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Abstract

In this paper, analytically and combinatorially, we reprove that the
number of inversion sequences that avoid {100, 101, 201, 210} (respec-
tively, {100, 110, 201, 210}) is given by the large Schröder number, as
shown by Martinez and Savage. Moreover, we show that the number of
inversion sequences that avoid {101, 110, 201, 210} is also given by the
large Schröder number.

1 Introduction

An inversion sequence of length n is an integer sequence e = e0e1 · · · en such that
0 ≤ ei ≤ i for each 0 ≤ i ≤ n. Let In denote the set of all the inversion sequences of
length n. We say that an inversion sequence e ∈ In contains the word τ = τ1 · · · τk
if there is a subsequence of length k in e that is order isomorphic to τ ; otherwise,
we say that e avoids τ . Define In(τ) to be the set of inversion sequences of length n
that avoid τ . In this context, τ is called a pattern. More generally, for any set B of
patterns, we define In(B) = ∩τ∈BIn(τ). Two sets of patterns B1 and B2 are said to
be Wilf equivalent if |In(B1)| = |In(B2)|, for all n ≥ 0.

The systematic study of pattern-avoidance for inversion sequences was initiated
by Mansour and Shattuck [6] for the patterns of length three with non-repeating
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letters, and by Corteel et al. [3] for repeating and non-repeating letters. In particu-
lar, [6] gives an analytic and [3] a bijective proof that

∑

n≥0

|In(021)|xn = Sch(x) =
1− x−

√
1− 6x+ x2

2x
.

See also [1] for a bijective proof involving the little Schröder numbers. Yan and Lin [8]
completed the classification of the Wilf-equivalences for inversion sequences avoiding
pairs of length-three patterns. Martinez and Savage [7] generalized and extended the
notion of pattern-avoidance for the inversion sequences to triples of binary relations.
In particular, they showed that

∑

n≥0

|In({100, 101, 201, 210})|xn =
∑

n≥0

|In({100, 110, 201, 210})|xn = Sch(x). (1.1)

Hong and Li [4] completed the Wilf classification for patterns of length four. More
recently, the authors with Jeĺınek [2] considered the classification of the Wilf-equiv-
alences for inversion sequences avoiding triples of length-three patterns.

The aim of this paper is to prove analytically and combinatorially the following
result.

Theorem 1.1. Let B1 = {100, 101, 201, 210}, B2 = {100, 110, 201, 210}, and B3 =
{101, 110, 201, 210}. Then, for all j = 1, 2, 3,

∑

n≥0

|In(Bj)|xn = Sch(x). (1.2)

In particular, we reprove (1.1) by two different proofs.

2 Analytical proofs

In this section, we present an analytical proof for (1.2). To do that, we first use the
algorithm presented in [5] to guess and then to prove the rules of each generating
tree (see [9]) for all inversion sequences in

⋃
n≥0 In that avoid Bj , where j = 1, 2, 3.

In each case, we translate the rules of the generating tree to a system of functional
equations and then solve to obtain an explicit formula for the generating function∑

n≥0 |In(Bj)|xn. In the next three subsections, we consider the enumeration problem
of counting elements of In(Bj), where j = 1, 2, 3.

2.1 Avoiding B3

As we said, by using the algorithm of [5], we obtain the following result.

Lemma 2.1. The generating tree for
⋃

n≥0 In(B3) can be characterized as a gener-
ating tree T3 defined by a root 0 and the following rules

0m � 0m+1, 0m1, . . . , 0mm,

0mj � (0m+2−j)j+1, 0m+1(j + 1), . . . , 0m+1(m+ 1).
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Proof. Fix 0 ∈ I0(B3) to be the root of T3. Thus, it remains to show that the rules
hold. By the definitions, the children of 0m ∈ Im(B3) are 0

m+1, 0m1, . . . , 0mm. Thus,
0m � 0m+1, 0m1, . . . , 0mm. Also, the children of 0mj ∈ Im+1(B3), 1 ≤ j ≤ m, are
0mj0, 0mj1, . . . , 0mj(m+ 1). Note that

• the subtree T (B3; 0
mji) of T3 with 0 ≤ i ≤ j is isomorphic (in the sense of plane

trees) to the subtree T (B3; 0
m+2−j). To see that let 0mjiπ′ ∈ In(B3), then π

′

does not contain any letter belong to the set {0, 1, . . . , i−1, i+1, . . . , j}. Thus,
0mjiπ′ ∈ In(B3) if and only if 0m+2−jπ′′ ∈ In+2−j , where π

′′ is the word that is
obtained from π′ after replacing the letter k of π′ with k − j, where k ≥ j + 1.

• the subtree T (B3; 0
mji) of T3 with j + 1 ≤ i ≤ m + 1 is isomorphic to

T (B3; 0
m+1i). This holds because 0mjiπ′ ∈ In(B3) if and only if 0m+1iπ′ ∈

In(B3).

Thus, 0mj � (0m+2−j)j+1, 0m+1(j + 1), . . . , 0m+1(m+ 1), which completes the proof.

Define Am(x) (respectively, Bm,j(x)) to be the generating functions for the num-
ber of nodes at level n in the subtree of T3 with root 0m (respectively, 0mj) of T3,
where the root of this subtree is the vertex 0m (respectively, 0mj) that stays at level 0.
Thus, Lemma 2.1 gives

Am(x) = x+ xAm+1(x) + x
m∑

j=1

Bm,j(x),

Bm,j(x) = x+ (j + 1)xAm+2−j(x) + x
m+1∑

i=j+1

Bm+1,i(x).

Define Bm(x; u) =
∑m

j=1Bm,j(x)u
j−1. Then, by multiplying the recurrence for

Bm,j(x) by u
j−1 and summing over j = 1, 2, . . . , m, we obtain

Am(x) = x+ xAm+1(x) + xBm(x; 1),

Bm(x; u) =
x(1− um)

1− u
+ x

m∑

j=1

(j + 1)Am+2−j(x)u
j−1

+
x

1− u
(Bm+1(x; 1)− Bm+1(x; u)).

Let A(x; v) =
∑

m≥1Am(x)v
m−1 and B(x; v, u) =

∑
m≥1Bm(x; u)v

m−1. Then, by
multiplying these two recurrences by vm−1 and summing over m ≥ 1, we obtain

A(x; v) =
x

1− v
+
x

v
(A(x; v)− A(x; 0)) + xB(x; v, 1), (2.1)

B(x; v, u) =
x

(1− v)(1− vu)
+
x(2 − vu)

(1− vu)2
(A(x; v)− A(x; 0))

+
x

v(1− u)
(B(x; v, 1)− B(x; v, u)). (2.2)



D. CALLAN AND T. MANSOUR/AUSTRALAS. J. COMBIN. 87 (3) (2023), 391–402 394

In order to solve (2.1)–(2.2), we assume that the generating functions A(x; v) and
B(x; v, u) satisfy two extra equations:

A(x; v)

B(x; v, 1)
+

1

2
A(x; 0) = 1− v − 1

2
x, (2.3)

A(x; 0) =
1− x−

√
1− 6x+ x2

2
. (2.4)

Note that the relation (2.4) is guessed from the fact that we wish to prove∑
n≥0 |In(B2)|xn+1 = xSch(x). The relation (2.3) is hard to guess directly from

the problem, but here we used the first terms of these generating functions and
we tested several relations such as A(x; v) − B(x; v, 1), A(x; v)/B(x; v, v), and
A(x; v)/B(x; v, 1).

Since solution of the system (2.1)–(2.4) is a solution of the system (2.1)–(2.2), we
only need to solve the system (2.1)–(2.4). By (2.1), (2.3), and (2.4), we obtain that

A(x; v) =
x((v2+vx−2v+1)

√
x2−6x+1 + v2x+vx2−3v2−5vx+4v+x−1)

2(v − 1)(v2 + vx− v + x)
(2.5)

and

B(x; v, 1) =
x((v + x− 2)

√
x2 − 6x+ 1 + vx+ x2 − 3v − 5x+ 2)

2(1− v)(v2 + vx− v + x)
.

Now, by (2.2), we obtain

B(x; v, u) =
x(uv3 + xuv2 − 2uv2 + uv − 2v2 − 2xv + 4v + x− 2)

√
x2 − 6x+ 1

2(v2 + vx− v + x)(1− uv)2(1− v)

+
xv(uv2(x− 3) + uv(x− 4)(x− 1) + u(x− 1) + 2v(2− x))

2(v2 + vx− v + x)(1− uv)2(1− v)

+
x(−2v(x2 − 5x+ 3) + x2 − 5x+ 2)

2(v2 + vx− v + x)(1− uv)2(1− v)
. (2.6)

By using the expressions of A(x; v) and B(x; v, u), we see that (2.1)–(2.4) hold.
Hence, we can state the following result.

Theorem 2.2. We have ∑

n≥0

|In(B3)|xn = Sch(x).

Moreover, the generating functions A(x; v) and B(x; v, u) are given by (2.5) and
(2.6), respectively.

2.2 Avoiding B2

Again, by using the algorithm of [5], we obtain the following result.
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Lemma 2.3. The generating tree for
⋃

n≥0 In(B2) can be characterized as a gener-
ating tree T2 defined by a root 0 and the following rules:

0m � 0m+1, 0m1, . . . , 0mm,

0mj � (0m+2−j)j+1, 0m+1(j + 1), . . . , 0m+1(m+ 1).

By Lemma 2.1, Theorem 2.2, and Lemma 2.3, we have the following result.

Theorem 2.4. We have ∑

n≥0

|In(B2)|xn = Sch(x).

2.3 Avoiding B1

Lemma 2.5. The generating tree for
⋃

n≥0 In(B1) can be characterized as a gener-
ating tree T1 defined by a root 0 and the following rules:

0m � 0m+1, 0m1, . . . , 0mm,

0mj � (0m+1−j)j , 0m+1j, . . . , 0m+1(m+ 1).

Define Am(x) (respectively, Bm,j(x)) to be the generating functions for the num-
ber of nodes at level n in the subtree of T1 with root 0m (respectively, 0mj) of T1,
where the root of this subtree is the vertex 0m (respectively, 0mj) that stays at level 0.
Thus, Lemma 2.5 gives

Am(x) = x+ xAm+1(x) + x
m∑

j=1

Bm,j(x),

Bm,j(x) = x+ jxAm+1−j(x) + x
m+1∑

i=j

Bm+1,i(x).

Define Bm(u) =
∑m

j=1Bm,ju
m−j . Then, by multiplying the recurrence for Bm,j(x)

by um−j and summing over j = 1, 2, . . . , m, we obtain:

Am(x) = x+ xAm+1(x) + xBm(x; 1),

Bm(x; u) =
x(1 − um)

1− u
+ x

m∑

j=1

jAm+1−j(x)u
m−j + x

m∑

j=1

m+1∑

i=j

Bm+1,i(x)u
m−j .

Let A(x; v) =
∑

m≥1Am(x)v
m−1 and B(x; v, u) =

∑
m≥1Bm(x; u)v

m−1. Then, by
multiplying these two recurrences by vm−1 and summing over m ≥ 1, we obtain:

A(x; v) =
x

1− v
+
x

v
(A(x; v)− A(x; 0)) + xB(x; v, 1), (2.7)

B(x; v, u) =
x

(1− v)(1− vu)
+

x

(1− v)2
A(x; vu)

+
x

vu(1− u)
(B(x; v, u)− uB(x; vu, 1))− x

vu
B(x; v, 0). (2.8)
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Again, in order to solve (2.7)–(2.8), we assume that the generating functions A(x; v)
and B(x; v, u) satisfy:

A(x; v)

B(x; v, 1)
+

1

2
A(x; 0) = 1− v − 1

2
x, (2.9)

A(x; 0) = x Sch(x) =
1− x−

√
1− 6x+ x2

2
, (2.10)

B(x; v, 0) = − A(x; 0)

(1 − v)2
(v + 1 + A(x; 0)). (2.11)

By (2.7), (2.9), and (2.10), we obtain that

A(x; v) =
x((v2+vx−2v+1)

√
x2−6x+1 + v2x+vx2−3v2−5vx+4v+x−1)

2(v − 1)(v2 + vx− v + x)
(2.12)

and

B(x; v, 1) =
x((v + x− 2)

√
x2 − 6x+ 1 + vx+ x2 − 3v − 5x+ 2)

2(1− v)(v2 + vx− v + x)
.

Now, by (2.8), (2.11), and (2.12), we obtain

B(x; v, u) =
x(u2v3 − 2u2v2 + xuv2 − 2uv2 − 2xuv + 4uv + v + x− 2)

√
1− 6x+ x2

2(v − 1)2(1− uv)(u2v2 + xuv − uv + x)

+
x((x− 3)u2v3 + 2(2− x)u2v2 + (x− 4)(x− 1)uv2)

2(v − 1)2(1− uv)(u2v2 + uvx− uv + x)

+
x(−2x2uv + 10xuv − 6uv + vx+ x2 − v − 5x+ 2)

2(v − 1)2(1− uv)(u2v2 + uvx− uv + x)
. (2.13)

By using the expressions for A(x; v) and B(x; v, u), we see that (2.7)–(2.11) all hold.
Hence, we can state the following result.

Theorem 2.6. We have ∑

n≥0

|In(B1)|xn = Sch(x).

Moreover, the generating functions A(x; v) and B(x; v, u) are given by (2.12) and
(2.13), respectively.

3 Combinatorial proofs

In this section, we present combinatorial proofs of Theorems 2.2, 2.4, and 2.6. First,
let us recall UDF and Schröder paths. A UDF path is is a lattice path of upsteps
U = (1, 1), downsteps D = (1,−1) and flatsteps F = (2, 0). The horizontal line
through the initial point is ground level and heights are measured relative to ground
level. A Schröder path1 is a UDF path that ends at ground level and never dips

1See http://oeis.org/A006318
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below ground level. Its size is measured as the number of Us plus the number of
F s. We use the term weak-fall step to mean an F or a D. Since #Us = #Ds
in a Schröder path, the size of a Schröder path is the number of weak-fall steps it
contains. Let Rn denote the set of Schröder paths of size n. An elevated Schröder
path is one that starts at U , ends at D, and has no vertex at ground level other
than the endpoints. The elevation of a Schröder path P is U.P.D, where dots denote
concatenation. An ascent in a path is a maximal run of contiguous upsteps and
similarly for a descent. The terminal descent of a Schröder path is the run of Ds
that terminates the path; it is of length 0 if the path ends with a flatstep.

3.1 Bijection φ from In(B1) to Rn.

Recall that B1 = {100, 101, 201, 210}. The set In(B1) can be characterized as the
set of inversion sequences e0e1 · · · en such that for each i ≥ 2, if ei < ei−1 then
ej > ei−1 for all j ≥ i + 1. In particular, for an avoider e0e1 · · · en with n ≥ 1, we
have max(ei)

n
i=0 = en if en ≥ en−1, and = en−1 otherwise.

It will be convenient to say a vertex in a Schröder path is a key vertex if it is a
valley vertex—the vertex separating a contiguous DU—or the terminal vertex of a
flatstep F (regardless of the next step).

Define φ(0) = ε, the empty path. Now, suppose given e = e0e1 · · · en ∈ In(B1)
with n ≥ 1. By induction, set P = φ(e0 · · · en−1) ∈ Rn−1 and set i = n − en. Also,
set Q = P.D. Note that Q contains n weak-fall steps and ends at height −1. Define
S = φ(e) as follows. If i = n, set S = U.Q, thus forming the elevation of P . If
0 ≤ i ≤ n − 1, locate the i-th weak-fall step in Q measuring from the end of the
path, and insert a U immediately before this weak-fall step to obtain an intermediate
Schröder path R ∈ Rn. In case i = 0, this is interpreted to mean that U is inserted
at the end of Q, thereby introducing a key vertex at height −1. In the path R, if the
step immediately preceding the inserted U is a D such that the valley vertex formed
by this DU is at odd height, delete this D and change the inserted U to an F to
obtain S. Otherwise, set S = R. For example, with n = 4 and e = 00102, we have
P = φ(0010) = UUDUDD (induction), i = 2, and P,Q,R, S are shown in Figure 1
below, where a DU in R is changed to an F in S.
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S = φ(00102)
Figure 1: The path φ(00102)

As another example, e = 01131 yields P = FUDUD, i = 3, and Q, S are shown in
Figure 2 below, where a DU at ground level in Q is raised to odd height in R = S.

We have φ(00) = UD, φ(01) = F and the action of φ on avoiders for n = 2 is
shown in Figure 3 below.
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Figure 2: The path φ(01131)
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Figure 3: The paths for I2(B1)

For purposes of inverting φ, note that whenever φ introduces a new key vertex in
S that was not present in P , it is at even height.

To reverse the map, it is only necessary to determine where the inserted U/F
appears in S for then we can retrieve i by counting the weak-fall steps after this
U/F , we can retrieve P by deleting the last step of S and deleting the inserted U or,
in case the inserted U became an F , changing this F to a D. Then, by induction, we
get the first n terms of the inverse avoider as e0 · · · en−1 = φ−1(P ), and en = n− i.

Here is the procedure to identify the location of the inserted U/F .

• If S has no key vertices at even height (so S must be an elevated path or else
there is a valley vertex or F step at ground level, thus at even height), then a
U was inserted at the end of the run of (0 or more) upsteps at the start of Q to
get R = S = φ(e). Delete the first and last steps of S to get P and set i = n.

• If S has at least one key vertex at even height, locate the last such vertex V .
If V is immediately followed by a U , the ascent started by this U is where a
U was inserted, and P and i can be recovered. Otherwise, V terminates an
F step that either ends the path or is immediately followed by a D (it cannot
be followed by another F for then V would not be the last key vertex at even
height and it is not followed by U by assumption) and this F step replaced a
DU in R to get S. So change the F to D and delete the last step to get P ,
and count weak-fall steps after V to get i. (If the path S ends with a flatstep
F , the net effect is to delete F , and i = 0.)

To explain why this reversal procedure works, we begin with a useful lemma.

Lemma 3.1. In an avoider e = e0e1 · · · en ∈ In(B1),
(i ) the number of consecutive Us that start φ(e) is the number of noninitial 0s in e,
and
(ii ) the number of consecutive Ds that terminate φ(e) is n−max{ei}.

Proof. We prove both parts by simultaneous induction on n. The base cases are
clear.
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(i) Suppose first that e0 · · · en−1 is weakly increasing so that all its 0 s occur at
the start. By induction, the initial ascent length of P = φ(e0 · · · en−1) is the number
of initial 0s in e1 · · · en−1. If en = 0, then P is elevated to get φ(e) and the conclusion
holds. If en �= 0, then i < n and in the construction of φ(e) from P , the initial
ascent of P is undisturbed. Next suppose that e0 · · · en−1 has a descent and that
max{ei}n−1

i=0 = a. By induction, P ends with (n − 1) − a Ds, so Q ends with n − a
Ds and, since e is an avoider, en > a. Hence, i = n− en < n−a, and the insertion of
the step U in P occurs within the terminal descent of P and so does not affect the
initial ascent.

(ii) Again, let a = max{ei}n−1
i=0 . By induction, P = φ(e0 · · · en−1) ends with

(n − 1) − a Ds, so Q ends with n − a Ds. If en ≤ a, then max{ei}ni=0 = a and
i = n − en ≥ n − a and the insertion of U leaves the n − a Ds that terminate P
undisturbed. If en > a, then max{ei}ni=0 = en and i = n − en < n − a. Since U is
inserted just before the ith-from-end step on the terminal descent of n− a Ds in Q,
we see that φ(e) ends with precisely i = n−en = n−max{ei}ni=0 Ds, as required.

The pyramid paths UnDn, n ≥ 0, are the only Schröder paths with no key vertices
at all and they correspond under φ to the all-zeros avoiders 0n+1. Otherwise, the
last (rightmost) key vertex in a Schröder path is the very last vertex if the path ends
with F and the first vertex of the last ascent if the path ends with D.

For n ≥ 2, consider an avoider e and the construction for φ described above.
Set a = max(ej)

n−1
j=0 (= max(en−2, en−1) ). By Lemma 3.1, P ends with n − 1 − a

downsteps and so Q ends with n− a downsteps. If en ≥ en−1, then certainly en ≥ a
and so i = n − en ≤ n − a. Hence, the construction will insert U at one of the
vertices on the terminal descent of Q (since Q ends with D, there are at least two
such vertices). If en = en−1, then i = n− a, so U is inserted at the top vertex of the
terminal descent (Figure 4a), no new key vertex is introduced and no key vertex of
P is disturbed. If en > en−1, then i < n− a and a new key vertex (at even height) is
introduced, and existing key vertices of P are undisturbed (Figure 4b).

� � � � � � � � � � � � � � � �

� �

��
�

�

��
�

�

��
�

�

(4a) n− a = i = 3

→
� � � � � � � � � � � � � � � � � � � �

� ����
��

��
�

�

��
�

�

��
�

� � � � � � � � � � � � � � � � � � � � �

���
�

��
�

��

��
�

�

��
�

�

��
�

�

(4b) n− a = 4, i = 3

→
� � � � � � � � � � � � � � � � � � � �

���
�

��
�

�����
��

��
�

�

��
�

�

��
�

�

Figure 4

If en < en−1, then a = en−1 and i > n− a and the U must be inserted at a vertex
strictly before the last key vertex of P and all key vertices after the inserted U are
raised 1 unit (example in Figure 2 above).

Next, for an avoider e = e0e1 · · · en ∈ In(B1), consider the paths Pk, Qk, Rk, Sk,
with Pk = φ(e0 · · · ek) used in the recursive construction of φ(e) described above as k
increases from 1 to n− 1. As long as ek ≥ ek−1, all key vertices are at even level and
everything is fine. At the first descent (if there is one) ek < ek−1, so by the previous
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paragraph, one or more of the key vertices at the end of Sk will be at odd height and
the inserted U can be recovered from the last key vertex at even height. The next
term ek+1 must satisfy ek+1 > ek−1, and so a new last key vertex is introduced, not
disturbing its predecessor key vertex at odd height, and this last key vertex is at even
height. As long as the terms of e continue to weakly increase, existing key vertices
are undisturbed and any new key vertex is at even height, the last key vertex serving
to recover the inserted U .

At the next descent, say ek+m < ek+m−1 with m ≥ 2, the inserted U will be placed
before the last key vertex, which is at even height. The crucial point is that it will be
placed after the last of the run of one or more key vertices at odd height that were
introduced by the previous descent. To see this, note that the number i of weak-
valley steps to be counted off from the end of Qk+m to obtain the insert location for
U is given by i = k+m− ek+m. But there are more than this number of weak-valley
steps in Qk+m after the last key vertex at odd height: the terminal descent of Qk

contains k −max(ej)
k
j=0 = k − ek−1 D steps, which all appear in Qk+m, and each of

Qk+1, . . . , Qk+m introduces one additional D step (while the inserted U may change
an existing D to an F ) for a total of k−ek−1+m steps, and k−ek−1+m > k+m−ek+m.
Thus, if a key vertex reaches odd height due to the insertion of a U , it remains
henceforth at that height, and the procedure for inverting φ works.

A consequence of the preceding analysis is that φ takes the number of descents in
an avoider e to the number of runs of key vertices at odd height in the corresponding
Schröder path. (The key vertices occur in runs of one height parity followed by a run
of the other height parity.)

3.2 Bijection from In(B1) to In(B2).

Recall that B1 = {100, 101, 201, 210} and B2 = {100, 110, 201, 210}.
The B2-avoiders can be characterized as the inversion sequences e0 · · · en that

satisfy for i ≥ 1 (i) ei ≥ max(descent tops in e0 · · · ei−1), and (ii) ei ≥ max(repeated
entries in e0 · · · ei−1). To define the bijection, given e0 · · · en ∈ In(B1), split the se-
quence into segments after each descent bottom and place each segment in a box.
Each segment is weakly increasing except for a descent bottom in the last position
(the last segment may or may not end with a descent), and all entries in each non-
initial box exceed all entries in the preceding box. Within each box, place a circle
around the descent bottom (if there is one) and around the second occurrence of
each repeated entry that is greater than the descent bottom. Then within each box,
rotate the circled entries to the right, and erase circles and boxes. An example is
shown below.

0 1 1 2 2 2 2 3 3 4 1 6 8 8 8 5 10 9 11 11 13 →

0 1 1 2 1 2 2 3 2 4 3 6 8 5 8 8 10 9 11 11 13 =

0 1 1 2 1 2 2 3 2 4 3 6 8 5 8 8 10 9 11 11 13

To describe the inverse map, we use the following lemma.
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Lemma 3.2. For e = e0 · · · en ∈ In(B2), if bab is an instance of a 101 pattern in e,
then (i ) a is immediately preceded by b in e, (ii ) a occurs only once as part of a 101
pattern and such a’s increase left to right.

Proof. (i) Suppose, for a contradiction, that bcab appears in e with b > a (so bab is
a 101) and c �= b. If c > b, then cab is a forbidden 201; if a < c < b, then bca is a
210; if c < a, then bca is a 201. (ii) After the first occurrence of the descent ba all
later entries are greater than or equal to b.

Here is the inverse map. Given e0 · · · en ∈ In(B2), place a circle around the “0” of
each occurrence of a 101 pattern bab. From each circled a, draw an arrow to the last
occurrence of the corresponding b and circle it. Then rotate left each set of circled
entries connected by arrows.

3.3 Bijection from In(B3) to In(B2).

Recall that B2 = {100, 110, 201, 210} and B3 = {101, 110, 201, 210}. We show that
the bijection ψ : In(101, 110, 201) → In(100, 110, 201) of Theorem 5.1 in [2] restricts
to send 210-avoiding inversion sequences in In(101, 110, 201) to 210-avoiding inversion
sequences in In(100, 110, 201) and inversely. This follows from

Proposition 3.3. If eiej starts a 210 pattern in e ∈ In(101, 110, 201), then
ψ(e)iψ(e)j starts a 210 pattern in ψ(e) ∈ In(100, 110, 201), and similarly for ψ−1.

We prove the assertion for ψ; the ψ−1 case is analogous. Recall that ψ replaces
each entry ek that serves as the second “0” of a 100 pattern, say ek = a, with the
largest entry preceding the last occurrence of a before ek, and changes no other entry.

Lemma 3.4. If ei > ej for some i < j in e ∈ In(101, 110, 201), that is, b := ei is an
inversion top, then b occurs only once in e.

Proof. If b occurs twice before ej , then bbej is a forbidden 110, and if there is a b
after ej, then bejb is a 101.

Now suppose eiej starts a 210 in e ∈ In(101, 110, 201). Then ei and ej each occurs
only once in e by Lemma 3.4 and so are left unchanged by ψ. Take k minimal such
that eiejek is a 210. If ek is not the second “0” of a 100, then ek is unchanged by ψ
and eiejek is a 210 in ψ(e). If a := ek is the second “0” of a 100 pattern, say baa,
then the middle a occurs before ej because by minimality of k there is no a between
ej and ek, and there is no a between ei and ej because then eiaej would be a 201.
Now b < ej because b = ej would imply baej is a 101, and b > ej would imply baej
is a 201. In ψ(e), the entry ek becomes b and then eiejb is a 210 in ψ(e).
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