Three coloring via triangle counting

Zachary Hamaker* ${ }^{*}$ Vincent Vatter †
Department of Mathematics
University of Florida
Gainesville, Florida, U.S.A.

Abstract

In the first partial result toward Steinberg's now-disproved three coloring conjecture, Abbott and Zhou used a counting argument to show that every planar graph without cycles of lengths 4 through 11 is 3 -colorable. Implicit in their proof is a fact about plane graphs: in any plane graph of minimum degree 3 , if no two triangles share an edge, then triangles make up strictly fewer than $2 / 3$ of the faces. We show how this result, combined with Kostochka and Yancey's resolution of Ore's conjecture for $k=4$, implies that every planar graph without cycles of lengths 4 through 8 is 3 -colorable.

In a 1975 letter, Steinberg asked if a planar graph without 4- or 5 -cycles is necessarily 3 -colorable [10, Problem 9.1]. There was little to no progress on Steinberg's conjecture until 1990. Surely some of this lack of progress was because Steinberg's conjecture is actually false, as established in 2017:
Theorem 1 (Cohen-Addad, Hebdige, Král', Li, and Salgado [6]). There exists a planar graph without cycles of length 4 or 5 that is not 3 -colorable.

In 1990, Erdős asked [10, Problem 9.2] if there is an integer k such every planar graph without cycles of lengths 4 through k is 3 -colorable. The first answer to Erdős's conjecture appeared only a year after he posed it.

Theorem 2 (Abbott and Zhou [1]). Every planar graph without cycles of lengths 4 through 11 is 3-colorable.

Abbott and Zhou's proof was at its heart a counting argument. A series of improvements to Theorem 2 have been achieved, all using discharging rather than counting arguments. First, Borodin [3] proved that it suffices to forbid cycles of lengths 4 through 10. Then, Borodin [2] and Sanders and Zhao [9] proved independently that it suffices to forbid cycles of lengths 4 through 9 . The current state of the art is the following.

[^0]Theorem 3 (Borodin, Glebov, Raspaud, and Salavatipour [4]). Every planar graph without cycles of lengths 4 through 7 is 3 -colorable.

Given that Theorem 1 shows that forbidding cycles of lengths 4 and 5 does not ensure a 3 -coloring, this leaves an open problem.

Open Problem 4. If a planar graph does not have cycles of lengths 4, 5, or 6 , is it necessarily 3 -colorable?

Our goal in this note is to revisit Abbott and Zhou's proof of Theorem 2 and show how combining their approach with a recent theorem of Kostochka and Yancey yields a result nearly as good as Theorem 3 with very little effort. We begin by making explicit a result about plane graphs that is hidden in Abbott and Zhou's proof of Theorem 2:

Theorem 5. If G is a connected plane graph of minimum degree 3 in which no two triangles share an edge, then triangles make up strictly fewer than $2 / 3$ of its faces.

Proof. Let G be a connected plane graph with n vertices, e edges, and f faces. Further let n_{3} denote the number of degree 3 vertices in G, let f_{3} denote the number of triangular faces of G, and let e_{3} denote the number of edges that lie on some triangular face. Note that since no two triangles share an edge, $f_{3}=e_{3} / 3$. By double counting edges, since the minimum degree of G is 3 , we have

$$
2 e=\sum_{v \in V(G)} \operatorname{deg} v \geq 3 n_{3}+4\left(n-n_{3}\right)=4 n-n_{3},
$$

so $n_{3} \geq 4 n-2 e$.
Now let v be a vertex of degree 3 in G. Since no edge is contained in two triangles, at least one of the edges incident to v must not be part of a triangle, and so contributes to $e-e_{3}$. As this edge might be incident to two vertices of degree 3 , the most we can claim is that $e-e_{3} \geq n_{3} / 2$, or after rearranging, $e_{3} \leq e-n_{3} / 2$. Combining this with our inequality on n_{3}, we have

$$
f_{3}=\frac{e_{3}}{3} \leq \frac{e-n_{3} / 2}{3} \leq \frac{2 e-2 n}{3}=\frac{2 f-4}{3}
$$

where the final equality follows by Euler's formula, $f+n=e+2$. This proves the result.

Theorem 5 quickly leads to a proof of Theorem 2:
Proof of Theorem 2. Let G be a plane graph with n vertices, e edges, and f faces, and without cycles of lengths 4 through 11 . We prove the result by induction on n, the base case $n=0$ holding trivially. If G has a vertex v of degree at most 2 , then $G-v$ is 3-colorable by induction, and we may extend such a coloring to 3-color G. Thus we may assume that the minimum degree of G is 3 . Similarly, we may assume that G is connected.

Let f_{3} denote the number of triangles in G. No two triangles of G may share an edge because G does not contain any 4 -cycles, so $f_{3}<2 f / 3$ by Theorem 5 . As every edge lies on two faces and every non-triangular face of G has at least 12 edges, the number of non-triangular faces of G satisfies $f-f_{3} \leq\left(2 e-3 f_{3}\right) / 12$. Thus we have

$$
\begin{equation*}
f \leq f_{3}+\frac{2 e-3 f_{3}}{12}=\frac{e}{6}+\frac{3 f_{3}}{4}<\frac{e}{6}+\frac{f}{2}, \tag{1}
\end{equation*}
$$

so $f<e / 3$. By Euler's formula we have $e=n+f-2$, so

$$
\begin{equation*}
e=n+f-2<n+\frac{e}{3}-2, \tag{2}
\end{equation*}
$$

and thus $e<3 n / 2-3$. This proves that G has average degree less than 3 , but that contradicts our assumption that the minimum degree of G is 3 , finishing the proof.

If cycles of length 11 are allowed, then the inequality in (1) must be changed to

$$
f \leq f_{3}+\frac{2 e-3 f_{3}}{11}=\frac{2 e}{11}+\frac{8 f_{3}}{11}<\frac{2 e}{11}+\frac{16 f}{33} .
$$

This implies that $f<6 e / 17$, so (2) becomes

$$
e=n+f-2<n+\frac{6 e}{17}-2,
$$

and thus, $e<17 n / 11-34 / 11$. This is not enough to guarantee a vertex of degree at most 2, and so the argument used by Abbott and Zhou cannot be used to prove a result stronger than Theorem 2.

There is, however, a different way to use Theorem 5 to prove a result about 3coloring planar graphs without certain cycles. A graph is k-critical if it has chromatic number k, but all of its induced subgraphs have chromatic number strictly less than k. Kostochka and Yancey [8] recently nearly resolved Ore's conjecture on the minimum number of edges in a k-critical graph. They also gave [7] a short and self-contained proof in the case $k=4$, where the result reduces to the following.

Theorem 6 (Kostochka and Yancey $[7,8]$). If G is a 4 -critical graph with n vertices and e edges, then

$$
e \geq \frac{5 n-2}{3}
$$

Kostochka and Yancey [7] showed how Theorem 6 leads to a very short proof of Grötsch's celebrated three color theorem (every triangle-free planar graph is 3colorable). Borodin, Kostochka, Lidický, and Yancey [5] later showed how Theorem 6 can also be used to give a short proof of Grünbaum's three color theorem (every planar graph with at most three triangles is 3 -colorable). Below, we use Theorem 6 together with the bound on triangles given by Theorem 5 to derive a result nearly as good as Theorem 3.

Theorem 7. Every planar graph without cycles of lengths 4 through 8 is 3-colorable.
Proof. Suppose that the result is not true and take G to be a plane graph of minimal order, say n, that is not 3 -colorable despite having no cycles of lengths 4 through 8. Let e denote the number of edges of G and f denote the number of faces. As it is a minimal counterexample, G must be 4 -critical, so we have $e \geq 5 n / 3-2 / 3$ by Theorem 6. Let f_{3} denote the number of triangles in G; again we have $f_{3}<2 f / 3$ by Theorem 5. As the shortest non-triangular faces of G have length 9 , the inequality (1) in our proof of Theorem 2 becomes

$$
f \leq f_{3}+\frac{2 e-3 f_{3}}{9}=\frac{2 e}{9}+\frac{2 f_{3}}{3}<\frac{2 e}{9}+\frac{4 f}{9}
$$

This implies that $f<2 e / 5$, so by applying Euler's formula, the inequality (2) becomes

$$
e=n+f-2<n+\frac{2 e}{5}-2 .
$$

However, this shows that $e<5 n / 3-10 / 3$, which contradicts the fact that $e \geq$ $5 n / 3-2 / 3$.

Acknowledgements

We thank Zachary Hunter for discovering a mistake in a previous version of this paper.

References

[1] H. L. Abbott and B. Zhou, On small faces in 4-critical planar graphs, Ars Combin. 32 (1991), 203-207.
[2] O. V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 21 (2) (1996), 183-186.
[3] O. V. Borodin, To the paper of H. L. Abbott and B. Zhou on 4-critical planar graphs, Ars Combin. 43 (1996), 191-192.
[4] O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B 93 (2) (2005), 303-311.
[5] O. V. Borodin, A. V. Kostochka, B. Lidický and M. P. Yancey, Short proofs of coloring theorems on planar graphs, European J. Combin. 36 (2014), 314-321.
[6] V. Cohen-Addad, M. Hebdige, D. Král', Z. Li and E. Salgado, Steinberg's conjecture is false, J. Combin. Theory Ser. B 122 (2017), 452-456.
[7] A. V. Kostochka and M.P. Yancey, Ore's conjecture for $k=4$ and Grötzsch's theorem, Combinatorica 34 (3) (2014), 323-329.
[8] A. V. Kostochka and M. P. Yancey, Ore's conjecture on color-critical graphs is almost true, J. Combin. Theory Ser. B 109 (2014), 73-101.
[9] D. P. Sanders and Y. Zhao, A note on the three color problem, Graphs Combin. 11 (1) (1995), 91-94.
[10] R. Steinberg, The state of the three color problem, in: Quo Vadis, Graph Theory? (Eds.: J. Gimbel, J.W. Kennedy and L.V. Quintas), Ann. Discrete Math. 55, North-Holland, Amsterdam, The Netherlands, 1993, pp. 211-248.

[^0]: * Hamaker's research was partially supported by the NSF via award number 2054423.
 \dagger Vatter's research was partially supported by the Simons Foundation via award number 636113.

