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Abstract

Two vertices a and b in a graph X are cospectral if the vertex-deleted
subgraphs X \ a and X \ b have the same characteristic polynomial. In
this paper we investigate a strengthening of this relation on vertices, that
arises in investigations of continuous quantum walks. Suppose the vectors
ea for a in V (X) are the standard basis for RV (X). We say that a and b
are strongly cospectral if for each eigenspace U of A(X), the orthogonal
projections of ea and eb are either equal or differ only in sign. We develop
the basic theory of this concept and provide constructions of graphs with
pairs of strongly cospectral vertices. Given a continuous quantum walk
on a graph, each vertex determines a curve in complex projective space.
We derive results that show that the closer these curves are, the more
“similar” the corresponding vertices are.

1 Introduction

Let E1, . . . , Ed be the distinct orthogonal projections onto the eigenspaces of a graph
X. If a ∈ V (X), we use ea to denote the characteristic vector of a, viewed as a
1-element subset of V (X). Vertices a and b are cospectral if the projections Erea
and Ereb have the same length; they are strongly cospectral if Erea = ±Ereb.

The idea of cospectral vertices goes back to Schwenk [12], where he used it to show
that the proportion of trees on n vertices that are determined by the characteristic
polynomial goes to zero as n → ∞. Strongly cospectral vertices appear first in [6],
where Fan and the author used them to study properties of continuous quantum
walks. The goal of this paper is to develop the basic theory of strongly cospectral
vertices.

To start our work, we set up some machinery for working with quantum states.
We will represent a quantum state in Cn by a density matrix, a positive semidefinite
n×n matrix with trace one. A density matrix D represents a pure state if rk(D) = 1,
in which case D = zz∗ for some unit vector z. We will only be concerned with pure
states in this paper and generally they will be associated to vertices of a graph X—if
a ∈ V (X), then ea denotes the standard basis vector in CV (X) indexed by a and
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our focus will be on pure states of the form Da = eae
T
a . If D is a pure state then

D2 = D and D represents orthogonal projection onto the column space of D; thus
D corresponds to a point in complex projective space.

If X is a graph with adjacency matrix A, the continuous quantum walk on X is
determined by the family of unitary matrices

U(t) = exp(itA), t ≥ 0.

The understanding is that if, initially, our system is in the state associated with the
density matrix D, then at time t its state is given by

U(t)DU(−t).

It is easy to check that this is a density matrix, which we denote by D(t), and that
D(t) is pure if and only if D is. It follows that, if our initial state D is pure, a
quantum walk determines a curve in projective space, namely the set of points D(t).
(If our initial state were not pure, we would have a curve on a Grassmannian, but
we will not go there.)

Given distinct vertices a and b in X, one question of interest to physicists is
whether there is a time t such that Db lies on the curve containing Da; equivalently
if there is a time t such that U(t)DaU(−t) = Db. If there is such a time, we say
that we have perfect state transfer from a to b at time t. If we do have perfect state
transfer at time t, then

‖Da(t)−Db‖ = 0.

Since, as it happens, perfect state transfer is rare, we might decide to settle for less:
we could ask whether, given ε > 0, there is a time t such that

‖Da(t)−Db‖ < ε.

If this is possible (for all positive ε) we have pretty good state transfer from a to b.
Pretty good state transfer occurs more often than perfect state transfer. For example
we get perfect state transfer between the end-vertices of the path Pn if and only if
n = 2 or n = 3, but we have pretty good state transfer between the end-vertices of
Pn if and only if n + 1 is a power of two, a prime, or twice a prime. For details see
Banchi et al. [1]; more recent work on this topic appears in [4, 14].)

Let θ1, . . . , θm be the distinct eigenvalues of the adjacency matrix A of the graph
X. For each eigenvalue θr there is an idempotent matrix Er representing orthogonal
projection onto the eigenspace with eigenvalue θr. If f is a function defined on the
eigenvalues of A, then

f(A) =
∑
r

f(θr)Er

and, in particular

U(t) =
∑
r

eitθrEr.

Hence
D(t) =

∑
r,s

eit(θr−θs)ErDEs
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and so Da(t) = Db if and only if∑
r,s

eit(θr−θs)ErDaEs = Db =
∑
r,s

ErDbEs

and this holds if and only if

eit(θr−θs)ErDaEs = ErDbEs

for all r, s. Now all six matrices in this equality are real, whence we deduce that if
perfect state transfer occurs,

eit(θr−θs) = ±1

and, for each r,
ErDaEr = ErDbEr.

(The diagonal entries in both sides are necessarily non-negative since density matri-
ces are positive semidefinite and Er is symmetric, whence both sides are positive
semidefinite.) This leads us to the conclusion that, if perfect state transfer from a
to b occurs, then for each r.

Erea = ±Ereb
Our ruminations have lead to the conclusion that, if there is perfect state transfer

between vertices a and b, then these two vertices are strongly cospectral. This is the
basic reason we find this property to be interesting.

We discuss our main results. We show that if vertices a and b in X are strongly
cospectral, then any automorphism of X that fixes a must fix the vertex b. (So the
concept has combinatorial implications.) We provide a number of characterizations,
for example: vertices a and b are strongly cospectral if and only if they are cospectral
and all poles of the rational function φ(X \{a, b}, t)/φ(X, t) are simple. We use this
to provide constructions of graphs with pairs of strongly cospectral vertices. We show
that cospectral vertices and strongly cospectral vertices are connected by mappings
that can viewed as relaxations of automorphisms. Thus we prove that a and b
are strongly cospectral if and only if there is an orthogonal matrix Q, a rational
polynomial in A, such that Q2 = I and Qea = eb.

In the final three sections of the paper, we consider the geometry of the orbits of
the pure states of the form Da. As we noted above, there is perfect state transfer
from a to b if and only if Db lies in the orbit of Da; equivalently if and only if the
orbits of Da and Db coincide. Further we have pretty good state transfer if and
only if Db lies in the closure of the orbit of Da, that is, if and only if the closures of
the two orbits are equal. However the geometry of the orbits provides information
about purely graph-theoretic properties: we prove that if the orbits of Da and Db

are sufficiently close, then a and b must be cospectral and, if they are even closer,
then a and b must be strongly cospectral.
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2 Cospectral Vertices

We view the relation of being strongly cospectral as a combination of two relations.
The first of these two is an older concept: two vertices a and b in a graph X are
cospectral if the characteristic polynomials of the vertex-deleted subgraphs X\a and
X \ b are equal, that is,

φ(X \a, t) = φ(X \ b, t).

It is immediate that if there is an automorphism of X that maps a to b, then a and
b are cospectral. Cospectral vertices were first introduced in Schwenk’s fundamental
paper [12]; here Schwenk noted that the vertices u and v in the tree in Figure 1 are
cospectral, but lie in different orbits of the automorphism group of the tree. Using
this he was able to show that the proportion of trees on n vertices that are determined
by their characteristic polynomial goes to zero as n→∞.

u v

Figure 1: A pair of cospectral vertices

There are a surprising number of characterizations of cospectral vertices. We will
list them in the next section, but we need first to introduce more terminology.

Suppose S is a subset of the vertices a graph X with characteristic vector z and
n = |V (X)|. We define the walk matrix MS relative to S to be the n × n matrix
with the vectors

z, Az, . . . , An−1z

as its columns. The case of interest to us will be when S is a single vertex a and,
in this case, we will refer to the walk matrix relative to a. We will use eS to denote
the characteristic vector of S. The column space of MS is A-invariant, and so it is
a module over the ring R[A] of real polynomials in A. It is in fact a cyclic module,
generated by the first column z of MS. We call it the walk module relative to S.

We see that the ij-entry of MT
SMS is zTAi+j−2z, and so it is equal to the number

of walks on X with length i + j − 2 that start and end on a vertex in S. Hence if
S = {a}, then this entry is the number of closed walks in X that start at a and have
length i+ j − 2. We define WS(X, t) to be the generating function∑

k≥0

zTAkztk = zT (I − tA)−1z.

Lemma 2.1. Let a and b be vertices in X. Then Wa(X, t) = Wb(X, t) if and only
if MT

a Ma = MT
b Mb.
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Proof. It should be clear that, if the walk-generating functions are equal, the matrix
products are equal. For the converse, let θ1, . . . , θm denote the distinct eigenvalues
of A and let E1, . . . , Em denote the corresponding orthogonal projections onto the
distinct eigenspaces of A. Then for any vector z,

zT (I − tA)−1z =
∑
r

zTErz

1− tθr
.

Since m ≤ n, it follows that the generating function zT (I − tA)−1z is determined by
its first m coefficients.

3 Characterizing Cospectral Vertices

We give a comprehensive list of characterizations of cospectral vertices. The first
four appear already in [8]

Theorem 3.1. Let a and b be vertices in the graph X with corresponding walk ma-
trices Ma and Mb. The following statements are equivalent:

(a) a and b are cospectral.

(b) φ(X \a, t) = φ(X \ b, t).

(c) Wa(X, t) = Wb(X, t).

(d) For each spectral idempotent Er we have (Er)a,a = (Er)b,b.

(e) For any non-negative integer k we have (Ak)a,a = (Ak)b,b.

(f) MT
a Ma = MT

b Mb.

(g) The R[A]-modules generated by ea − eb and ea + eb are orthogonal subspaces of
RV (X).

Proof. Claims (a) and (b) are equivalent, because (b) is the definition of cospectral.
From the proof of Lemma 2.1 we have

t−1Wv(X, t
−1) =

φ(X \v, t)
φ(X, t)

and, from [7, p. 30],
φ(X \v, t)
φ(X, t)

=
∑
r

(Er)v,v
t− θr

. (3.1)

Hence (b), (c) and (d) are equivalent. Since any power of A is a linear combination of
the spectral idempotents Er, and since the spectral idempotents are polynomials in
A, we see that (d) and (e) are equivalent. By the discussion in the previous section,
(c) and (f) are equivalent.
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We turn to (g). The given modules are orthogonal if and only if for all non-
negative i and j, we have

〈Ai(ea − eb), Aj(ea + eb)〉 = 0,

equivalently if and only if

(ea − eb)TAk(ea + eb) = 0

for all k ≥ 0. This is equivalent in turn to

(ea − eb)TEr(ea + eb) = 0

for each spectral idempotent Er. As

(ea − eb)TEr(ea + eb) = eTaErea − eTb Ereb − eTb Erea + eTaEreb

and
eTb Erea = (Er)b,a = (Er)a,b = eTb Erea

we find that (ea − eb)TEt(ea + eb) = 0 for all r if and only if eTaErea = eTb Ereb for
all r.

We make some remarks. One consequence of part (g) of the theorem is that if
two vertices of X are cospectral, then the characteristic polynomial of X factors
non-trivially over Q. More precisely, the characteristic polynomials of the respective
restrictions of A to the modules generated by ea − eb and ea + eb are disjoint factors
of φ(X, t).

A graph is said to be walk regular if for each non-negative integer k, the diagonal
of Ak is constant or, equivalently if the diagonals of the spectral idempotents are
constant. In a walk-regular graph, any two vertices are cospectral; in particular any
two vertices of a strongly regular graph are cospectral.

Finally, since Er = ET
r Er, we have

(Er)v,v = eTvE
T
r Erev = ‖Erev‖2,

whence vertices a and b are cospectral if and only if the eigenspace projections Erea
and Ereb have the same length for each r. It follows (as we would hope) that strongly
cospectral vertices are cospectral.

4 Parallel Vertices: Characterizations

We have developed some of the theory of cospectral vertices and noted that strongly
cospectral vertices are cospectral. To characterize strongly cospectral vertices, we
need a second condition. Two vertices a and b in X are parallel if, for each r, one
of the vectors Erea and Ereb is a scalar multiple of the other. Equivalently a and b
are parallel if and only if the vectors Erea and Ereb are parallel for each r. As an
immediate consequence of the definition of strongly cospectral vertices, we have:

Lemma 4.1. Two vertices in a graph are strongly cospectral if and only if they are
cospectral and parallel.
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If the eigenvalues of X are all simple, it is easy to see that any two vertices in
X are parallel. It follows in this case that two vertices are strongly cospectral if and
only if they are cospectral. (The eigenvalues of Schwenk’s tree in Figure 1 are simple,
and the vertices u and v there are strongly cospectral.)

Lemma 4.2. The eigenvalues of X are all simple if and only if any two vertices of
X are parallel.

Proof. Suppose any two vertices of X are parallel. If a ∈ V (X) and Erea 6= 0, then
for each r we have that Ereb is a scalar multiple of Erea. Hence Erea spans the
eigenspace belonging to θr and so θr has multiplicity one.

We use 〈eu〉A to denote the R[A]-module generated by eu, and we call it the
walk module relative to u. (When A is clear from the context, we may be lazy and
write simply 〈eu〉.) The eigenvalue support of a subset S of V (X) with characteristic
vector z is the set of eigenvalues θr such that Erz 6= 0. (We will also refer to the
eigenvalue support of an arbitrary vector.) Two cospectral vertices necessarily have
the same eigenvalue support.

Lemma 4.3. The walk modules generated by vertices a and b in X are equal if and
only if a and b are parallel and have the same eigenvalue support.

Proof. If u ∈ V (X), the non-zero vectors Ereu form an orthogonal basis for 〈eu〉.
Therefore if a and b are parallel with the same eigenvalue support, their walk modules
are equal.

For the converse, let Wa and Wb denote the respective walk modules. If Wa = Wb

then ErWa = ErWb, but ErWa and ErWb are spanned respectively by Erea and Ereb.
Therefore a and b are parallel with the same eigenvalue support.

Finally we note that, by [9, Lemma 13.1], if we have pretty good state transfer
from vertex a to vertex b, then a are b are strongly cospectral. (This result is a
private communication from Dave Witte Morris.) Since perfect state transfer can be
viewed as a special case of pretty good state transfer, it follows that vertices involved
in perfect state transfer are necessarily strongly cospectral. (As we already noted in
the Introduction.)

An old and well-known result states that a vertex-transitive graph with only
simple eigenvalues is K1 or K2. This has been generalized—a walk regular graph
with only simple eigenvalues is K1 or K2 (see e.g., [8, Theorem 4.8]). The following
result generalizes this in turn.

Lemma 4.4. If all vertices in X are strongly cospectral, then |V (X)| ≤ 2.

Proof. If all vertices of X are strongly cospectral to u, then the θr-eigenspace of X
is spanned by Ereu, and therefore all eigenvalues of X are simple. As all vertices of
X are cospectral, X is walk regular and as noted just above, a walk regular graph
with only simple eigenvalues has at most two vertices.
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The four vertices of degree two in the Cartesian product of P3 with K2 are pair-
wise strongly cospectral, so we can have more than a pair of strongly cospectral
vertices. (They are cospectral because they form an orbit under the action of the
automorphism group. To see that they are parallel, it is easiest to note that the char-
acteristic polynomial has only simple zeros; you can verify this using your favourite
computer algebra package.)

5 Average States

If θ1, . . . , θm are the distinct eigenvalues of the adjacency matrix A of X, we use Er
to denote the matrix representing orthogonal projection onto the θr-eigenspace of A.
So A has spectral decomposition

A =
∑
r

θrEr.

We make use of some theory developed in [3]. The commutant comm(A) of a
matrix A is the set of all matrices that commute with A. If A is n×n, then comm(A)
is a subspace of the space of n×n real matrices. This latter space is an inner product
space, with inner product

〈M,N〉 = tr(MTN).

The norm ‖M‖ of a matrix M is 〈M,M〉1/2. The operation of orthogonal projection
onto comm(A) is well defined; we denote the orthogonal projection of a matrix M
onto comm(A) by Φ(M).

From Section 2 of [3], we have:

Lemma 5.1. If A is a symmetric matrix with spectral idempotents E1, . . . , Em, then

Φ(M) =
∑
r

ErMEr.

As Φ is linear and self-adjoint,

〈Φ(M),M − Φ(M)〉 = 〈M,Φ(M)− Φ2(M)〉 = 〈M, 0〉 = 0

and therefore
‖M‖2 = ‖M − Φ(M)‖2 + ‖Φ(M)‖2.

This implies that ‖Φ(M)‖ ≤ ‖M‖ for any M . Hence the operator norm of Φ is at
most 1.

Lemma 5.2. For any density matrix D and for any time t, we have Φ(D(t)) = Φ(D).

Proof. One line:

Φ(D(t)) =
∑
r

ErU(t)DU(−t)Er =
∑
r

eitθrErDEre
−itθr = Φ(D).
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We use M ◦N to denote the Schur product of matrices M and N . The average
mixing matrix M̂X of the graph X is

M̂X =
∑
r

Er ◦ Er.

Our next result is Theorem 3.1 in [3].

Theorem 5.3. If a, b ∈ V (X), then

(M̂X)a,b = 〈Φ(Da), Φ(Db)〉.

If a ∈ V (X), then

Φ(Da) =
∑
r

Ereae
T
aEr.

We calculate that
‖EreaeTaEr‖ = eTaErea = (Er)a,a

and define

Fr =
1

(Er)a,a
Ereae

T
aEr.

Thus Fr represents orthogonal projection onto the span of Erea and the scalars

(Er)a,a, r = 1, . . . ,m

are the eigenvalues of Φ(Da).

Lemma 5.4. Assume a and b are vertices in the graph X. Then:

(a) a and b are cospectral if and only the average states Φ(Da) and Φ(Db) are similar.

(b) a and b are strongly cospectral if and only if Φ(Da) = Φ(Db).

Proof. From Equation (3.1), we see that a and b are cospectral if and only if Φ(Da)
and Φ(Db) are. For the second claim we note that a and b are cospectral, they are
parallel if and only if Ereae

T
aEr = Erebe

T
b Er for all r, that is, if and only if the

projections Fr are the same for a and b.

The sum
∑

r Fr is the matrix representing orthogonal projection onto the walk
module generated by ea.

We introduce spectral densities of subsets of vertices of a graph. Assume S ⊆
V (X) and let z be the normalized characteristic vector of S. (So z is zero off S,
constant on S and zT z = 1.) The quantities

zTErz, (r = 1, . . . ,m)

are non-negative and sum to 1. Hence they determine a probability density on the
eigenvalues of A; this is the spectral density of S. We will only work with the case
where S is a single vertex, where the value of the spectral density of vertex a on
θr is (Er)a,a. Hence the spectral density is determined by the eigenvalues of Φ(Da).
The generating function for closed walks on a is the moment generating function
for the spectral density at a and, viewed as a generating function, U(t)a,a is the
characteristic function of the spectral density.

More background on average mixing appears in [10, 3].
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6 An Uncomplicated Algebra

We need information about the matrix algebra generated by A and eae
T
a for a vertex

a. It is no harder to work with an arbitrary non-zero vector z in place of a vector ea,
so we do.

We use 〈S〉 to denote the algebra generated by a set of matrices. The algebra of
interest to us is 〈A, zzT 〉, where A is an adjacency matrix and z ∈ RN .

Lemma 6.1. Assume A = 〈A, zzT 〉 for an adjacency matrix A with spectral decom-
position A =

∑
r θrEr. Let S be the set of eigenvalues θr such that Erz 6= 0. If r ∈ S,

define

Fr =
1

zTErz
Erzz

TEr, E ′r = Er − Fr;

if r /∈ S then define E ′r = Er. Then the matrices

Erzz
TEs, (r, s ∈ S),

together with the non-zero matrices E ′r, form a trace-orthogonal basis for A.

Proof. Easy calculations show that the matrices Fr are idempotents (Fr represents
orthogonal projection onto the span of Erz) and they commute with the spectral
idempotents. Further EkFr = 0 if k 6= r and ErFr = Fr if r ∈ S. One consequence
of this is that the matrices E ′r are pairwise orthogonal and are orthogonal to each
matrix Fs.

It is also easy to check that distinct matrices of the form Erzz
TEs are trace-

orthogonal.
Thus it only remains to verify that the given matrices span A. The key is that

(AkzzTA`)(AmzzTAn) = Akz zTA`+mz zTAn

= (zTA`+mz)AkzzTAn,

from which it ensues that A is spanned by matrices of the form AkzzTA`, along with
the powers of A. The span of the first set of matrices is equal to the span of the
matrices Erzz

TEs and the spectral idempotents span the space of polynomials in A;
therefore we have an orthogonal basis as claimed.

Corollary 6.2. If the vertices a and b in X are parallel with the same eigenvalue
support, then 〈A, eaeTa 〉 = 〈A, ebeTb 〉.

Proof. Suppose a and b are parallel. If θr and θs lie in the eigenvalue support of
a and b, then Ereae

T
aEs and Erebe

T
b Es are non-zero scalar multiples of each other.

From the previous lemma it follows that our two algebras are equal.

Corollary 6.3. Let X be a graph on n vertices and let a and b be parallel vertices in
X with the same eigenvalue support. If the matrix Q commutes with A and Qea = ea,
then Qeb = eb.
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Corollary 6.4. If a and b are strongly cospectral vertices in X, then any automor-
phism of X that fixes a also fixes b.

Given this corollary, it is an easy exercise to show that no two vertices in the
Petersen graph are strongly cospectral, but more is true.

The characteristic matrix of a partition π is the matrix whose columns are the
characteristic vectors of the cells of π. If P is the characteristic matrix of π, then
P1 = 1 and P TP is diagonal with positive diagonal entries. If D = (P TP )1/2 then
the columns of PD−1 are pairwise orthogonal unit vectors, and we call this matrix
the normalized characteristic matrix of π. We recall that a partition π of V (X) is
equitable if the column space of P is A-invariant. Alternatively, π is equitable if
and only if PD−2P T commutes with A. (Note that PD−1P T represents orthogonal
projection onto col(P ).)

If π is a partition of V (X) and v ∈ V (X), then {v} is a cell of π if and only if
PD−1P T ev = ev.

Corollary 6.5. If a and b are strongly cospectral vertices in X and {a} is a cell in
the equitable partition π, then {b} is also a cell in π.

If X is a graph and a ∈ V (X), the cells of the distance partition relative to a
are the sets of vertices at a given distance from a. It is easy to verify that if X is
strongly regular, then the distance partition relative to any vertex is equitable. We
conclude that if X is strongly regular and not complete multipartite, no two distinct
vertices in X are strongly cospectral.

7 Eigenspaces and Parallel Vertices

Our next result provides one way of deciding whether two vertices are parallel.

Lemma 7.1. The projections of ea and eb onto the θr-eigenspace are parallel if and
only if (Er)a,a(Er)b,b − (Er)

2
a,b = 0.

Proof. Observe that
(Er)a,b = eTaE

T
r Ereb = 〈Erea, Ereb〉

and for any vertex c
(Er)c,c = 〈Erec, Erec〉,

whence Cauchy-Schwarz implies that

(Er)
2
a,b ≤ (Er)a,a(Er)b,b

with equality if and only if the vectors Erea and Ereb are parallel.

We point out that (Er)a,a(Er)b,b−(Er)
2
a,b is the determinant of the 2×2 submatrix

of Er with rows and columns indexed by a and b.
If u and v are vertices in X, we say an element f in RV (X) is balanced if f(u) =

f(v) and is skew if f(u) = −f(v). A subspace is balanced or skew if each vector in
it is balanced or, respectively, skew.
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Lemma 7.2. Two vertices u and v in X are strongly cospectral if and only if each
eigenspace is balanced or skew relative to the vertices u and v.

Proof. If u and v are strongly cospectral, then either Er(eu−ev) = 0 or Er(eu+ev) = 0.
Since col(Er) is the θr-eigenspace, it follows that either each eigenvector in the θr-
eigenspace is balanced, or each eigenspace is skew. The converse follows easily.

Lemma 7.3. Let S be a subset of V (X) such that any two vertices in S are parallel
and have the same eigenvalue support, of size s. Then |S| ≤ s.

Proof. Suppose a ∈ S. Denote the non-zero vectors Erea by x1, . . . , xs. Then for
each vertex b in S, we can write eb as a linear combination of x1, . . . , xs. Since the
vectors eb for b in S are linearly independent, we must have |S| ≤ s.

8 Parallel Vertices and a Rational Function

We need an identity due to Jacobi. A proof is given in [7, Theorem 4.1.2].

Theorem 8.1. Let X be a graph. If T ⊆ V (X), then

det(((tI − A)−1)T,T ) =
φ(X \T, t)
φ(X, t)

.

Corollary 8.2. Let θ1, . . . , θm be the distinct eigenvalues of X, with corresponding
spectral idempotents E1, . . . , Em. If T ⊆ V (X), the multiplicity of θr as a pole of
φ(X \T, t)/φ(X, t) is at most equal to rk((Er)T,T ). Moreover, if rk((Er)T,T ) = |T | ,
then the multiplicty of θr as a pole is equal to |T |.

Proof. We have

((tI − A)−1)T,T =
∑
r

1

t− θr
(Er)T,T .

Assume Fs := (t− θs)−1(Es)T,T . Fix r and let P be an orthogonal matrix such that
D = P T (Er)T,T is diagonal. Let H =

∑
s:s 6=r Fs. Then

φ(X \T, t)
φ(X, t

= det

(
1

t− θr
+ P THP

)
.

From the Laplacian expansion, this determinant is the sum of the determinants of
the matrices we get from P THP by replacing each subset of its columns by the
corresponding set from (t − θr)

−1D. The non-zero diagonal entries of this matrix
have poles at θr, but the entries of P THP do not. Hence the multiplicity of θr as a
pole of φ(X \T, t)/φ(X, t) cannot exceed rk((Er)T,T ).

If rk((Er)T,T ) = |T |, then D is the identity matrix and the term (t − θr)
−|T |

appears with coefficient equal to 1 in the expansion of φ(X \T, t)/φ(X, t).
We note that (Er)D,D is the Gram matrix of the vectors Ereu, for u in D.
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Lemma 8.3. Distinct vertices a and b of X are parallel if and only all poles of the
rational function φ(X \{a, b}, t)/φ(X, t) are simple.

Proof. By Corollary 8.2, if T = {a, b} then the multiplicity of the pole at θr in
φ(X \T, t)/φ(X, t) is equal to rk((Er)T,T ). We have

|(Er)a,b|2 = (eTaEreb)
2 = 〈Erea, Ereb〉2 ≤ ‖Erea‖2‖Ereb‖2 = (Er)a,a(Er)b,b

whence it follows that rk((Er)T,T ) = 1 if and only if a and b are parallel.

Corollary 8.4. Distinct vertices a and b of X are strongly cospectral if and only if
they are cospectral and all poles of φ(X \{a, b}, t)/φ(X, t) are simple.

One merit of this result is that it enables us to decide if two vertices are parallel
using exact arithmetic.

9 Constructing Strongly Cospectral Pairs

We present two constructions of strongly cospectral vertices.

Theorem 9.1. Let Z be the graph obtained from vertex-disjoint graphs X and Y by
joining a vertex u in X to a vertex v in Y by a path P of length at least one. If u
and v are cospectral in Z, they are strongly cospectral.

Proof. Assume A = A(Z) and let φu,v(Z, t) denote the determinant of the uv-minor
of tI − A. From the spectral decomposition of A, we have

φu,v(Z, t)

φ(Z, t)
= ((tI − a)−1)u,v =

∑
r

(Er)u,v
t− θr

,

showing that the poles of φu,v(Z, t)/φ(Z, t) are simple. From [7, Corollary 2.2], we
have

φu,v(Z, t) =
∑
P

φ(X \P, t)

where the sum is over all paths in X that join u to v. By construction there is only
one path in Z that joins u to v, and therefore

φu,v(Z, t) = φ(X \u, t)φ(Y \v, t).

If Q is the path we get from P by deleting its end-vertices,

φ(Z \{u, v}, t)
φ(Z, t)

= φ(Q, t)
φ(X \u, t)φ(Y \v, t)

φ(Z, t)
= φ(Q, t)

φu,v(Z, t)

φ(Z, t)
.

We conclude that the poles of φ(Z \ {u, v}, t)/φ(Z, t) are all simple and so, by
Lemma 8.3, it follows that u and v are strongly cospectral.
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Note that u and v will be cospectral in Z if X and Y are cospectral and also X\u
and Y \ v are cospectral. We get interesting examples by taking two vertex-disjoint
copies of Schwenk’s tree from Figure 1 and joining the vertex u in the first copy
to vertex v in the second by a path of positive length. This gives pairs of strongly
cospectral vertices that do not lie in an orbit of the automorphism group of the
resulting graph.

Now we consider a “rabbit-ear” construction. We use mult(θ,X) to denote the
multiplicity of θ as a zero if φ(X, t).

Lemma 9.2. Let a be a vertex in X and let Z be formed from X by joining two
new vertices of valency one to a. If mult(0, X \ a) ≤ mult(0, X), then the two new
vertices are strongly cospectral in Z.

Proof. Assume the two new vertices are b and c. Since Z\b and Z\c are isomorphic,
b and c are cospectral. We have

φ(Z, t) = t2φ(X, t)− 2tφ(X \a, t)

and so we are concerned with the multiplicities of the poles of

φ(X, t)

t(tφ(X, t)− 2φ(X \a, t))
=

1

t
(
t− 2φ(X\a,t)

φ(X,t)

) .
By interlacing, the zeros of

t− 2
φ(X \a, t)
φ(X, t)

are simple (see, e.g., [11, Thm. 8.13.3]) and hence Lemma 8.3 yields that b and c are
parallel if and only if 0 is not a zero of this rational function. We see that 0 is a zero
of the rational function if and only if the multiplicity of 0 as an eigenvalue of X \a
is greater than its multiplicity as an eigenvalue of X.

10 Symmetries

An orthogonal symmetry of a graph X is an orthogonal matrix that commutes with
A. If the eigenvalue θr of X has multiplicity mr and O(m) denotes the group of
m×m orthogonal real matrices, then the orthogonal symmetries of X form a group
isomorphic to the direct product of the orthogonal groups O(mr). Thus this group
is determined entirely by the multiplicities of the eigenvalues of X and, given this,
does not promise to be very useful. Nonetheless it does have its applications. Note
that the permutation matrices in it form a group isomorphic to Aut(X).

If the idempotents in the spectral decomposition of A are E1, . . . , Em and σ2
r = 1

for each r, then

S =
∑
r

σrEr

satisfies S2 = I. Since S = ST , we see that S is orthogonal. Since S must be a
polynomial in A, it follows that the 2m matrices S form a subgroup of the orthogonal
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symmetries ofX; this subgroup is an elementary abelian 2-group. Any automorphism
of X that lies in this group must lie in the centre of Aut(X).

If a and b are cospectral then A(X\a) and A(X\b) are similar. Since these matrices
are symmetric, there is an orthogonal matrix L say, such that LTA(X\a)L = A(X\b).

Lemma 10.1. The vertices a and b in X are cospectral if and only if there is an
orthogonal symmetry Q of X such that Q2 = I and Qea = eb.

Proof. Let U(+) and U(−) respectively denote the A-modules generated by ea + eb
and ea − eb. By Theorem 3.1(g), these two modules are orthogonal subspaces of
RV (X). Let U(0) be the orthogonal complement of U(+) + U(−). There is a unique
orthogonal matrix Q such that Qx = −x if x ∈ U(−) and Qx = x if x lies in U(+)
or U(0). (Note that, since the eigenvalues of Q are 1 and −1, we have Q2 = I.)

Since U(0), U(+) and U(−) are A-invariant, they are spanned by eigenvectors of
A and (by construction) Q is diagonal relative to a basis of eigenvectors. Therefore
it commutes with A.

Clearly Q2 = I. We also have

2Qea = Q((ea + eb) + (ea − eb)) = ea + eb − ea + eb = 2eb,

and so Qea = eb. Since Q2 = I, we also have Qeb = ea.
Thus we have shown that a symmetry exists as required when a and b are cospec-

tral. The converse is straightforward.

It is interesting to note that if a, b ∈ V (X) and some automorphism γ maps a to
b, it does not necessarily follow that γ maps b to a. The lemma above implies that
if γ maps a to b, then some orthogonal matrix swaps a and b, but this matrix need
not be related to any automorphism of X.

Theorem 10.2. The vertices a and b in X are strongly cospectral if and only there
is an orthogonal symmetry Q of X such that Q is a polynomial in A, is rational,
Q2 = I and Qea = eb.

Proof. We use exactly the same construction as in the previous theorem and then
observe that it a and b are strongly cospectral, the subspaces U(+) and U(−) are
both direct sums of eigenspaces of A. This implies that Q is a signed sum of the
idempotents Er, and hence is a polynomial in A.

Let E be the extension of the rationals by the eigenvalues of X and let α be an
automorphism of E. Assume a and b are strongly cospectral. Then Eα

r is an idempo-
tent in the spectral decomposition of A, associated to the eigenvalue θαr . Therefore
((Er)a,a)

α > 0 and consequently ((Er)a,b) and ((Er)a,a)
α must have the same sign. It

follows that Q is fixed by all field automorphisms of E and therefore it is a rational
matrix.

The converse is straightforward.

We derive some of the consequences of the theory we have just developed.
Suppose X is walk regular and a and b are strongly cospectral. Then Qa,a = 0 but,

since Q is a polynomial in A, its diagonal is constant. Therefore tr(Q) = 0. Since
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Q2 = I its eigenvalues are all ±1; we conclude that 1 and −1 have equal multiplicity
and therefore |V (X)| must be even.

Recall that the r-th distance graph Xr of X is the graph with vertex set V (X),
where two vertices are adjacent in Xr if they are distance r in X. (Thus X1 = X.)
We use Ar to denote the adjacency matrix of Xr and we set A0 = I. We have∑

r Ar = J . We define X to be distance regular if, for each r, the matrix Ar is a
polynomial of degree r in A1. It follows from the definition that J is a polynomial in
A1 and consequently Ar and J commute for each r. Therefore the distance graphs
Xr are regular.

If A is the adjacency matrix of a distance-regular graph, then Ak is a linear
combination of the matrices A0, . . . , Ad (for any non-negative integer k). Accordingly
the diagonal of Ak is constant for all k, and therefore any two vertices in X are
cospectral.

We present a short proof of a result of Coutinho et al. [2].

Theorem 10.3. Suppose X is a distance-regular graph of diameter d, with distance
matrices A0, . . . , Ad. If a and b are distinct strongly cospectral vertices in X, then
Ad is a permutation matrix of order two and Adea = eb.

Proof. Let Q be the matrix provided by Theorem 10.2. Then Q lies in the Bose-
Mesner algebra of the association scheme A = {A0, . . . , Ad} which contains X. Since
Qea = eb, the a-column of Q has exactly one nonzero entry, Qa,b. This implies that
Q is equal to one of the matrices Ar, and that Ar is a permutation matrix.

A distance-regular graph is primitive if its distance-graphs X1, . . . , Xd are con-
nected, otherwise it is imprimitive. It is a standard result that if a distance-regular
graph of diameter d is imprimitive, either X2 is not connected (and X is bipartite),
or Xd is not connected (in which case X is said to be antipodal). The d-cube is
distance-regular, and both bipartite and antipodal. The previous theorem implies
that a distance-regular graph which contains a pair of strongly cospectral vertices is
imprimitive.

More results of this flavour can be found in Coutinho [5].

11 Automorphisms, Equitable Partitions

We proved (as Corollary 6.4) that if vertices a and b were strongly cospectral, then any
automorphism of X that fixed a must also fix b. We also derived (as Corollary 6.5) a
related result involving equitable partitions. In this section we derive analogs of these
results, where the algebraic conditions (cospectral, strongly cospectral) are replaced
by constraints on the geometry of the orbits of Da and Db.

Suppose that we have an equitable partition π of X in which {a} is a singleton cell,
and let Q represent orthogonal projection onto the space of functions constant on
the cells of π. Then 2Q− I is orthogonal and commutes with A and (2Q− I)ea = ea.
Now if b lies in a cell of π with size k, then

‖(Q− I)eb‖2 = (k − 1)
1

k2
+

(
1

k
− 1

)2

= 1− 1

k
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and so if Qeb 6= eb, we have ‖2(Q− I)eb‖ ≥
√

2. Therefore:

Lemma 11.1. Suppose a, b ∈ V (X). If ‖Da(t) − Db‖ < 1/
√

2, then any equitable
partition in which {a} is a singleton cell must also have {b} as a singleton cell.

The orbits of any automorphism of a graph form an equitable partition, and if
the automorphism fixes the vertex a, then {a} is a singleton cell of the partition.
This yields the following.

Corollary 11.2. Let a and b be vertices of X. If there is a time t such that ‖Da(t)−
Db‖ < 1/

√
2, then any automorphism of X that fixes a must also fix b.

12 Close Orbits, Cospectral

Assume a and b are vertices in X. We know that if the orbits of Da and Db coincide,
then a and b must be cospectral. The main result of this section is that if these
orbits are just sufficiently close, then a and b are cospectral. Hence the geometry of
the orbits provides combinatorial information.

Suppose

A =
∑
r

θrEr

is the spectral decomposition of A. Here θ1, . . . , θm are the distinct eigenvalues of
A and Er is the matrix that represents orthogonal projection onto the eigenspace
belonging to θr. Since the spectral idempotents Er form a basis for the vector space
of real polynomials in A, and since Er is a polynomial in A, it follows that the vectors
Erea span the column space of Ma, more precisely, the non-zero vectors Erea form
an orthogonal basis for col(Ma). Recall from Section 4 set of eigenvalues θr such that
Erea 6= 0 is the eigenvalue support of the vertex a. (Hence rk(Ma) is equal to the
size of the eigenvalue support of a.)

Lemma 12.1. Assume a and b are distinct vertices in the graph X and set n =
|V (X)|. Let A =

∑
r θrEr be the spectral decomposition of X and let F be the m×n

matrix with Fr` = θ`−1r . If a and b are not cospectral, then

max
r
{|(Er)a,a − (Er)b,b|} ≥

1

tr(FF T )
.

Proof. Let Na and Nb respectively denote the n×m matrices with columns consisting
of the vectors Erea and Ereb. If Ma and Mb are the walk matrices of a and b
respectively, then

Ma = NaF, Mb = NbF

and
MT

a Ma −MT
b Mb = F T (NT

a Na −NT
b Nb)F. (12.1)

The matrices NT
a Na and NT

b Nb are diagonal with

(NT
a Na)r,r = (Er)a,a, (NT

b Nb)r,r = (Er)b,b.
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Hence
F T (NT

a Na −NT
b Nb)F =

∑
r

((Er)a,a − (Er)b,b)F
T ere

T
r F. (12.2)

Let η denote the maximum value over r of |(Er)a,a − (Er)b,b|. Then by the triangle
inequality ∥∥∥∑

r

((Er)a,a − (Er)b,b)F
T ere

T
r F
∥∥∥ ≤ η

∑
r

‖F T ere
T
r F‖. (12.3)

We have
‖F T ere

T
r F‖2 = tr(F T ere

T
r F F

T ere
T
r F ) = (eTr FF

T er)
2,

whence ‖F T ere
T
r F‖ = (FF T )r,r and therefore the right side in (12.3) is equal to

η tr(FF T ).
If a and b are not cospectral then MT

a Ma 6= MT
b Mb and, since these matrices are

integer matrices, the norm of MT
a Ma −MT

b Mb is at least 1. So Equations (12.1),
(12.2) and (12.3) imply that

1

tr(FF T )
≤ η.

Our next lemma provides an upper bound on |U(t)a,b|.

Lemma 12.2. If a, b ∈ V (X) and E1, . . . , Em are the spectral idempotents of A, then

|(Er)a,a − (Er)b,b| <
√

8
√

1− |U(t)a,b|.

Proof. We have
U(t)a,b =

∑
r

eitθr(Er)a,b.

By the triangle inequality we have

|U(t)a,b| ≤
∑
r

|(Er)a,b|.

Now
(Er)a,b = eTaEreb = 〈Erea, Ereb〉

and by Cauchy-Schwarz

|〈Erea, Ereb〉| ≤ ‖Erea‖‖Ereb‖ =
√

(Er)a,a

√
(Er)b,b.

We conclude that

|U(t)a,b| ≤
∑
r

√
(Er)a,a

√
(Er)b,b.

Here the upper bound is the fidelity between the spectral densities at a and b, which
we denote by vectors x and y respectively. As

2− 2|U(t)a,b| ≥ 2− 2〈x, y〉 = 〈x− y, x− y〉,
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we have that for any r,∣∣∣∣√(Er)a,a −
√

(Er)b,b

∣∣∣∣≤√2− 2|U(t)a,b|,

and since, (Er)a,a ≤ 1 and (Er)b,b ≤ 1, we finally have our upper bound:

|(Er)a,a − (Er)b,b| <
√

8
√

1− |U(t)a,b|.

We now show that if the orbits of Da and Db are close enough, then a and b are
cospectral.

Theorem 12.3. Let n = V (X), let ρ be the largest eigenvalue of A, and let a and b
be vertices of X. If there is a time t such that

|U(t)a,b| ≥ 1− 1

8n4ρ2n
.

then a and b are cospectral.

Proof. We need an estimate for tr(FF T ). As tr(FF T ) is equal to the sum of the
entries of the Schur product F ◦ F , and as the maximum entry of F is ρn−1, we see
that tr(FF T ) ≤ n2ρn. Now the result follows from the previous two lemmas.

There is a simple relation between 1− |U(t)a,b| and the distance between orbits:

‖Db −Da(t)‖2 = 2− 2〈Db, Da(t)〉 = 2− 2|U(t)a,b|2.

13 Closer Orbits, Strongly Cospectral

We prove an analog of the result of the previous section, showing that if the orbits
of Da and Db are close enough, then a and b are strongly cospectral.

Two preliminary results are needed; the first is Theorem 9.3 in [10], the second
is Lemma 3.1 from the same source.

Lemma 13.1. Two vertices of X are strongly cospectral if and only if the corre-
sponding rows of M̂X are equal.

Lemma 13.2. Let D denote the discriminant of the minimal polynomial of the ad-
jacency matrix of X. Then the entries of D2M̂X are integers.

Lemma 13.3. Let a and b be vertices in the graph X. There is a constant η (de-
pending on X) such that if for some t we have

‖Da(t)−Db‖ < η,

then a and b are strongly cospectral.
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Proof. Suppose ‖Da(t) − Db‖ < ζ. Then, as we noted following the proof of
Lemma 5.1, the operator norm of Φ is at most 1 and we can apply Lemma 5.2
to deduce that

‖Φ(Da)− Φ(Db)‖ = ‖Φ(Da(t))− Φ(Db)‖ ≤ ‖Da(t)−Db‖ < ζ.

If u ∈ V (X), then Cauchy-Schwarz yields

|〈Φ(Da)− Φ(Db), Φ(Du)〉| ≤ ‖Φ(Da)− Φ(Db)‖ ‖Φ(Du)‖.

Since Du is pure, ‖Du‖ = 1 whence ‖Φ(Du)‖ ≤ 1. and it follows that the right side
of this inequality is bounded above by ζ.

We conclude that the absolute value of an entry of (ea − eb)
TM̂X is bounded

above by ζ. On the other hand, if D is the discriminant of the minimal polynomial
of A, then D2M̂X is an integer matrix and, accordingly, if a and b are not strongly
cospectral, some entry of (ea − eb)TM̂X is bounded below by D−2.

It would not be too difficult to derive an estimate for η, it would be substantially
smaller than the distance required to show that the vertices are cospectral.

This lemma implies that if there is pretty good state transfer from a to b, then a
and b are strongly cospectral.

14 Problems

Is there a tree that contains a set of three vertices, any two of which are strongly
cospectral?

We have shown that the distance between orbits of Da and Db provides a measure
of ‘similarity’ between the vertices a and b. Are there further interesting properties
of vertices related to this distance? We admit that computing this distance, even for
specific graphs, is a difficult task. Are there interesting graphs where this computa-
tion is feasible?
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