

i∈I
(
d+1
i

)
=

2d+1, which implies

fd =

(
2n + 1

d + 1

)
2d+1.

Remark 5.9. In [13], Ohsugi and Shibata consider the centrally symmetric con-
figurations and the convex hull of column vectors of them. The polytopes are the
symmetric edge polytopes of cycles. They calculate the Ehrhart polynomails and
h-vectors for them. The formulas for f -vectors in Examples 5.7 and 5.8 imply the
same h-vetors.
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