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Abstract

For any fixed integer k � 3, a hypergraph H is k-uniform if each edge
is a set of k vertices, and is said to be linear if any two distinct edges
intersect in at most one vertex. A k-clique in a graph is a complete
subgraph on k vertices. The random greedy k-clique removal algorithm
starts with a complete graph on vertex set [n] = {1, 2, . . . , n}, and iter-
atively removes the edges of a uniformly chosen k-clique. The process
terminates once the remaining graph contains no k-cliques, say after M
steps. Let E(M) be the edge set of the graph when the process termi-
nates. This process is equivalently viewed as creating a random linear
k-uniform hypergraph, which is also called the random greedy linear hy-
pergraph packing algorithm, starting with vertex set [n] and no edges,
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and adding the vertex set of each chosen k-clique as a new edge in the hy-
pergraph at each step. This algorithm generates a linear k-uniform hyper-
graph with M edges. A special case of a conjecture proposed by Bennett

and Bohman implies that with high probability |E(M)| = n2− 2
k+1

+o(1).
Fewer results are known for the cases k � 4. In this paper, we di-

rectly show that |E(M)| � n2− 1
k(k−1)−2

+o(1) for k � 3, which implies

M � n2

k(k−1)
−n2− 1

k(k−1)−2
+o(1). This upper bound on |E(M)| equals n 7

4
+o(1)

when k = 3, coinciding with an upper bound obtained by Grable for ran-
dom triangle packing. We also show the bound is a natural barrier in our
proof.

1 Introduction

Hypergraphs, which are also known as set systems and block designs, are fundamental
to the study of complex discrete systems. Let k and � be given fixed integers such
that 2 � � � k − 1. A hypergraph H on vertex set [n] is a k-uniform hypergraph
(k-graph for short) if each edge is a set of k vertices, and is said to be linear if every
pair of distinct edges intersect in at most one vertex. A k-graph is called a partial
Steiner (n, k, �)-system, if every subset of size � (�-set for short) lies in at most one
edge of H . In particular, partial Steiner (n, k, 2)-systems are linear hypergraphs.
Linear hypergraphs are the subject of much study [1, 3, 14, 15].

Random greedy processes are classical mathematical models, and the power usu-
ally goes beyond the probabilistic method used in previous work [10]. A k-clique in
a graph is a complete subgraph on k vertices. The random greedy k-clique removal
algorithm starts with a complete graph on the vertex set [n] = {1, 2, . . . , n}, denoted
by G(0), and G(i + 1) is the remaining graph from G(i) by selecting one k-clique
uniformly at random out of all k-cliques in G(i) and deleting all its edges from the
edge set E(i) of G(i). The process terminates once the remaining graph contains no
k-cliques. Let M = min{i : G(i) is k-clique free}, and E(M) be the set of edges left
unsaturated by the produced k-cliques, which are related via

|E(M)| =
(
n

2

)
−

(
k

2

)
M.

This process is equivalently viewed as creating a random linear k-graph, which is also
called the random greedy linear hypergraph packing algorithm, starting with vertex
set [n] and no edges, and adding the vertex set of each chosen k-clique as a new
edge in the hypergraph at each step. This algorithm generates a linear k-graph with
M edges. It is an important special case of the random greedy hypergraph matching
algorithm [2]. As usual, we say some property holds with high probability (w.h.p. for
short) if the probability that it holds tends to 1.

Bennett and Bohman [2] proposed a conjecture on the random greedy hypergraph
matching algorithm, which would imply that w.h.p. |E(M)| = n2−2/(k+1)+o(1). It is
exactly |E(M)| = n3/2+o(1) proposed by Bollobás and Erdős [7] when k = 3, which is



F. TIAN ET AL. /AUSTRALAS. J. COMBIN. 87 (3) (2023), 365–390 367

also called the random greedy triangle-removal algorithm [6]. The next few results all
assume k = 3. Spencer [13] and independently Rödl and Thoma [12] showed w.h.p.
|E(M)| = o(n2). Grable [9] improved this bound to |E(M)| � n7/4+o(1). Bohman
et al. [5] introduced the critical interval method for proving dynamic concentration.
They [6] confirmed the exponent in a breakthrough by generalizing the approach
in [5]. Fewer results are known on |E(M)| when k � 4.

In this paper, we directly discuss the structure of the algorithm, using a heuristic
assumption to find the trajectories of an ensemble of random variables when the pro-
cess evolves. Compared with the random triangle-removal process, it is challenging
to analyze the one-step change of the number of k-cliques in terms of some auxiliary
variables. Finally, we obtain our main results.

Theorem 1.1. Given a fixed integer k � 3, consider the random greedy k-clique
removal algorithm on the vertex set [n]. Let E(M) be the edge set of the graph when
the process terminates and M be the number of edges in the generated linear k-graph.
With high probability, there exists some positive constant λ such that

M � n2

k(k − 1)
−

3
√
2

k(k − 1)
n
2− 1

k(k−1)−2 logλ n,

which implies that

|E(M)| � n2− 1
k(k−1)−2

+o(1).

We make no attempt to optimize the coefficient 3
√
2 here. We also show our result

corresponds to the inherent barrier of the process. There is a gap between our upper
bound and the conjectured upper bound |E(M)| = n2−2/(k+1)+o(1) from [2]. The main
obstacle is to find better variables to characterize the one-step change of the number
of k-cliques. The analysis still works for the case of k = 3 to give |E(M)| � n7/4+o(1),
which coincides with the bound in [5, 9]. We believe it is not easy to improve
Theorem 1.1.

The remainder of this paper is organized as follows. In the next section, notation
and some lemmas for analyzing the random linear k-graph packing algorithm are
presented. In Section 3, we discuss the evolution of the process in detail and estimate
the trajectories of these random variables. We formally prove the concentration of
our random variables in Section 4.

2 Notation and some lemmas

All asymptotics in this paper are with respect to n → ∞. Let (Ω,F ,P) be an
arbitrary probability space. Let (Fi)i�0 be the filtration given by the evolution of the
process. Let η,N > 0 be constants and {X(i)}i�0 be a sequence of random variables,
and let ΔX = X(i+ 1)−X(i) denote the one-step change for the random variable
X(i). The pair {X(i),Fi}i�0 is then called a submartingale or a supermartingale if
X(i) is Fi-measurable and E[ΔX|Fi] � 0 or E[ΔX|Fi] � 0 for all i � 0, respectively.
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We say that {X(i),Fi}i�0 is (η,N)-bounded if X(i)−η � X(i+1) � X(i)+N for all
i � 0. Furthermore, for two positive-valued functions f, g on the variable n, we write
f � g to denote limn→∞ f(n)/g(n) = 0 and f ∼ g to denote limn→∞ f(n)/g(n) = 1.
Let a = b± c be short for a ∈ [b− c, b+ c],

(
S
b

)
= ∅ and

(
a
b

)
= 0 if b > |S| and b > a.

We also use the standard asymptotic notation o, O, Ω and Θ. All logarithms are
natural, and the floor and ceiling signs are omitted whenever they are not crucial.

For 2 � m � k, u ∈ [n] and Um = {u1, · · · , um} ∈ (
[n]
m

)
, let Nu = Nu(i) = {x ∈

[n] : xu ∈ E(i)}, NUm = NUm(i) = ∩m
j=1Nuj

. Let Km(i) be the set of m-cliques in
G(i) and Qm(i) = |Km(i)|. Our goal is to estimate the random variable Qk(i). Fix
one Um ∈ (

[n]
m

)
, and define the random variable Rk,Um = Rk,Um(i) to be

Rk,Um =

{∣∣{A ∈ (NUm
k−m

)
: A induces a (k −m)-clique in G(i)

}∣∣, 2 � m � k − 1;

1Uk
, m = k.

(2.1)

Sometimes, for short, we will suppress i. For 2 � m � k − 1, Rk,Um counts the
number of (k − m)-cliques in G(i) such that every vertex in the sets counted by
Rk,Um is in NUm; particularly Rk,Uk−1

= |NUk−1
| is the codegree of the vertex subset

Uk−1. Also 1Uk
is the indicator random variable with 1Uk

= 1 if the subgraph induced
by Uk in G(i) is complete, instead 1Uk

= 0 otherwise.

Suppose that Uk is the vertex set of the k-clique chosen from G(i) at (i + 1)-th
step, and let Um ∈ (

Uk

m

)
with 2 � m � k. Define

Qk,Um(i) =
∣∣{A ∈ Kk(i) |A ∩ Uk = Um

}∣∣,
namely, Qk,Um(i) denotes the number of k-cliques in G(i) that exactly contains the
vertices Um in Uk. In particular, Qk,Uk

(i) = 1. Thus, we have

Qk(i)−Qk(i+ 1) =

k∑
m=2

( ∑
Um∈(Uk

m )

Qk,Um(i)
)
. (2.2)

By inclusion-exclusion formula, we have

Qk,Um(i) = Rk,Um +
∑

T1∈(Uk\Um
1 )

(−1)1Rk,Um∪T1 + . . .

+
∑

Tk−m−1∈(Uk\Um
k−m−1)

(−1)k−m−1Rk,Um∪Tk−m−1
+ (−1)k−mRk,Uk

, (2.3)

where Rk,Um in (2.1) equals the number of extensions to one copy of k-clique from
the set Um. Note that

∑
Um∈(Uk

m )

( ∑
Tj∈(Uk\Um

j )

Rk,Um∪Tj

)
=

(
m+ j

m

) ∑
Um+j∈( Uk

m+j)

Rk,Um+j
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for the integer j with 0 � j � k−m because each element inRk,Um+j
on the right side

is counted
(
m+j
m

)
times on the left side. Summing the above corresponding displays

(2.3) for all Um ∈ (
Uk

m

)
with 2 � m � k altogether into the equation (2.2), it follows

that

Qk(i)−Qk(i+ 1)

=
∑

U2∈(Uk
2 )

Rk,U2 +
∑

U3∈(Uk
3 )

[
(−1)1

(
3

2

)
+ (−1)0

(
3

3

)]
Rk,U3 + . . .

+
∑

Uk−1∈( Uk
k−1)

[
(−1)k−3

(
k − 1

2

)
+ · · ·+ (−1)0

(
k − 1

k − 1

)]
Rk,Uk−1

+

[
(−1)k−2

(
k

2

)
+ · · ·+ (−1)0

(
k

k

)]
Rk,Uk

.

Since
∑r

j=2(−1)r−j
(
r
j

)
= (−1)r(r− 1) for any given integer r � 2 and Rk,Uk

= 1, we
have

Qk(i)−Qk(i+ 1) =
∑

U2∈(Uk
2 )

Rk,U2 − 2
∑

U3∈(Uk
3 )

Rk,U3 + . . .

+ (−1)k−1(k − 2)
∑

Uk−1∈( Uk
k−1)

Rk,Uk−1
+ (−1)k(k − 1). (2.4)

Then the expectation E[ΔQk|Fi] of ΔQk is

E[ΔQk|Fi]

= −
∑

Uk∈Kk(i)

∑
U2∈(Uk

2 )
Rk,U2+ · · ·+(−1)k−1(k−2)

∑
Uk−1∈( Uk

k−1)
Rk,Uk−1

+(−1)k(k−1)

Qk(i)

= (−1)k+1(k−1)− 1

Qk(i)

∑
U2∈K2(i)

(Rk,U2)
2+ · · ·+(−1)k(k−2)

Qk(i)

∑
Uk−1∈Kk−1(i)

(Rk,Uk−1
)2,

(2.5)

where the last equality is true because∑
Uk∈Kk(i)

∑
Um∈(Uk

m )

Rk,Um =
∑

Um∈Km(i)

(Rk,Um)
2

for 2 � m � k − 1 by double counting.

We also need the following lemmas to establish dynamic concentration on vari-
ables Qk(i) and Rk,Um for any Um ∈ (

[n]
m

)
with 2 � m � k − 1.

Lemma 2.1 (Lemma 2.3 in [6]). Let a1, . . . , a� ∈ R and a ∈ R. Suppose that
|ai − a| � ε for all 1 � i � �. Then,

(
∑�

i=1 ai)
2

�
�

�∑
i=1

a2i �
(
∑�

i=1 ai)
2

�
+ 4�ε2.
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Lemma 2.2 (Hoeffding and Azuma [11]). Suppose a sequence of random variables
{X(i)}i�0 is a supermartingale (respectively, submartingale) and |X(i)−X(i−1)| <
ci. Then for any positive integer � and any positive real number a,

P
[
X(�)−X(0) � a

]
� exp

[ −a2

2
∑�

i=1 c
2
i

]
;

(
respectively, P

[
X(�)−X(0) � −a

]
� exp

[ −a2

2
∑�

i=1 c
2
i

])
.

Lemma 2.3 (Lemma 6 and Lemma 7 in [4]). Suppose {X(i)}i�0 is an (η,N)-bounded
supermartingale (respectively, submartingale) with initial value 0 and η � N/10.
Then for any positive integer � and any positive real number a with a < η�,

P
[
X(�) � a

]
� exp

[
− a2

3�ηN

]
.

(
respectively P

[
X(�) � −a

]
� exp

[
− a2

3�ηN

]
.

)
.

Finally, we will use the Chernoff bound, stated below, in Section 5 to explain
why we believe our bound is not best possible.

Lemma 2.4 ([8]). For X ∼ Bin(n, p) and any 0 < ξ � np, P
[|X − np| > ξ

]
<

2 exp
[
− ξ2

3np

]
.

3 Estimates on the variables in G(i)

A pseudo-random heuristic for divining the evolution of variables plays a central role
in the understanding of graph processes, as shown in [2, 5, 6]. As well as estimating
the random variable Qk(i), we also estimate the likely values of the auxiliary random
variables Rk,Um for any Um ∈ (

[n]
m

)
with 2 � m � k − 1 throughout the process. We

assume the process produces a graph whose variables are roughly the same as they
are in the binomial random graph G(n, p) with the same edge density. Rescale the
number of steps i to be t = ti =

i
n2 and introduce a notion of edge density as

p = pi = p(t) = 1− k(k − 1)i

n2
= 1− k(k − 1)t. (3.1)

Note that p can be viewed as either a continuous function of t or as a function of the
discrete variable i. We pass between these interpretations without comment. With
this notation, we have

|E(i)| =
(
n

2

)
−

(
k

2

)
i =

(
n

2

)
− 1

2
(1− p)n2 =

1

2
(n2p− n). (3.2)

Hence the number of edges in G(i) with edge density p is approximately equal to the
one in G(n, p) up to the negligible linear term when p lies in some proper range.
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Under the assumption that G(i) resembles G(n, p), for a fixed integer k � 3,
2 � m � k−1 and Um ∈ (

[n]
m

)
, we anticipate that the expressions of Qk(i) and Rk,Um

are

Qk(i) ∼ nk

k!
p(

k
2) and Rk,Um ∼ nk−m

(k −m)!
p(

k
2)−(m2 ),

where nk

k!
p(

k
2) approximately counts the expected number of k-cliques in G(n, p);(

n−m
k−m

)
p(

k
2)−(m2 ) ∼ nk−m

(k−m)!
p(

k
2)−(m2 ) approximately counts the expected number of (k −

m)-cliques in which every vertex is in NUm. Our main results below will establish
these results under certain conditions. A detailed analysis and the proof of concen-
tration will follow in the next section.

Theorem 3.1. Given a fixed integer k � 3, let Um ∈ (
[n]
m

)
with 2 � m � k− 1; then

there exist positive constants μ, γm and λ such that, with high probability,

Qk(i) �
{

n3

6
p3 + n2

3
p, k = 3,

nk

k!
p(

k
2) + nk−1

2
p(

k
2)−4, k � 4;

(3.3)

Qk(i) �
nk

k!
p(

k
2) − σ2nαp−1 logμ n; (3.4)

Rk,Um =
nk−m

(k −m)!
p(

k
2)−(m2 ) ± σnβm logγm n, 2 � m � k − 1; (3.5)

holding for every i � i0 with i0 =
n2

k(k−1)
− 3√2

k(k−1)
n2− 1

k(k−1)−2 logλ n, where

α = k −
(
k
2

)
+ 1

2
(
k
2

)− 2
, (3.6)

βm = k −m−
(
k
2

)− (
m
2

)
2
(
k
2

)− 2
, 2 � m � k − 1; (3.7)

and the error function σ = σi = σ(t) is defined to be

σ(t) = 1− k(k − 1) log p(t) (3.8)

with initial value σ(0) = 1 and it grows slowly.

Theorem 3.1 is proved in Section 4. It implies that with high probability these
random variables are concentrated around the trajectories we have heuristically di-
vined until at least step i0. The dynamic concentration in turn show that the process
produces a graph of size at most |E(i0)| with high probability. We make no attempt
to optimize the constants μ, λ and γm in all error terms with 2 � m � k − 1. There
are many choices of them that can be balanced to satisfy certain inequalities. If we
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choose them to satisfy, for k � 3, for example, the inequalities[(
k

2

)
+ 1

]
λ > μ+ 3; (3.9)[(

k

2

)
−

(
m

2

)]
λ > γm + 2, 2 � m � k − 1; (3.10)[(

m

2

)
− 1

]
λ+ γm > γ2, 3 � m � k − 1; (3.11)

γ2 >
1

2
; (3.12)

then we will see that these choices are sufficient for our proof of Theorem 3.1 in
the next section. We do not replace them with their actual values. This is for the
interest of understanding the role of these constants played in the calculations.

Proof of Theorem 1.1. We recover the number of edges when i = i0 to be

|E(i0)| =
(
n

2

)
−
(
k

2

)
i0 ∼

3
√
2

2
n2− 1

k(k−1)−2 logλ n.

Theorem 1.1 follows directly from Theorem 3.1 by |E(M)| � |E(i0)| and M � i0
with room to spare in the power of the logarithmic factor.

Remark 3.2. We now show that in each of (3.3)–(3.5), the expression is asymptot-
ically dominated by the first term, with the second term negligible compared to the
first term. According to (3.1), define

p0 = pi0 = 1− k(k − 1)i0
n2

=
3
√
2n− 1

k(k−1)−2 logλ n. (3.13)

Since i � i0 in Theorem 3.1, we have p � p0 in (3.13). When k � 3, the main

terms in (3.3) clearly dominate the second terms with λ > 0. We also have nk

k!
p(

k
2) �

σ2nαp−1 logμ n in (3.4) because σ = O(logn) in (3.8), where α is in (3.6), λ and μ
satisfy the relation as the equation shown in (3.9). Thus, it follows that Qk(i) =

(1 + o(1))nkp(
k
2)/k! in (3.3) and (3.4). Similarly, Rk,Um = (1 ± o(1)) nk−m

(k−m)!
p(

k
2)−(m2 )

in (3.5) for 2 � m � k − 1 and k � 3 because nk−m

(k−m)!
p(

k
2)−(m2 ) � σnβm logγm n, where

βm is in (3.7), λ and γm satisfy the relation as the equation shown in (3.10). For
k = 3, we have α = 2 in (3.6) and β2 =

1
2
in (3.7), which coincide with the errors of

the number of triangles and the codegree for any two vertices in [5].

As a supplement, we show the claim below that is required to analyze Theorem 3.1
in the next section.

Claim: Assuming the estimates in (3.5) hold on Rk,Um for any Um ∈ (
[n]
m

)
with

2 � m � k − 1, we have

∑
Um∈Km(i)

(Rk,Um)
2 �

m!
(
k
m

)2
Q2

k(i)

nmp
, (3.14)
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and

∑
Um∈Km(i)

(Rk,Um)
2 �

⎧⎨
⎩

2!(k2)
2
Q2

k(i)

n2p
+ 2σ2n2k−3p log2γ2 n, m = 2;

nmp
m!

(
nk−m

(k−m)!
p(

k
2)−(m2 ) + σnβm logγm n

)2
, 3 � m � k − 1.

(3.15)

Proof of Claim. Firstly, we prove Qm(i) � nm

m!
p for 2 � m � k−1. In fact, note that

Q2(i) = |E(i)| ∼ n2

2
p shown in (3.2) when p � p0 in (3.13), and Qm(i) � n

m
Qm−1(i)

is clearly true because each element in Km−1(i) has at most n possibilities to become
an element in Km(i), while each element in Km(i) corresponds to exactly m elements
in Km−1(i). Then we recursively achieve Qm(i) � nm

m!
p for 2 � m � k − 1.

By Lemma 2.1, for any Um ∈ Km(i) with 2 � m � k − 1, we have

∑
Um∈Km(i)

(Rk,Um)
2 �

(
∑

Um∈Km(i) Rk,Um)
2

Qm(i)
.

Note that
∑

Um∈Km(i) Rk,Um =
(
k
m

)
Qk(i) because each element on the right side is

counted
(
k
m

)
times on the left side, thus we have the lower bound in (3.14) byQm(i) �

nm

m!
p.

For the upper bound of
∑

U2∈K2(i)
(Rk,U2)

2, we have β2 = k − 5
2
in (3.7) and

Q2(i) ∼ n2

2
p, then it follows that

∑
U2∈K2(i)

(Rk,U2)
2 �

(∑
U2∈K2(i)

Rk,U2

)2
Q2(i)

+ 4Q2(i)
(
σnβ2 logγ2 n

)2

∼ 2!
(
k
2

)2
Q2

k(i)

n2p
+ 2σ2n2k−3p log2γ2 n,

when m = 2 by Lemma 2.1 and
∑

U2∈K2(i)
Rk,U2 =

(
k
2

)
Qk(i). For 3 � m � k − 1,

by the estimates in (3.5) and Qm(i) � nm

m!
p, we have the trivial upper bound of∑

Um∈Km(i)(Rk,Um)
2 in (3.15).

4 Proof of Theorem 3.1

4.1 The critical interval method

Recall the outline of the critical interval method [2, 5, 6] used to control some graph
parameters as the process evolves. Let the stopping time τ be the smallest index i
such that any one of the random variables violates its corresponding trajectory. In
our situation, this would be the smallest index i such that one of (3.3)–(3.5) fails.
Let the event EX be of the form X(i) = x(i) ± e(i) for all i � i0, where X(i) is
some random variable, x(i) is the expected trajectory and e(i) is the error term. We
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show that the event {τ = i0} holds by means of {τ = i0} = ∩X∈IEX , where |I| is
polynomial in n.

For each such random variable X(i), we define a critical interval IX for its bound
(upper and lower) that has one endpoint at the bound we are trying to maintain and
the other slightly closer to the expected trajectory of the random variable. Consider
a fixed step j < i0 such that X(j) ∈ IX . Define the stopping time τX,j to be
τX,j = min{i0,max{j, τ}, the smallest i � j such that X(i) /∈ IX}, which will make
it possible to establish the martingale condition and apply the martingale inequalities
in Lemma 2.2 and Lemma 2.3. We will bound the probability of the event that the
designated variable crosses its critical interval in the process, and an application of
the union bound over all steps j will show that the probability of the occurrence of
any event in the collection is small.

4.2 Tracking Qk(i)

For the upper bound of Q3(i) as the equation shown in (3.3), it has been shown in [5]
by taking a critical interval as Iu

Q3
= Iu

Q3
(i) = (n

3

6
p3 + 1

4
n2p, n3

6
p3 + 1

3
n2p). For the

upper bound of Qk(i) as the equation shown in (3.3) when k � 4, we introduce a
critical interval as

Iu
Qk

= Iu
Qk

(i) =
(nk

k!
p(

k
2) +Bnk−1p(

k
2)−4,

nk

k!
p(

k
2) +

nk−1

2
p(

k
2)−4

)
, (4.1)

where

B =
1

2
− 1

2
(
k
2

) +
1

3
(
k
2

)
(k − 4)!

<
1

2
. (4.2)

Consider a fixed step j < i0. Suppose Qk(j) ∈ Iu
Kk

(j). Define

τuQk ,j
= min

{
i0,max{j, τ}, the smallest i � j such that Qk(i) /∈ Iu

Qk

}
.

Let j � i < τuQk ,j
. Hence, all calculations in this subsection are conditioned on the

estimates in (3.5).

By the equation in (2.5), it follows that

E[ΔQk|Fi] = (−1)k+1(k − 1)− 1

Qk(i)

∑
U2∈K2(i)

(Rk,U2)
2 + . . .

+
(−1)k(k − 2)

Qk(i)

∑
Uk−1∈Kk−1(i)

(Rk,Uk−1
)2

< (−1)k+1(k − 1)− 2
(
k
2

)2
Qk(i)

n2p

+
2

Qk(i)

n3p

3!

( nk−3

(k − 3)!
p(

k
2)−3 + σnβ3 logγ3 n

)2

+O
(
nk−4p(

k
2)−1

)
,
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where
∑

U2∈K2(i)
(Rk,U2)

2 and
∑

U3∈K3(i)
(Rk,U3)

2 are replaced by the equations in

(3.14) and (3.15), and the last term O(nk−4p(
k
2)−1) comes from

∑
U4∈K4(i)

(Rk,U4)
2

in (3.14) that dominates all the remaining terms.

Since Qk(i) ∈ Iu
Qk

in (4.1), we further have

E[ΔQk|Fi] < (−1)k+1(k − 1)− 2
(
k
2

)2
nk−2

k!
p(

k
2)−1 − 2

(
k

2

)2

Bnk−3p(
k
2)−5

+
k!nk−3

3(k − 3)!2
p(

k
2)−5 +O

(
σnβ3p−2 logγ3 n

)
, (4.3)

where the term O(nk−4p(
k
2)−1) is absorbed into the term O(σnβ3p−2 logγ3 n) with

β3 = k − 3 +
(k2)−3

2(k2)−2
in (3.7).

For all i with j � i < τuQk ,j
, define the sequence of random variables to be

U(i) = Qk(i)− nk

k!
p(

k
2) − nk−1

2
p(

k
2)−4. (4.4)

Claim 4.1: The sequence U(j),U(j+1), . . . ,U(τuQk,j
) is a supermartingale and the

maximum one step ΔU is O(σnk− 5
2 logγ2 n).

Proof of Claim 4.1. To see this, for j � i < τuQk ,j
, as the equation in (4.4), we have

E[ΔU|Fi] = E[ΔQk|Fi]− nk

k!

[
p
(k2)
i+1 − p

(k2)
i

]
− nk−1

2

[
p
(k2)−4

i+1 − p
(k2)−4

i

]
.

Note that by (3.1), if p = pi = 1 − k(k − 1)t, then pi+1 = p − k(k−1)
n2 . Hence, by

Taylor’s expansion, we have

E[ΔU|Fi] = E[ΔQk|Fi]− nk

k!

[
−
(
k

2

)
k(k − 1)

n2
p(

k
2)−1 +O

( 1

n4
p(

k
2)−2

)]

− nk−1

2

[
−
((

k

2

)
− 4

)
k(k − 1)

n2
p(

k
2)−5 +O

( 1

n4
p(

k
2)−6

)]

= E[ΔQk|Fi] +
2
(
k
2

)2
nk−2

k!
p(

k
2)−1 +

[(
k

2

)
− 4

](
k

2

)
nk−3p(

k
2)−5

+O
(
nk−4p(

k
2)−2

)
, (4.5)

where the term O(nk−5p(
k
2)−6) is absorbed into the term O(nk−4p(

k
2)−2) when p � p0

in (3.13). Using (4.3) and (4.5), we further have

E[ΔU|Fi] < (−1)k+1(k − 1)−
[
2

(
k

2

)2

B −
(
k

2

)2

+ 4

(
k

2

)
− k!

3(k − 3)!2

]
nk−3p(

k
2)−5

+O
(
nk−4p(

k
2)−2

)
+O

(
σnβ3p−2 logγ3 n

)
< (−1)k+1(k − 1)− 2

(
k

2

)
nk−3p(

k
2)−5 +O

(
σnβ3p−2 logγ3 n

)
,
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where the term O(nk−4p(
k
2)−2) is absorbed into the term O(σnβ3p−2 logγ3 n) with β3

in (3.7), and

2

(
k

2

)2

B −
(
k

2

)2

+ 4

(
k

2

)
− k!

3(k − 3)!2

= 3

(
k

2

)
−

(
k

2

)
2

3(k − 3)!

> 2

(
k

2

)

with B as shown in (4.2). Note that(
k

2

)
nk−3p(

k
2)−5 > O(σnβ3p−2 logγ3 n) + (−1)k+1(k − 1)

when p � p0 in (3.13) with appropriate choices of λ and γ3 such that [
(
k
2

)−3]λ > γ3+2
as the equation shown in (3.10). Hence, we have E[ΔU|Fi] < 0 and the sequence
U(j),U(j + 1), . . . ,U(τuQk,j

) is a supermartingale.

Next, we show the maximum one step ΔU is O(σnk− 5
2 logγ2 n). With the help of

the equations in (4.4) and (4.5), we have

ΔU = ΔQk +
2
(
k
2

)2
k!

nk−2p(
k
2)−1 +

[(
k

2

)
− 4

](
k

2

)
nk−3p(

k
2)−5 +O

(
nk−4p(

k
2)−2

)
.

Apply the equation of ΔQk in (2.4), the equation of Rk,Um for any Um ∈ (
[n]
m

)
in

(3.5), and βm in (3.7) to the above display, then we finally have

ΔU � −
(
k

2

)( nk−2

(k − 2)!
p(

k
2)−1 − σnβ2 logγ2 n

)

+ 2

(
k

3

)( nk−3

(k − 3)!
p(

k
2)−(32) + σnβ3 logγ3 n

)
+ . . .

+
2
(
k
2

)2
k!

nk−2p(
k
2)−1 +

[(
k

2

)
− 4

](
k

2

)
nk−3p(

k
2)−5 +O

(
nk−4p(

k
2)−2

)
= O

(
σnk− 5

2 logγ2 n
)
,

where the two terms involving nk−2p(
k
2)−1 cancel exactly and the term σnβ2 logγ2 n

dominates all the remaining terms. The claim follows.

The number of steps in the sequence U(j),U(j + 1), . . . ,U(τuQk,j
) is O(n2p) be-

cause |E(i)| ∼ n2

2
p shown in (3.2). Note that Qk(j) ∈ Iu

Qk
(j), by Lemma 2.2, for all

i with j � i < τuQk ,j
, the probability of a large deviation for Qk(i) beginning at the
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step j is at most

P

[
Qk(i) �

nk

k!
p(

k
2) +

nk−1

2
p(

k
2)−4

]
= P

[
U(i) � 0

]
= P

[
U(i)−U(j) � −U(j)

]

� exp

[
−Ω

(
(nk−1p(

k
2)−4)2

(n2p)
(
σnk−5/2 logγ2 n

)2
)]

= exp

[
−Ω

(
np2(

k
2)−9

σ2 log2γ2 n

)]
.

Since there are at most n2 possible values of j in (3.1) and p � p0 in (3.13), by the
union bound, we have

n2 exp

[
−Ω

(
np2(

k
2)−9

σ2 log2γ2 n

)]
= o(1).

Hence, w.h.p., Qk(i) never crosses its critical interval Iu
Qk

in (4.1).

Remark 4.1. For the lower bound of Qk(i) as the equation shown in (3.4), we work
with the critical interval

I�
Qk

= I�
Qk

(i) =
(nk

k!
p(

k
2) − σ2nαp−1 logμ n,

nk

k!
p(

k
2) − σ(σ − 1)nαp−1 logμ n

)
,

where α is in (3.6). The proof is shown in the appendix for reference.

4.3 Tracking Rk,Um for any Um ∈ (
[n]
m

)
with 2 � m � k − 1

We prove the dynamic concentration of Rk,Um for any Um ∈ (
[n]
m

)
with 2 � m � k−1

in this subsection. Fix one subset Um∗ ∈ (
[n]
m∗
)
for some m∗ with 2 � m∗ � k−1. We

start with the upper bound of Rk,Um∗ . Our critical interval for the upper bound of
Rk,Um∗ is

Iu
Rk,Um∗ = Iu

Rk,Um∗ (i) =
( nk−m∗

(k −m∗)!
p(

k
2)−(m

∗
2 ) + (σ − 1)nβm∗ logγm∗ n,

nk−m∗

(k −m∗)!
p(

k
2)−(m

∗
2 ) + σnβm∗ logγm∗ n

)
,

(4.6)

where βm∗ = k − m∗ − (k2)−(m
∗
2 )

2(k2)−2
in (3.7). Consider a fixed step j < i0. Suppose

Rk,Um∗ (j) ∈ Iu
Rk,Um∗ (j). Define

τuRk,Um∗ ,j = min
{
i0,max{j, τ}, the smallest i � j such that Rk,Um∗ /∈ IuRk,Um∗

}
.
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Let j � i < τuRk,Um∗ ,j. Hence, all calculations are conditioned on the events that the

estimates in (3.3) and (3.4) hold on Qk(i), and the estimates in (3.5) hold on Rk,Um

for all Um ∈ (
[n]
m

)
with 2 � m � k − 1 and Um �= Um∗ .

Fix one set in Kk−m∗ ∩ NUm∗ in G(i), denoted by U c
m∗ . Let Qk,Um∗ ,Uc

m∗ (i) be the
number of k-cliques in G(i) such that the removal of the edges in any one of these
k-cliques results in U c

m∗ /∈ Kk−m∗ ∩ NUm∗ in G(i+ 1). Then, we have

E[ΔRk,Um∗ |Fi] = −
∑

Uc
m∗∈Kk−m∗∩NUm∗

Qk,Um∗ ,Uc
m∗ (i)

Qk(i)
. (4.7)

Firstly, we consider the value of Qk,Um∗ ,Uc
m∗ (i). Let H ⊆ Um∗ ∪ U c

m∗ and

QH
k,Um∗ ,Uc

m∗ (i) be the number of k-cliques counted by Qk,Um∗ ,Uc
m∗ (i) such that each

k-clique Kk satisfies Kk ∩ (Um∗ ∪U c
m∗) = H , namely, QH

k,Um∗ ,Uc
m∗ (i) denotes the num-

ber of k-cliques counted by Qk,Um∗ ,Uc
m∗ (i) such that each k-clique exactly contains

the vertices H in Um∗ ∪ U c
m∗ .

Define |H| = h. To ensure that the removal of the edges in any one of these
k-cliques results in U c

m∗ /∈ Kk−m∗ ∩ NUm∗ in G(i + 1), we have H ∩ U c
m∗ �= ∅ and

2 � h � k. Choose H ∈ ∪h−1
ρ=0

(
Um∗
ρ

)⊕ (Uc
m∗

h−ρ

)
, where

(
Um∗
ρ

) ⊕ (Uc
m∗

h−ρ

)
denotes the

collection of sets consisting of the union of ρ vertices in Um∗ and h − ρ vertices in
U c
m∗ . Hence, Qk,Um∗ ,Uc

m∗ (i) is decomposed into

Qk,Um∗ ,Uc
m∗ (i) =

k∑
h=2

h−1∑
ρ=0

∑
H∈(Um∗

ρ )⊕(U
c
m∗

h−ρ
)

QH
k,Um∗ ,Uc

m∗ (i). (4.8)

Following the inclusion-exclusion counting technique in (2.4), we have

QH
k,Um∗ ,Uc

m∗ (i) = 1H ·Rk,H −
∑

T1∈((Um∗∪Uc
m∗ )\H

1
)

1H∪T1 ·Rk,H∪T1 + . . .

+
∑

Tk−h∈((Um∗∪Uc
m∗ )\H

k−h
)

(−1)k−h1H∪Tk−h
·Rk,H∪Tk−h

=
k−h∑
j=0

∑
Tj∈((Um∗∪Uc

m∗ )\H
j

)

(−1)j1H∪Tj
·Rk,H∪Tj

,

where 1H∪Tj
with 0 � j � k − h is the indicator random variable depending on

whether the subgraph induced by H∪Tj in G(i) is complete or not. Combining with
the equation in (4.8), we further have

Qk,Um∗ ,Uc
m∗ (i) =

k∑
h=2

k−h∑
j=0

h−1∑
ρ=0

∑
H∈(Um∗

ρ )⊕(U
c
m∗

h−ρ
)

∑
Tj∈((Um∗∪Uc

m∗ )\H
j

)

(−1)j1H∪Tj
·Rk,H∪Tj

.
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Note that

h−1∑
ρ=0

∑
H∈(Um∗

ρ )⊕(U
c
m∗

h−ρ
)

∑
Tj∈((Um∗∪Uc

m∗ )\H
j

)

(−1)j1H∪Tj
·Rk,H∪Tj

=

h+j∑
ζ=0

∑
Hh+j∈(Um∗

ζ )⊕( Uc
m∗

h+j−ζ
)

[(
h+ j

h

)
−

(
ζ

h

)]
(−1)j1Hh+j

·Rk,Hh+j
,

because each Hh+j ∈
(
Um∗
ζ

)⊕ (
Uc
m∗

h+j−ζ

)
with 0 � ζ � h+ j on the right side is counted

[
(
h+j
h

)− (
ζ
h

)
] times to be H ∪ Tj on the left side. It follows that

Qk,Um∗ ,Uc
m∗ (i) =

k∑
h=2

k−h∑
j=0

h+j∑
ζ=0

∑
Hh+j∈(Um∗

ζ )⊕( Uc
m∗

h+j−ζ
)

[(
h+j

h

)
−
(
ζ

h

)]
(−1)j1Hh+j

·Rk,Hh+j
.

(4.9)

Thus, Qk,Um∗ ,Uc
m∗ (i) is the sum of all elements in the k × k upper triangular matrix

below⎛
⎜⎜⎜⎝

2∑
ζ=0

∑

H2∈
(Um∗

ζ

)
⊕

(Uc
m∗

2−ζ

)(−1)0[
(
2
2

)
−

(
ζ
2

)
]1H2

· Rk,H2
· · ·

k∑
ζ=0

∑

Hk∈
(Um∗

ζ

)
⊕

(Uc
m∗

k−ζ

)(−1)k−2[
(
k
2

)
−

(
ζ
2

)
]1Hk

· Rk,Hk

.

.

.
.
.
.

.

.

.
k∑

ζ=0

∑

Hk∈
(Um∗

ζ

)
⊕

(Uc
m∗

k−ζ

)(−1)0[
(
k
k

)
−

(
ζ
k

)
]1Hk

· Rk,Hk
· · · 0

⎞
⎟⎟⎟⎠ ,

where the row corresponds to the index h and the column corresponds to the index j
in (4.9), respectively. Summing these elements again according to all back diagonal
lines, it follows that

Qk,Um∗ ,Uc
m∗ (i) =

k∑
h=2

h∑
ζ=0

∑
Hh∈(Um∗

ζ )⊕(U
c
m∗

h−ζ
)

h∑
s=2

(−1)h−s

[(
h

s

)
−
(
ζ

s

)]
1Hh

·Rk,Hh
,

(4.10)

where there is no Rk,Um∗ on the right side of (4.10) because Rk,Um∗ corresponds to
the case when ζ = h, which has coefficient zero.

Furthermore, according to the expressions of Rk,Hh
for 2 � h � k − 1 in (3.5),

the term Rk,H2 dominates the sum on the right side of (4.10). For h = 2, the only
cases to consider are (s, ζ) = (2, 0), (2, 1), and as the equation shown in (4.10), we
have that Qk,Um∗ ,Uc

m∗ (i) satisfies

Qk,Um∗ ,Uc
m∗ (i)

>

[(
k −m∗

2

)
+m∗(k −m∗)

]( nk−2

(k − 2)!
p(

k
2)−1 − σnβ2 logγ2 n

)
+O

(
nk−3p(

k
2)−3

)
,

(4.11)
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where 1H2 = 1 always as ζ = |H2 ∩ Um∗ | ∈ {0, 1}, (k−m∗
2

)
enumerates Rk,H2 when

ζ = 0 and s = 2, m∗(k − m∗) enumerates Rk,H2 when ζ = 1 and s = 2, and the

last term O(nk−3p(
k
2)−3) comes from those terms when h � 3 in (4.10). Note that(

k−m∗
2

)
+m∗(k−m∗) =

(
k
2

)− (
m∗
2

)
and β2 = k− 5

2
in (3.7), combining the equations

in (4.7) and (4.11), and applying the upper bound on Qk(i) from (3.3) for k � 4, we
have

E[ΔRk,Um∗ |Fi] <

−
∑

Uc
m∗∈Kk−m∗∩NUm∗

[(
k
2

)− (
m∗
2

)](
nk−2

(k−2)!
p(

k
2)−1 − σnk−5/2 logγ2 n

)
+O

(
nk−3p(

k
2)−3

)
nk

k!
p(

k
2) + nk−1

2
p(

k
2)−4

.

(4.12)

Note that nk

k!
p(

k
2) + nk−1

2
p(

k
2)−4 = nk

k!
p(

k
2)[1 + O( 1

np4
)] and 1

np4
= o(1) when p � p0

in (3.13) and k � 4. It is also known that the number of ways to choose U c
m∗ ∈

Kk−m∗ ∩NUm∗ is Rk,Um∗ , and Rk,Um∗ ∈ Iu
Rk,Um∗ in (4.6). Thus, it further follows from

(4.12) that

E[ΔRk,Um∗ |Fi] <

−
[(

k
2

)−(
m∗
2

)](
nk−m∗

(k−m∗)!p
(k2)−(m

∗
2 ) + (σ − 1)nβm∗ logγm∗ n

)(
nk−2

(k−2)!p
(k2)−1 − σnk− 5

2 logγ2 n
)

nk

k! p
(k2)

+O
(
nk−m∗−3p(

k
2)−(m

∗
2 )−5

)
.

When k = 3 andm∗ = 2, the denominator in (4.12) must be replaced by 1
6
n3p3+ 1

3
n2p

in (3.3). Then the above argument holds with the final error term replaced by

O(nk−m∗−3p(
k
2)−(m

∗
2 )−3) = o(1). Now assume that k � 3. Rearranging the above

equation, we get

E[ΔRk,Um∗ |Fi] < −
[(

k
2

)− (
m∗
2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1

+

[(
k
2

)− (
m∗
2

)]
k!σnk−m∗− 5

2 logγ2 n

(k −m∗)!p(
m∗
2 )

−
[(

k
2

)− (
m∗
2

)]
k(k − 1)(σ − 1)

p
nβm∗−2 logγm∗ n

+

[(
k
2

)− (
m∗
2

)]
k!σ(σ − 1)

p(
k
2)

nβm∗− 5
2 logγ2+γm∗ n

+O
(
nk−m∗−3p(

k
2)−(m

∗
2 )−5

)
. (4.13)

Since Rk,Um∗(j) ∈ Iu
Rk,Um∗

(j) for j < i, there exists a constant δ ∈ (0, 1) such

that

Rk,Um∗(j) ∼ nk−m∗

(k −m∗)!
p
(k2)−(m

∗
2 )

j − (σj − δ)nβm∗ logγm∗ n. (4.14)
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For all i with j � i < τuRk,Um∗ ,j, define the sequence of random variables below as

ZUm∗ (i) = Rk,Um∗(i)− nk−m∗

(k −m∗)!
p
(k2)−(m

∗
2 )

i − (σi − δ)nβm∗ logγm∗ n. (4.15)

Claim 4.2: Removing the edges of one k-clique in G(i), we have

Rk,Um∗(i)−Rk,Um∗(i+ 1) < 2k2nk−m∗−1p(
k
2)−(m

∗+1
2 ).

Proof of Claim 4.2. According to the definition in (2.1), when we remove the edges
of one k-clique from G(i), there are two cases to consider. One case is to assume that
the removed k-clique contains some u ∈ Um∗ and some w ∈ NUm∗ ; and the other case
is that the removed k-clique contains two distinct elements w1, w2 of NUm∗ . In the
first case, there arem∗(k−m∗) � k2 choices of (u, w), and the number of (k−m∗−1)-
cliques such that every vertex is in NUm∗∪{w} is at most Rk,Um∗∪{w}. In the second

case, there are
(
k−m∗

2

)
� k2 choices of (w1, w2), and the number of (k−m∗−2)-cliques

such that every vertex is in NUm∗∪{w1,w2} is at most Rk,Um∗∪{w1,w2}.

As the equation shown in (3.5), we have

Rk,Um∗∪{w1,w2} ∼
nk−m∗−2

(k −m∗ − 2)!
p(

k
2)−(m

∗+2
2 ),

Rk,Um∗∪{w} ∼ nk−m∗−1

(k −m∗ − 1)!
p(

k
2)−(m

∗+1
2 )

because the estimates in (3.5) hold onRk,Um for all Um ∈ (
[n]
m

)
with 2 � m � k−1 and

Um �= Um∗ . Thus, Rk,Um∗∪{w1,w2} = o(Rk,Um∗∪{w}) when p � p0 in (3.13) and k � 3.
Summing the values in these two cases, we complete the proof of Claim 4.2.

Claim 4.3: ZUm∗ (j) = 0 and the sequence −ZUm∗ (j),−ZUm∗ (j + 1), . . . ,
−ZUm∗ (τ

u
Rk,Um∗ ,j) is an (η,N)-bounded submartingale, where

η = 2

[(
k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1,

N = 3k2nk−m∗−1p(
k
2)−(m

∗+1
2 )

with η = o(N) for 2 � m∗ � k − 1.

Proof of Claim 4.3. As the equations shown in (4.14) and (4.15), we have ZUm∗ (j) =
0. For all i with j � i < τuRk,Um∗ ,j

, we have

E[ΔZUm∗ |Fi] = E[ΔRk,Um∗ |Fi]− nk−m∗

(k −m∗)!

[
p
(k2)−(m

∗
2 )

i+1 − p
(k2)−(m

∗
2 )

i

]
− nβm∗ logγm∗ n

[
σi+1 − σi

]
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by the equation in (4.15). Note that p = pi = 1 − k(k − 1)t, pi+1 = p − k(k−1)
n2 in

(3.1), then σ = σi = 1−k(k − 1) log p and σi+1 = 1−k(k−1) log(p− k(k−1)
n2 ) in (3.8).

Differentiating σ with respect to t gives

σ′ =
k2(k − 1)2

p
, σ′′ =

k3(k − 1)3

p2
= O(p−2). (4.16)

Expanding σi+1 = σ(t + 1
n2 ) around t gives σi+1 = σ + σ′

n2 + O(σ
′′

n4 ). Thus, it follows
that

E[ΔZUm∗ |Fi] = E[ΔRk,Um∗ |Fi]− nk−m∗

(k −m∗)!

[
−
((

k

2

)
−

(
m∗

2

))
k(k − 1)

n2
p(

k
2)−(m

∗
2 )−1

+O
( 1

n4
p(

k
2)−(m

∗
2 )−2

)]
− nβm∗ logγm∗ n

[ σ′

n2
+O

(σ′′

n4

)]

= E[ΔRk,Um∗ |Fi] +

[(
k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1

− σ′nβm∗−2 logγm∗ n+O
(
nk−m∗−4p(

k
2)−(m

∗
2 )−2

)
, (4.17)

where the term O(σ′′nβm∗−4 logγm∗ n) is absorbed into the term

O(nk−m∗−4p(
k
2)−(m

∗
2 )−2) because σ′′ = O(p−2) in (4.16), βm∗ in (3.7), p � p0 in (3.13)

with λ and γm∗ satisfies [
(
k
2

) − (
m∗
2

)
]λ > γm∗ + 2 shown in (3.10). Combining the

equations in (4.13) and (4.17), we further have

E[ΔZUm∗ |Fi] <

[(
k
2

)− (
m∗
2

)]
k!σ

(k −m∗)!p(
m∗
2 )

nk−m∗− 5
2 logγ2 n

−
[(

k
2

)− (
m∗
2

)]
k(k − 1)σ

p
nβm∗−2 logγm∗ n

+

[(
k
2

)− (
m∗
2

)]
k(k − 1)

p
nβm∗−2 logγm∗ n

+

[(
k
2

)− (
m∗
2

)]
k!σ(σ − 1)

p(
k
2)

nβm∗− 5
2 logγ2+γm∗ n

− σ′nβm∗−2 logγm∗ n+O
(
nk−m∗−3p(

k
2)−(m

∗
2 )−5

)
, (4.18)

where the term O(nk−m∗−4p(
k
2)−(m

∗
2 )−2) in (4.17) is absorbed into the term

O(nk−m∗−3p(
k
2)−(m

∗
2 )−5) in (4.13). At last, by (4.18), we have E[ΔZUm∗ |Fi] < 0
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because the following inequalities

k!σ

(k −m∗)!p(
m∗
2 )

nk−m∗− 5
2 logγ2 n � k(k − 1)σ

p
nβm∗−2 logγm∗ n, (4.19)

[(
k
2

)− (
m∗
2

)]
k(k − 1)

p
nβm∗−2 logγm∗ n <

σ′

2
nβm∗−2 logγm∗ n, (4.20)[(

k
2

)− (
m∗
2

)]
k!σ(σ − 1)

p(
k
2)

nβm∗− 5
2 logγ2+γm∗ n <

σ′

4
nβm∗−2 logγm∗ n, (4.21)

O
(
nk−m∗−3p(

k
2)−(m

∗
2 )−5

)
<

σ′

4
nβm∗−2 logγm∗ n (4.22)

are true for βm∗ in (3.7), p � p0 in (3.13), k � 3 and 2 � m∗ � k − 1. The first
one (4.19) is clearly true whenm∗ = 2, and is also true if we choose [

(
m∗
2

)−1]λ+γm∗ >
γ2 when m∗ � 3, which is assumed in (3.11); the second one (4.20) is always true

because σ′ = k2(k−1)2

p
in (4.16); the third one (4.21) is satisfied because σ = O(logn)

in (3.8) and [
(
k
2

)− 1]λ > γ2 + 2 assumed in (3.10) for m = 2; and the last one (4.22)
is always true for k � 3. We have proved that the sequence −ZUm∗ (j),−ZUm∗ (j +
1), . . . ,−ZUm∗ (τ

u
Rk,Um∗ ,j) is a submartingale for any 2 � m∗ � k − 1.

In the following, we show the sequence is (η,N)-bounded. By the equation in
(4.15) and the calculation in (4.17), we have

− ZUm∗ (i+ 1) + ZUm∗ (i)

= Rk,Um∗ (i)−Rk,Um∗ (i+ 1) +
nk−m∗

(k −m∗)!

[
p(

k
2)−(m

∗
2 )(i+ 1)− p(

k
2)−(m

∗
2 )(i)

]
+ nβm∗ logγm∗ n

[
σ(i+ 1)− σ(i)

]
= Rk,Um∗ (i)−Rk,Um∗ (i+ 1)−

[(
k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1

+ σ′nβm∗−2 logγm∗ n+O
(
nk−m∗−4p(

k
2)−(m

∗
2 )−2

)
.

Then, we have

− ZUm∗ (i+ 1) + ZUm∗ (i)

� −
[(

k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1 +O

(
nk−m∗−4p(

k
2)−(m

∗
2 )−2

)
> −2

[(
k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1,

and we choose

η = 2

[(
k

2

)
−

(
m∗

2

)]
k(k − 1)nk−m∗−2

(k −m∗)!
p(

k
2)−(m

∗
2 )−1.

On the other hand, since

− ZUm∗ (i+ 1) + ZUm∗ (i)

� Rk,Um∗(i)−Rk,Um∗(i+ 1) + σ′nβm∗−2 logγm∗ n+O
(
nk−m∗−4p(

k
2)−(m

∗
2 )−2

)
,
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applying Claim 4.2, note that

σ′nβm∗−2 logγm∗ n+O(nk−m∗−4p(
k
2)−(m

∗
2 )−2) = o(nk−m∗−1p(

k
2)−(m

∗+1
2 ));

thus we choose

N = 3k2nk−m∗−1p(
k
2)−(m

∗+1
2 ).

This completes the proof of Claim 4.3.

Take a = nβm∗ logγm∗ n and � = O(n2p), then a = o(η�) when p � p0 and taking λ,
γm∗ to satisfy [

(
k
2

)− (
m∗
2

)
]λ > γm∗ +2 assumed in (3.10). Combining with Claim 4.3,

the assumptions of Lemma 2.3 hold. Applying Lemma 2.3 to −ZUm∗ (j),−ZUm∗ (j +
1), . . . ,−ZUm∗ (τ

u
Rk,Um∗ ,j

) yields that

P

[
Rk,Um∗ � nk−m∗

(k −m∗)!
p(

k
2)−(m

∗
2 ) + σnβm∗ logγm∗ n

]
= P

[
−ZUm∗ (i) � −nβm∗ logγm∗ n

]
� exp

[
−Ω

(
n2βm∗ log2γm∗ n

nk−m∗ · nk−m∗−1

)]

= exp

[
−Ω

(
n

(m
∗
2 )−1

(k2)−1 log2γm∗ n

)]
.

For each m∗ = 2, . . . , k−1, note that the number of ways to choose j and Um∗ ∈ (
[n]
m∗
)

is at most nm∗+2, then we also have

nm∗+2 exp

[
−Ω

(
n

(m
∗
2 )−1

(k2)−1 log2γm∗ n

)]
= o(1),

which is clearly true when 3 � m∗ � k − 1, or γ2 >
1
2
shown in (3.12) when m∗ = 2.

Finally taking the union bound over m∗ when 2 � m∗ � k − 1 completes the proof.
In conclusion, w.h.p., none Rk,Um for any Um ∈ (

n
m

)
with 2 � m � k − 1 crosses its

critical interval Iu
Rk,Um

defined in (4.6).

Remark 4.2. The argument for the lower bound of Rk,Um in (3.5) for any Um ∈ (
[n]
m

)
with 2 � m � k − 1 is the symmetric analogue of the above analysis.

5 |E(M)| � n2−1/(k(k−1)−2)+o(1) is a natural barrier

The bound in Theorem 1.1 for k = 3 is |E(M)| � n7/4+o(1), which is same with the
one in [5, 9]. There is a gap between the upper bound |E(M)| � n2−1/(k(k−1)−2)+o(1)

and the conjectured upper bound |E(M)| � n2k/(k+1)+o(1) from [2]. We will show
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that the expression n2−1/(k(k−1)−2) corresponds to a natural barrier of the process in
our proof.

To illustrate this, as stated in Theorem 3.1, the process G(i) resembles G(n, p)
when i � i0 and p = 1 − k(k−1)i

n2 ; the standard variation σnβm logγm n of Rk,Um for

any Um ∈ (
[n]
m

)
with 2 � m � k − 1 would be as large as their main trajectory

nk−m

(k−m)!
p(

k
2)−(m2 ) when p is around p0 in (3.13) (up to logarithmic factors). At that

time i0, the power of nk−mp0
(k2)−(m2 ) is exactly equal to βm in (3.7), which means

that the control over Rk,Um for any Um ∈ (
[n]
m

)
is lost up to logarithmic factors. The

main obstacle to improve our main results is that the behaviors of the parameters
Rk,Um for any Um ∈ (

[n]
m

)
with 2 � m � k − 1 do not allow us to further analyze the

process, while the following means that it is definitely possible to further improve
these results.

In fact, we apply Lemma 2.4 at the critical point i0 to Rk,Um(i0) with ξ =

σnβm logγm n, where βm = k −m− (k2)−(m2 )
k(k−1)−2

in (3.7). It follows that

∑
Um∈([n]

m),2�m�k−1

P

[∣∣∣∣Rk,Um(i0)−
nk−m

(k −m)!
p0
(k2)−(m2 )

∣∣∣∣ > σnβm logγm n

]

< 2
k−1∑
m=2

(
n

m

)
exp

[
−(k −m)!(σnβm logγm n)2

3nk−mp0
(k2)−(m2 )

]

=

k−1∑
m=2

(
n

m

)
exp

[
−O

(
n
k−m−(

k
2)−(m2 )

k(k−1)−2
+o(1)

)]

= O

(
nk−1 exp

[
−n1−(

k
2)−(k−1

2 )
k(k−1)−2

+o(1)

])
= o(1),

where f(m) = k −m− k(k−1)−m(m−1)
2k(k−1)−4

is decreasing in m and the series is dominated
by the term m = k − 1. Thus, the probability of the event that there exists one
Um ∈ (

[n]
m

)
with 2 � m � k − 1 such that the control over Rk,Um loses when p = p0

is very low. In order to obtain better results on |E(M)|, as demonstrated in [6], it is
necessary to design new random variables such that their variations decrease as the
process evolves. This is not easy and we will consider this problem in future work.

Appendix: Lower bound of Qk(i) (for Remark 4.1)

For the lower bound of Qk(i), we work with the critical interval

I�
Qk

= I�
Qk

(i) =
(nk

k!
p(

k
2) − σ2nαp−1 logμ n,

nk

k!
p(

k
2) − σ(σ − 1)nαp−1 logμ n

)
, (1)
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where α is shown in (3.6). Consider a fixed step j < i0. Similarly, suppose Qk(j) ∈
I�
Qk

(j) and define

τ �Qk ,j
= min

{
i0,max{j, τ}, the smallest i � j such that Qk(i) /∈ I�

Qk

}
.

Let j � i < τ �Qk ,j
. All calculations in this subsection are conditioned on the estimates

in (3.5).

By the equations shown in (2.5), we get the estimate on E[ΔQk|Fi] in reverse
direction,

E[ΔQk|Fi] = (−1)k+1(k − 1)

− 1

Qk(i)

∑
U2∈K2(i)

(Rk,U2)
2 + · · ·+ (−1)k(k − 2)

Qk(i)

∑
Uk−1∈Kk−1(i)

(Rk,Uk−1
)2

> (−1)k+1(k − 1)− 1

Qk(i)

(2!(k
2

)2
Q2

k(i)

n2p
+ 2σ2n2k−3p log2γ2 n

)

+
12
(
k
3

)2
Qk(i)

n3p
+O(nk−4p(

k
2)−11)

= (−1)k+1(k − 1)− 2
(
k
2

)2
Qk(i)

n2p
+

12
(
k
3

)2
Qk(i)

n3p
+O(σ2nk−3p−(

k
2)+1 log2γ2 n),

where
∑

U2∈K2(i)
(Rk,U2)

2 and
∑

U3∈K3(i)
(Rk,U3)

2 are replaced by the equations in

(3.14) and (3.15), the term O(nk−4p(
k
2)−11) comes from

∑
U4∈K4(i)

(Rk,U4)
2 in (3.15)

that dominates all the remaining terms.

Since Qk(i) ∈ I�
Qk

as the equation shown in (1), we further have

E[ΔQk|Fi] > (−1)k+1(k − 1)− 2
(
k
2

)2(nk

k!
p(

k
2) − σ(σ − 1)nαp−1 logμ n

)
n2p

+
12
(
k
3

)2(nk

k!
p(

k
2) − σ2nαp−1 logμ n

)
n3p

+O
(
nk−3σ2p−(

k
2)+1 log2γ2 n

)

= (−1)k+1(k − 1)− 2
(
k
2

)2
nk−2

k!
p(

k
2)−1 +

2
(
k
2

)2
σ(σ − 1)nα−2 logμ n

p2

+
12
(
k
3

)2
nk−3

k!
p(

k
2)−1 +O

(
σ2nk−3p−(

k
2)+1 log2γ2 n

)
,

(2)
where α is in (3.6), and the term O(σ2nα−3p−2 logμ n) is absorbed into the term

O(σ2nk−3p−(
k
2)+1 log2γ2 n).

For all i with j � i < τ �Qk ,j
, define the sequence of random variables to be

L(i) = Qk(i)− nk

k!
p(

k
2) + σ2nαp−1 logμ n. (3)

Claim: The sequence L(j),L(j + 1), . . . ,L(τ �Qk ,j
) is a submartingale and the maxi-

mum one step ΔL is O(σnk− 5
2 logγ2 n).
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Proof of Claim. Similarly, for all i with j � i < τ �Qk ,j
, as the equation shown in (3),

we have

E[ΔL|Fi] = E[ΔQk|Fi]− nk

k!

[
p
(k2)
i+1 − p

(k2)
i

]
+ nα logμ n

[σ2
i+1

pi+1
− σ2

i

pi

]
.

Since p = pi = 1−k(k−1)t, pi+1 = p− k(k−1)
n2 in (3.1), then σ = σi = 1−k(k − 1) log p,

σi+1 = 1− k(k − 1) log(p− k(k−1)
n2 ) in (3.8), by Taylor’s expansion, we have

E[ΔL|Fi] = E[ΔQk|Fi]− nk

k!

[
−
(
k

2

)
k(k − 1)

n2
p(

k
2)−1 +O

( 1

n4
p(

k
2)−2

)]

+ nα logμ n

[
2σσ′p− σ2p′

n2p2
+O

( σ2

n4p3

)]

= E[ΔQk|Fi] +
2
(
k
2

)2
nk−2

k!
p(

k
2)−1 +

2σσ′nα−2 logμ n

p

+
k(k − 1)σ2nα−2 logμ n

p2
+O

(
nk−4p(

k
2)−2

)
,

(4)

where the term O(nα−4σ2p−3 logμ n) is absorbed into the term O(nk−4p(
k
2)−2) because

α is shown in (3.6) and p � p0 is shown in (3.13) by taking λ and μ to satisfy
[
(
k
2

)
+ 1]λ > μ+ 3 in (3.9). Combining the equations in (2) and (4), we have

E[ΔL|Fi] > (−1)k+1(k − 1) +

[
2
(
k
2

)2
+ k(k − 1)

]
σ2nα−2 logμ n

p2
− 2

(
k
2

)2
σnα−2 logμ n

p2

+
12
(
k
3

)2
nk−3

k!
p(

k
2)−1 +

2σσ′nα−2 logμ n

p
+O

(
σ2nk−3p−(

k
2)+1 log2γ2 n

)
,

where the term O(nk−4p(
k
2)−2) in (4) is absorbed into the term

O(σ2nk−3p−(
k
2)+1 log2γ2 n) in (2). We have

2σσ′nα−2 logμ np−1 = 8

(
k

2

)2

σnα−2p−2 logμ n

by σ′ = k2(k − 1)2p−1 in (3.8). It follows that

E[ΔL|Fi] > (−1)k+1(k − 1) +

[
2
(
k
2

)2
+ k(k − 1)

]
σ2nα−2 logμ n

p2

+ 6

(
k

2

)2

σnα−2p−2 logμ n

+
12
(
k
3

)2
nk−3

k!
p(

k
2)−1 +O

(
σ2nk−3p−(

k
2)+1 log2γ2 n

)
.

(5)

Note that[
2

(
k

2

)2

+ k(k−1)
]
σ2nα−2p−2 logμ n > O(σ2nk−3p−(

k
2)+1 log2γ2 n)+(−1)k+1(k−1)
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when α is shown in (3.6), p � p0 in (3.13), λ, μ and γ2 are chosen such that [
(
k
2

)−3]λ >
2γ2 − μ. We have E[ΔL|Fi] > 0 in (5). The sequence L(j),L(j + 1), . . . ,L(τ �Qk,j

) is
a submartingale.

Next, we show the maximum one step ΔL is O(σnk− 5
2 logγ2 n). As the equation

shown in (3) and the calculations in (4), we have

ΔL =ΔQk +
2
(
k
2

)2
nk−2

k!
p(

k
2)−1 +

2σσ′nα−2 logμ n

p

+
k(k−1)σ2nα−2 logμ n

p2
+O(nk−4p(

k
2)−2).

Apply the equation of ΔQk in (2.4) and the estimates on Rk,Um for any Um ∈ (
[n]
m

)
when 2 � m � k − 1 in (3.5) to the above display,

ΔL � −
(
k

2

)( nk−2

(k − 2)!
p(

k
2)−1 − σnβ2 logγ2 n

)

+

(
k

3

)( nk−3

(k − 3)!
p(

k
2)−(32) + σnβ3 logγ3 n

)
+ · · ·+ 2

(
k
2

)2
nk−2

k!
p(

k
2)−1

+
2σσ′nα−2 logμ n

p
+

k(k − 1)σ2nα−2 logμ n

p2
+O

(
nk−4p(

k
2)−2

)
= O(σnk− 5

2 logγ2 n),

where the two terms involving nk−2p(
k
2)−1 cancel exactly and the term σnβ2 logγ2 n

dominates all the remaining terms because the terms (2σσ′nα−2 logμ n)/p and

(k(k − 1)σ2nα−2 logμ n)/p2 are absorbed into the term O(σnk− 5
2 logγ2 n) by choos-

ing λ, μ and γ2 such that 2λ+ γ2 > μ+ 1 when p � p0 in (3.13).

The number of steps in this sequence is also O(n2p). Note that Qk(j) ∈ I�
Kk

(j),
for all i with j � i < τ �Qk ,j

, Lemma 2.3 yields that the probability of such a large
deviation beginning at the step j is at most

P

[
Qk(i) �

nk

k!
p(

k
2) − σ2nαp−1 logμ n

]
= P

[
L(i) � 0

]
= P

[
L(i)− L(j) � −L(j)

]

� exp

[
−Ω

( (
nαp−1 logμ n

)2
(n2p)

(
σnk−5/2 logγ2 n

)2
)]

= exp

[
−Ω

(
n2α−2k+3 log2μ n

σ2p3 log2γ2 n

)]
.

There are at most n2 possible values of j shown in (3.1), by the union bound, then
we have

n2 exp

[
−Ω

(
n
2− 2

(k2)−1 log2μ n

σ2p3 log2γ2 n

)]
= o(1)

with α is shown in (3.6) and p � p0 for k � 3. Hence, w.h.p., Qk(i) never crosses its
critical interval I�

Qk
in (1), and so the lower bound on Qk(i) in (3.4) is true.
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