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Abstract

An infinite family of (q2+ q+1)-ovoids of Q+(7, q), q ≡ 1 (mod 3), admitting
the group PGL(3, q), is constructed. The main tool is the general theory of
generalized hexagons.

1 Introduction

Let q be a prime power, Fq the finite field of order q, and V a finite dimensional vector space
over Fq. Let f be a non-degenerate reflexive sesquilinear form or a non-singular quadratic
form on V . The finite classical polar space S associated with (V, f) is the geometry
consisting of the totally singular or totally isotropic subspaces with respect to f of the
ambient projective space PG(V ), according to whether f is a quadratic or sesquilinear
form. The totally singular or totally isotropic one-dimensional subspaces are the points
of S, and the collection of all the points of S will be denoted by P. The totally singular
or totally isotropic subspaces of maximum dimension are called the generators of S. The
rank of S is the vector space dimension of its generators. A finite classical polar space of
rank 2 is a point-line geometry, and is also called a finite generalized quadrangle. Polar
spaces over finite fields are very interesting geometric structures because they possess large
automorphism groups, namely the finite classical groups. In this context it is natural to
investigate combinatorial objects embedded in polar spaces admitting a fairly large group.
Here, along these lines, we are interested in particular substructures of polar spaces called
m-ovoids, having many symmetries.
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The notion of an m-ovoid came from “ovoids” of the projective space PG(3, q). It was
first defined in generalized quadrangles by Thas [20], and was later extended naturally to
finite classical polar spaces of higher rank in the work of Shult and Thas [19], where an
m-ovoid was defined to be a set of points having exactly m points in common with each
generator (a 1-ovoid is simply called an ovoid). In [2] the authors found that m-ovoids and
tight sets of generalized quadrangles share the property that they have two intersection
numbers with respect to perps of points (one for points in the set and the other for points
not in the set), and they coined such sets intriguing. Here, the perp of a point P is the
set of the points of the generalized quadrangle that are collinear with P . In a subsequent
paper [1], the authors extended the concept of an intriguing set to finite classical polar
spaces of higher rank. Over the past two decades, intriguing sets have been extensively
studied and they are known to have close connection to many geometric/combinatorial
objects, such as translation planes, strongly regular graphs, two-weight codes, Boolean
degree one functions, completely regular codes of strength 0 and covering radius one, and
Cameron-Liebler line classes. We refer the reader to [3, 6, 11–14, 17, 18] for some recent
results on intriguing sets of polar spaces.

There are some straightforward methods for constructing m-ovoids. Let S be a polar
space of rank r over the field Fq. As an example, the whole point set of S is a qr−1

q−1
-ovoid.

Let A and B be an m-ovoid and n-ovoid of S, respectively. If A ⊆ B, then B \ A is an
(m−n)-ovoid. In particular, the complement of A is a ( q

r−1
q−1

−m)-ovoid. Dually, if A and

B are disjoint, then A ∪B is an (m+ n)-ovoid.

In hyperbolic polar spaces S = Q+(2r−1, q), there are some less straightforward ways
to construct m-ovoids. First of all, a non-degenerate hyperplane section of S which is an
embedded Q(2r − 2, q) is a qr−1−1

q−1
-ovoid, and an m-ovoid of the embedded Q(2r − 2, q)

is also an m-ovoid of S. Furthermore, new m-ovoids can be obtained from old ones
by derivation (see [16]). There are other constructions in hyperbolic spaces of different
ranks. If r = 2, then S = Q+(3, q) which is a grid. It is easy to see that Q+(3, q)
can be partitioned into ovoids and so m-ovoids exist for all possible m. If r = 3, then
S = Q+(5, q) and an ovoid ofQ+(5, q) is equivalent to a spread of PG(3, q) under the Klein
correspondence. It is known that the lines of PG(3, q) can be partitioned into spreads
(such a partition is called a packing of PG(3, q)) [8]. This means that m-ovoids of Q+(5, q)
exist for all possible m. The situation is much more different when r is greater than 3 and
only a few results are known. We will be focusing on Q+(7, q) in this work. It is known
that ovoids exist in Q+(7, q) when q is even, an odd prime or q ≡ 0 or 2 (mod 3) [15, Table
7.3]. As mentioned above, m-ovoids of Q(6, q) are m-ovoids of Q+(7, q). Constructions
of m-ovoids of Q(6, q) can be found in [1, 5, 18]. There are further known m-ovoids of
Q+(7, q) which we present in Section 4 when dealing with the isomorphism issue.

In this paper, we construct an infinite family of (q2 + q + 1)-ovoids of Q+(7, q), q ≡ 1
(mod 3), admitting PGL(3, q) as an automorphism group and not contained in a hyper-
plane section. The promised (q2+q+1)-ovoid will be described as a set O of points covered
by the planes spanned by two incident lines of a thin hexagon embedded in Q+(7, q). The
advantage is that in this way one can apply basic results from the theory of generalized
hexagons. The properties of the hexagon that will be needed are achieved in Section 2.
In Section 3 we define the set O precisely and show that it is a (q2+ q+1)-ovoid. Finally,
we show that our example is new in Section 4, and a problem is posed in the end.
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For the rest of this paper, we shall use the following definition of m-ovoids rather than
the one given by Shult and Thas as mentioned in the second paragraph.

Definition 1.1. Let P be the point set of Q+(2r − 1, q). A subset M of P is called an
m-ovoid if there is an integer m > 0 such that for all P ∈ P,

|P⊥ ∩M| =
{
mθr−1 − θr−1 + 1, if P ∈ M,

mθr−1, if P /∈ M,
(1.1)

where θr = qr−1+1 and P⊥ is the set of points in Q+(2r−1, q) that are collinear with P .

2 Preliminaries

Let p be a prime, and q = pe, where e ≥ 1 is an integer. The multiplicative group of Fq

will be denoted by F
∗
q. For an integer n ≥ 1, the relative trace Trqn/q from Fqn to Fq is

defined by
Trqn/q(z) = z + zq + zq

2

+ · · ·+ zq
n−1

, ∀z ∈ Fqn .

In particular, if q = p, then Trqn/q is called the absolute trace.

2.1 Cubic polynomials over Fq

Let q = pe be a prime power, where p 
= 3 is a prime. Let f(x) = x3 + cx + d be a
cubic polynomial over Fq, and let γ1, γ2, γ3 be its roots in some extension field of Fq. The
discriminant of f is defined by

Δf := (γ1 − γ2)
2(γ2 − γ3)

2(γ3 − γ1)
2,

which equals −4c3 − 27d2 for all q. In particular, when q is even, we have Δf = d2.

Lemma 2.1. If q ≡ 1 (mod 3) with q odd, then −3 is a nonzero square in Fq.

Proof. Let q = pe. In the case p ≡ 2 (mod 3), we have e is even, and so −3 is a nonzero
square in Fq. In the case p ≡ 1 (mod 3), by the quadratic reciprocity law we have(−3

p

)
=

(−1

p

)(
3

p

)
= (−1)(p−1)/2(−1)(3−1)/2·(p−1)/2

(p
3

)
= 1.

Here ( ·
p
) is the Legendre symbol. Hence −3 is a square in Fp and also a square in Fq.

We shall need the following theorem giving the nonexistence condition for the roots
of f in Fq in various situations.

Theorem 2.2 ( [9, 23]). Let q be a prime power with q ≡ 1 (mod 3). Suppose that
f(x) = x3 + cx+ d is a polynomial over Fq with discriminant Δf 
= 0.

(i) If q is odd, and write −3 = α2 for some α ∈ Fq, then f has no roots in Fq if Δf is
a square in Fq, say Δf = 81β2 for some β ∈ Fq, and 2−1(−d+ αβ) is not a cube in
Fq.



F. PAVESE AND H. ZOU/AUSTRALAS. J. COMBIN. 87 (2) (2023), 340–351 343

(ii) If q is even, then f has no roots in Fq if Trq/2(c
3d−2) = Trq/2(1), and the roots t1, t2

of t2 + dt+ c3 = 0 are not cubes in Fq.

Lemma 2.3. Let q be a prime power with q ≡ 1 (mod 3) and θ a non-cubic element of
F
∗
q. Then the equation x3 + θy3 + θ2z3 − 3θxyz = 0 has a unique solution in Fq, i.e.,

x = y = z = 0.

Proof. If z = 0, then the equation is reduced to x3 + θy3 = 0. Since θ is not a cube, the
above equation has solutions in Fq if and only if x = y = 0. Similarly, if x = 0 or y = 0,
the original equation has solutions in Fq for x, y, z if and only if x = y = z = 0. So it is
enough to show that the polynomial

f(x) := x3 − 3θyzx+ θy3 + θ2z3

has no roots in Fq for any y, z ∈ F
∗
q.

Case 1. Assume q is odd. The discriminant of f is

Δf =− 4(−3θyz)3 − 27(θy3 + θ2z3)2 = (−3) · 9(θy3 − θ2z3)2.

By Lemma 2.1, we see that Δf is a nonzero square in Fq. Furthermore, if we write
−3 = α2, and Δf = 81β2 = −27α2β2, then αβ = ±(θy3 − θ2z3). This implies that
2−1(αβ − (θy3 + θ2z3)) = θy3 or θ2z3, neither of which is a cube in Fq. Therefore f(x)
has no solutions in Fq by Theorem 2.2.

Case 2. Assume q is even. Then q = 2n and n is even. We have

Trq/2

(
(θyz)3

(θy3 + θ2z3)2

)
= Trq/2

(
θy3

θy3 + θ2z3
+

θ2y6

(θy3 + θ2z3)2

)
= 0 = Trq/2(1).

Moreover, the equation t2+(θy3+θ2z3)t+(θyz)3 = 0 has solutions t1 = θy3 and t2 = θ2z3,
neither of which is a cube in Fq. Using Theorem 2.2 again, we conclude that f(x) has no
solutions in Fq.

2.2 An embedded generalized hexagon in PG(7, q)

Let I be an point-line incidence geometry with point set P, line set L and incidence
relation I ⊆ P × L. The incidence graph of I is the graph with vertex set P ∪ L,
where adjacency is given by the incidence relation I. A generalized hexagon is a point-
line geometry such that its incidence graph has diameter 6 and girth 12. A generalized
hexagon is said to have order (s, t) if every line is incident with exactly s+1 points and if
every point is incident with precisely t+1 lines. A quick example of a generalized hexagon
is the flag geometry I of a projective plane Π of order s defined as follows. The points of
I are the flags of Π (i.e., the incident point-line pairs); the lines of I are the points and
lines of Π. Incidence between points and lines of I is reverse containment. It follows that
I is a generalized hexagon of order (s, 1). We refer the reader to [22] for more background
information about generalized hexagons.

Let S2,2 be the Segre variety of PG(8, q) consisting of the (q2+q+1)2 points represented
by

(a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, a3b3), (2.1)
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where ai, bi ∈ Fq, i = 1, 2, 3, with (a1, a2, a3) 
= (0, 0, 0) and (b1, b2, b3) 
= (0, 0, 0). By
means of the map

ρ : M = (mij) ∈ M3,3(q) �→ (m11, m12, m13, m21, m22, m23, m31, m32, m33) ∈ F
9
q , (2.2)

points of S2,2 correspond to rank one 3× 3 matrices over Fq. Moreover, S2,2 is contained
in the parabolic quadric Q(8, q) given by

X2X4 −X1X5 +X3X7 −X1X9 +X6X8 −X5X9 = 0.

There is a group, say G, isomorphic to PGL(3, q) fixing both S2,2 and Q(8, q). This can
be seen by the map

ρ−1(X) �→ Aρ−1(X)A−1, ∀A ∈ GL(3, q), X ∈ S2,2 ∩ Q(8, q).

Such a group fixes the point of PG(8, q) corresponding to the 3 × 3 identity matrix and
the hyperplane Π : X1 +X5 +X9 = 0. Note that Π ∩ Q(8, q) is hyperbolic, elliptic or a
cone, according to whether q ≡ 1, −1, or 0 (mod 3).

Assume that q ≡ 1 (mod 3) and denote by Q+(7, q) the hyperbolic quadric obtained
by intersecting Q(8, q) with Π. Let ⊥ be the polarity of Π associated with Q+(7, q).
By [21, pp. 99–100], the set Π∩S2,2 consists of (q+1)(q2+ q+1) points and 2(q2+ q+1)
lines of a thin hexagon, say Γ; the hexagon Γ corresponds to the point-line flag geometry
of PG(2, q). Every line of Γ has q + 1 points of Γ. Through a point x of Γ there pass two
lines of Γ spanning a plane and we will denote this plane by πx. It is readily seen that
πx ⊂ Q+(7, q), for x ∈ Γ. The incidence graph of Γ is the girth 12 bipartite graph where
the two parts are the points and the lines of Γ and adjacency is given by incidence. The
distance between points and lines of Γ is that between two vertices of the incidence graph
of Γ.

Lemma 2.4. The set of 2(q + 1) lines of Γ having distance 1 or 3 from a point x ∈ Γ
span the hyperplane x⊥ of Π.

Proof. By [21, Lemma 1], it is enough to show that these 2(q + 1) lines are contained in
the hyperplane x⊥. To see this fact observe that if r1, r2 are the two lines of Γ through x,
then r1, r2 ⊂ πx ⊂ x⊥. If � is a line of Γ and d(x, �) = 3, then � is incident with r1 or r2
in a point z and � ⊂ πz ⊂ x⊥.

It follows from the previous lemma that the lines of Γ at distance 5 from x and the
points of Γ at distance 6 from x are not contained in x⊥.

Let Ui be the point of PG(8, q) having 1 in the i-th position and 0 elsewhere.

Lemma 2.5. If x is a point of Γ, then π⊥
x meets Γ precisely in the two lines of Γ through x.

Proof. Since the group G acts transitively on points of Γ (by Lemma 3.1), we may assume
without loss of generality that x is the point U3. Then some easy calculations show that
the 4-dimensional projective space X4 = X7 = X8 = 0 of Π, i.e. π⊥

U3
, meets Γ precisely in

the two lines of Γ through U3.
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An apartment of Γ consists of 6q points and 6 lines of Γ forming an ordinary 6-gon.
By [21, Lemma 2] an apartment of Γ spans a 5-dimensional projective space of Π.

Lemma 2.6. If x, y are distinct points of Γ, then πx ∩ πy is either a line of Γ or a point
of Γ or empty, according to whether d(x, y) equals 2, 4 or 6, respectively.

Proof. Let x, y be distinct points of Γ and let �1, �2 be the two lines of Γ through y. If
d(x, y) = 2, then πx∩πy = 〈x, y〉. If d(x, y) = 4, then we may assume that d(x, �1) = 3 and
d(x, �2) = 5. Hence there is a point z ∈ �1 such that d(x, z) = 2. Since �2 
⊂ x⊥, it follows
that πy ∩ x⊥ = �1 and therefore πx ∩ πy = {z}. If d(x, y) = 6, then d(x, �i) = 5, i = 1, 2,
and hence there are four points z1, z2, z3, z4 of Γ such that zi ∈ �i, with d(x, zi) = 4,
i = 1, 2, and d(x, z3) = d(z1, z3) = d(x, z4) = d(z2, z4) = 2. The points x, z4, z2, y, z1, z3
are the vertices of an apartment of Γ. Since 〈x, z4, z2, y, z1, z3〉 � PG(5, q), it follows that
|πx ∩ πy| = 0.

3 The construction

Assume q ≡ 1 (mod 3) and take the notation introduced in the previous section. Set

O =
⋃
x∈Γ

πx.

By Lemma 2.6 if x, y ∈ Γ, x 
= y, and |πx ∩ πy| 
= 0, then πx ∩ πy ⊂ Γ. Hence |O| =
(q2 − q)(q + 1)(q2 + q + 1) + (q + 1)(q2 + q + 1) = (q2 + q + 1)(q3 + 1). This shows that
O has the correct size of a (q2 + q + 1)-ovoid of Q+(7, q) and we will show it is indeed a
(q2 + q + 1)-ovoid.

We first describe the orbits of the group G on the point set of Q+(7, q).

Let ω be a primitive element of Fq, i.e., F
∗
q = 〈ω〉.

Lemma 3.1. The group G has 5 orbits on points of Q+(7, q).

1. The orbit O1 consists of the (q + 1)(q2 + q + 1) points of Γ; a representative for O1

is P1 = U3 and U⊥
3 contains exactly 2(q + 1) lines of Γ.

2. The orbit O2 consists of the (q3− q)(q2+ q+1) points of O\Γ; a representative for
O2 is P2 = U2 + U6 and P⊥

2 contains exactly 2 lines of Γ.

3. The orbit O3 has size q3(q + 1)(q2 + q + 1)/3; a representative for O3 is P3 =

U1 + ω
q−1
3 U5 + ω

2(q−1)
3 U9 and P⊥

3 contains exactly 6 lines of Γ.

4. The orbit Oi, i = 4, 5, has q3(q2 − 1)(q − 1)/3 points; a representative for O4 is
P4 = U2 + U6 + ωU7 and for O5 is P5 = U3 + ωU4 + ωU8; P

⊥
i , i = 4, 5, contains no

line of Γ.

Proof. We shall find it helpful to work with the elements of PGL(3, q) as matrices in
GL(3, q) and the points of PG(7, q) as 3× 3 matrices with trace zero.
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1. Let A ∈ GL(3, q) and assume that Aρ−1(U3)A
−1 = λρ−1(U3) for some λ ∈ F

∗
q . This

can be written explicitly as⎛
⎝0 0 a11
0 0 a21
0 0 a31

⎞
⎠ = λ

⎛
⎝a31 a32 a33

0 0 0
0 0 0

⎞
⎠ ,

which implies that a11 = λa33 and a21 = a31 = a32 = 0. Since A ∈ GL(3, q), then
a22a33 
= 0. It follows that the stabilizer of P1 in GL(3, q) has size q3(q− 1)3 and so

|O1| = |GL(3, q)|
q3(q − 1)3

= (q + 1)(q2 + q + 1).

The fact that U⊥
3 contains 2(q + 1) lines of Γ follows from Lemma 2.4.

2. Let A ∈ GL(3, q) with Aρ−1(P2)A
−1 = λρ−1(P2) for some λ ∈ F

∗
q. Then a21 = a31 =

a32 = 0, a12 = λa23, a11 = λa22, a22 = λa33, and a33 
= 0. Thus

|O2| = |GL(3, q)|
q2(q − 1)2

= q(q3 − 1)(q + 1).

The point P2 belongs to πU3 and hence P⊥
2 contains the two lines �1, �2 of Γ through

U3. Let � be a line of Γ. If d(U3, �) = 3 and � ⊂ P⊥
2 , then |� ∩ �1| = 1 and

〈�, �1〉, 〈P2, �〉, 〈�1, �2〉 are three planes of Q+(7, q) spanning a solid and pairwise
intersecting in a line. It follows that the solid is contained in Q+(7, q). Therefore
� ⊂ π⊥

U3
, contradicting Lemma 2.5. If d(U3, �) = 5 and � ⊂ P⊥

2 , then there is a line
�′ incident with � and with �1. Hence d(U3, �

′) = 3 and �′ ⊂ P⊥
2 . Thus, as above,

�′ ⊂ π⊥
U3
, contradicting Lemma 2.5.

3. Let A ∈ GL(3, q) with Aρ−1(P3)A
−1 = λρ−1(P3) for some λ ∈ F

∗
q. If λ = 1, then

a12 = a13 = a21 = a23 = a31 = a32 = 0 and a11a22a33 
= 0. If λ = ω
q−1
3 , then

a11 = a13 = a21 = a22 = a32 = a33 = 0 and a12a23a31 
= 0. If λ = ω
2(q−1)

3 then

a11 = a12 = a22 = a23 = a31 = a33 = 0 and a13a21a32 
= 0. If λ /∈ {1, ω q−1
3 , ω

2(q−1)
3 },

then A = 0 which is not in GL(3, q). Therefore,

|O3| = |GL(3, q)|
3(q − 1)3

=
q3(q + 1)(q2 + q + 1)

3
.

The hyperplane P⊥
3 of Π contains the 5-dimensional projective space X1 = X5 =

X9 = 0 which meets Q+(7, q) in a Q+(5, q) and intersects Γ precisely in the apart-
ment A given by the 6 lines 〈U2, U3〉, 〈U3, U6〉, 〈U6, U4〉, 〈U4, U7〉, 〈U7, U8〉, 〈U8, U2〉.
A line s of Γ disjoint from A cannot be contained in P⊥

3 , otherwise s ∩ Q+(5, q)
would be a point of Γ not contained in A. Similarly, a line s of Γ incident with a
line r of A cannot be contained in P⊥

3 , otherwise through r there would be three
planes of Q+(7, q) and necessarily two of these three planes would span a solid of
Q+(7, q). In this case it follows that there exists a line r′ of A incident with r such
that s ⊂ 〈r, r′〉⊥, contradicting Lemma 2.5.
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4. Assume A ∈ GL(3, q) with Aρ−1(P4)A
−1 = λρ−1(P4) for some λ ∈ F

∗
q. Then λ3 = 1,

a11 = λ2a33, a22 = λa33, a12 = λa23, a31 = λ2ωa23, a21 = λ2ωa13, and a32 = λωa13.
With these conditions, we have

det(A) = a333 + ωa323 + ω2a313 − 3ωa13a23a33.

Since det(A) 
= 0, by Lemma 2.3, the only restriction on {a13, a23, a33} is
(a13, a23, a33) 
= (0, 0, 0). Therefore,

|O4| = |GL(3, q)|
3(q3 − 1)

=
q3(q2 − 1)(q − 1)

3
.

The computation for the orbit of P5 is similar and we omit it. To see that P4 and
P5 are not in the same orbit, assume A ∈ GL(3, q) such that Aρ−1(P4) = λρ−1(P5)A
for some λ ∈ F

∗
q. Then λ3ω = 1 which is impossible.

We conclude that G has five orbits as described above since |O1| + · · · + |O5| =
(q3 + 1) q

4−1
q−1

which equals the number of points of Q+(7, q).

The line u joining P4 and P5 is secant to Q+(7, q) and u⊥ is the 5-dimensional
projective space of Π given by ωX3+X4+X8 = ωX2+ωX6+X7 = 0. Furthermore,
u⊥ is disjoint from Γ. Indeed, the point given in (2.1) belongs to u⊥ if and only if

a1b1 + a2b2 + a3b3 = 0

ωa1b2 + ωa2b3 + a3b1 = 0 (3.1)

ωa1b3 + a2b1 + a3b2 = 0.

The system (3.1) has no non-trivial solutions since

det

⎛
⎝ b1 b2 b3
ωb2 ωb3 b1
ωb3 b1 b2

⎞
⎠ = 3ωb1b2b3 − b31 − ωb32 − ω2b33 = 0,

which implies that (b1, b2, b3) = (0, 0, 0) by Lemma 2.3. It follows that no line of Γ
is contained in P⊥

4 or in P⊥
5 .

Remark 3.2. By Lemma 3.1 and (2.2), the set O consists precisely of the points of Π
corresponding to 3× 3 matrices over Fq having rank at most 2.

We are now ready to prove the main theorem.

Theorem 3.3. The set O is a (q2 + q + 1)-ovoid of Q+(7, q).

Proof. We show that |P⊥
i ∩O| equals q4+ q3 + q2+ q+1 if i = 1, 2 or (q2 +1)(q2+ q+1)

if i = 3, 4, 5.

The hyperplane P⊥
1 of Π contains 2(q + 1) lines of Γ and hence

|P⊥
1 ∩ Γ| = 2q2 + 2q + 1.
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Let x be a point of Γ. If x = P1 or d(x, P1) = 2, then πx ⊂ P⊥
1 . If d(x, P1) = 4, then

πx ∩ P⊥
1 is a line of Γ contained in P⊥

1 , whereas if d(x, P1) = 6, then πx ∩ P⊥
1 is a line

with two points of Γ. Hence

|P⊥
1 ∩ (O \ Γ)| = (2q + 1)× (q2 − q) + q3 × (q − 1) = q4 + q3 − q2 − q

and therefore |P⊥
1 ∩O| = q4 + q3 + q2 + q + 1.

Assume that the hyperplane P⊥
2 of Π contains the two lines of Γ contained in πy. It

follows that

|P⊥
2 ∩ Γ| = (q + 1)2.

Let x be a point of Γ. If x = y, then πx ⊂ P⊥
2 . If d(x, y) = 2, then πx ∩ P⊥

2 is a line of Γ
contained in P⊥

2 . If d(x, y) ≥ 4, then either x ∈ P⊥
2 and πx ∩ P⊥

2 is a line with one point
of Γ, or x /∈ P⊥

2 and πx ∩ P⊥
2 is a line with two points of Γ. Hence

|P⊥
2 ∩ (O \ Γ)| = (q2 − q) + q2 × q + (q3 + q2)× (q − 1) = q4 + q3 − q

and therefore |P⊥
2 ∩O| = q4 + q3 + q2 + q + 1.

If the hyperplane P⊥
3 of Π contains the apartment A of Γ, then

|P⊥
3 ∩ Γ| = (q − 1)2 + 6q = q2 + 4q + 1.

Indeed there are exactly 2(q − 1)2 lines of Γ intersecting P⊥
3 in a point not belonging to

A. Let x be a point of Γ. If x ∈ A, then either x is a vertex of A and πx ⊂ P⊥
3 or x is

not a vertex of A and πx ∩ P⊥
3 is a line of A that hence is contained in P⊥

3 . If x /∈ A,
then either x ∈ P⊥

3 and πx ∩ P⊥
3 is a line with one point of Γ, or x /∈ P⊥

3 and πx ∩ P⊥
3 is

a line with two points of Γ. Hence

|P⊥
3 ∩ (O \ Γ)| = 6× (q2 − q) + (q − 1)2 × q + (q3 + q2 − 2q)× (q − 1)

= q4 + q3 + q2 − 3q

and therefore |P⊥
3 ∩O| = (q2 + 1)(q2 + q + 1).

If i ∈ {4, 5}, then no line of Γ is contained in the hyperplane P⊥
i of Π. Hence

|P⊥
i ∩ Γ| = q2 + q + 1.

Let x be a point of Γ. In this case either x ∈ P⊥
i and πx ∩ P⊥

i is a line with one point of
Γ, or x /∈ P⊥

i and πx ∩ P⊥
i is a line with two points of Γ. Hence

|P⊥
i ∩ (O \ Γ)| = (q2 + q + 1)× q + (q3 + q2 + q)× (q − 1) = q4 + q3 + q2

and therefore |P⊥
i ∩O| = (q2 + 1)(q2 + q + 1).

4 Concluding remarks

4.1 Other known examples of m-ovoids of Q+(7, q)

To the best of our knowledge, there are further known m-ovoids of Q+(7, q) not mentioned
in Section 1.
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• m-ovoids, m ∈ {q2 + q + 1, q + 1}, of Q+(7, q) arising from [7, Construction 5.1]:
let C be a cone of a Q(6, q) ⊂ Q+(7, q) such that C ⊂ Q(6, q) and C has either as
vertex a point of Q(6, q) and base a Q(4, q) or as vertex a line and base a Q(2, q).
Let C′ be a cone having as vertex the same vertex of C and as base either a Q(4, q)
or a Q(2, q) and such that C′ ⊂ (Q+(7, q) \ Q(6, q)). Then (Q(6, q) \ C) ∪ C′ is a
(q2 + q +1)-ovoid of Q+(7, q). A line of Q+(7, q) meets (Q(6, q) \ C)∪ C′ in 0, 1, 2, q
or q + 1 points. By replacing Q(6, q) with Q−(5, q), a similar construction yields
(q + 1)-ovoids of Q+(7, q).

• m-ovoids of Q+(7, q), 1 ≤ m ≤ q + 1, obtained by applying a group of order q + 1
to an ovoid of Q+(7, q): it can be deduced from [10], that there is a group of order
q+1, say S, fixing Q+(7, q) and a set L consisting of (q2+1)(q3+1) pairwise disjoint
lines of Q+(7, q). In particular L is a line-spread of Q+(7, q) and S stabilizes each
of the members of L permuting in a single orbit the q+1 points of each of the lines
of L. Therefore, if O is an ovoid of Q+(7, q) then it turns out that OS is a set of
q + 1 pairwise disjoint ovoids of Q+(7, q).

4.2 The isomorphism issue

We have constructed a (q2+q+1)-ovoid O inQ+(7, q) for q ≡ 1 (mod 3). As mentioned in
Section 1, a non-degenerate hyperplane intersects Q+(7, q) in a parabolic quadric Q(6, q)
which is also a (q2 + q + 1)-ovoid of Q+(7, q). One may ask whether M is contained in a
non-degenerate hyperplane. We explain below that the answer is no.

Proposition 4.1. There are lines of Q+(7, q) intersecting O in exactly three points.

Proof. Consider the plane σ spanned by U2, U6, U7. Then σ is a plane of Q+(7, q) and
by Remark 3.2, σ ∩O consists of the 3q points of the three lines joining the three points
U2, U6, U7. Hence a line of σ not containing U2, U6, U7 meets O in three points.

Note that U1 − U2 + U4 − U5, U6 − U5 + U9 − U8, U2, U3, U4, U6, U7, U8 ∈ O and they
span PG(7, q). It follows that O is not contained in a hyperplane. Furthermore, we see
from Proposition 4.1 that O is not isomorphic to (Q(6, q) \ C)∪C′ defined in the previous
subsection. Therefore the (q2 + q + 1)-ovoid O is not equivalent to any known m-ovoids
of Q+(7, q).

4.3 m-ovoids in Q(8, q)

Consider the parabolic quadric Q(8, q) given by

X2X4 −X1X5 +X3X7 −X1X9 +X6X8 −X5X9 = 0.

There is a group isomorphic to PGL(3, q) fixing Q(8, q) as mentioned in Section 2. With
the aid of Magma [4], we found (q2 + q + 1)-ovoids of Q(8, q) for q = 2, 3, 4, 5. When
q = 2, the (q2 + q + 1)-ovoid found by the computer is actually an embedded Q−(7, q).
This is not interesting. However, for q = 3, 4, 5, a Magma computation shows that there
exists a (q2 + q + 1)-ovoid not contained in a hyperplane and we conjecture that this is
true for all larger q.
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Conjecture 4.2. There exists a (q2 + q +1)-ovoid of Q(8, q) which is not contained in a
hyperplane for any prime power q > 2.
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