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Abstract
The paper [Costa et al., Discrete Math. 345 (2022), 112952] introduced,
for cyclic groups, the class of partially filled arrays of the non-zero sum
Heffter array that are, as the Heffter arrays, related to difference fami-
lies, graph decompositions, and biembeddings. Here we generalize this
definition to any finite group. Given a subgroup J of order t of a finite
group (G,+), a λ-fold non-zero sum Heffter array over G relative to J ,
λNHG,J(m,n;h, k), is anm×n partially filled array with entries in G such
that: each row contains h filled cells and each column contains k filled
cells; for every x ∈ G \ J , the sum of the occurrences of x and −x is λ;
the sum of the elements in every row and column is, following the natural
orderings from left to right for the rows and from top to bottom for the
columns, different from 0. The 2022 paper by Costa et al. also presented
a complete, probabilistic solution for the existence problem in case λ = 1
and G = Zv which is the starting point of this investigation. In this
paper we will consider the existence problem for a generic value of λ and
a generic finite group G, and we present an almost complete solution to
this problem. In particular, we will prove, through local considerations
(inspired by the Lovász Local Lemma), that there exists a λ-fold non-zero
sum Heffter array over G relative to J whenever the trivial necessary con-
ditions are satisfied and |G| ≥ 41. This value can be reduced to 29 in case
the array does not contain empty cells. Finally, we will show that these
arrays give rise to biembeddings of multigraphs into orientable surfaces
and we provide new infinite families of such embeddings.
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1 Introduction

An m× n partially filled (p.f., for short) array on a set Ω is an m× n matrix whose
elements belong to Ω and where some cells can be empty.

First, we need to introduce some notation. The rows and the columns of an m×n
p.f. array A are denoted by R1, . . . , Rm and by C1, . . . , Cn, respectively. Here, we
name by E(A), E(Ri), E(Cj) the list of the elements of the filled cells of A, of the i-th
row and of the j-th column, respectively. Then we denote by skel(A) the skeleton of
A, that is the set of the filled positions of A. Also, when we define a multiset M we
use the square brackets and we denote Mλ to be the multiset in which each element
of M (counted with its multiplicity) is repeated λ times.

In 2015 Archdeacon [3] introduced a class of p.f. arrays which has been extensively
studied: the Heffter arrays.

Definition 1.1 A Heffter array H(m,n;h, k) is an m× n p.f. array with entries in
the cyclic group (Z2nk+1,+) such that:

(a) each row contains h filled cells and each column contains k filled cells;
(b) for every x ∈ Z2nk+1 \ {0}, either x or −x appears in the array;
(c) the elements in every row and column sum to 0.

Trivial necessary conditions for the existence of an H(m,n;h, k) are mh = nk, 3 ≤
h ≤ n and 3 ≤ k ≤ m. If m = n then h = k and a square H(n, n; k, k) will be
simply denoted by H(n; k). For those kinds of arrays, the existence problem has
been completely solved. Indeed, in [4, 7, 17], the following result was proved.

Theorem 1.2 An H(n; k) exists for every n ≥ k ≥ 3.

In [14] (see also [25]) this concept has been generalized as follows.

Definition 1.3 Let m,n, h, k be four positive integers. Let λ be a divisor of 2nk
and t be a divisor of 2nk

λ
. Set v = 2nk

λ
+ t and let J be the subgroup of (Zv,+) of

order t. A λ-fold Heffter array A over Zv relative to J , denoted by λHG,J(m,n;h, k),
is an m× n p.f. array with elements in Zv such that:

(a1) each row contains h filled cells and each column contains k filled cells;
(b1) the multiset [±x | x ∈ E(A)] contains each element of Zv \ J exactly λ times;
(c1) the elements in every row and column sum to 0.

It is easy to see that if λ = t = 1 we again find the arrays of Definition 1.1.
Classical Heffter arrays and the above generalization have also been introduced

because of their vast variety of applications and connections with other much-studied
problems and concepts. In particular, in the paper of Archdeacon (and in other recent
ones), Heffter arrays are investigated to obtain new face 2-colorable embeddings
(briefly biembeddings). On the other hand, several authors focused their attention
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on the existence problem of Heffter arrays and their variations. For a complete
discussion on this topic, we refer the reader to the survey [27] and the references
therein.

In [11], a new class of p.f. arrays was presented, which is related to that of Heffter
arrays: the non-zero sum Heffter arrays. This definition was motivated by Alspach’s
partial sums conjecture which deals with sets whose sums are different from 0; see
[2, 5, 6, 20, 26]. Here we propose a generalization of this concept to a generic finite
group (as done in [13] for the classical Heffter arrays).

Definition 1.4 Let (G,+) be a finite group and let J be a subgroup of G. A λ-fold
non-zero sum Heffter array A over G relative to J , denoted by λNHG,J(m,n;h, k),
is an m× n p.f. array with elements in G such that:

(a2) each row contains h filled cells and each column contains k filled cells;
(b2) the multiset [±x | x ∈ E(A)] contains λ times each element of G \ J ;
(c2) the sum of the elements in every row, following the natural ordering from left

to right, and column, following the natural ordering from top to bottom, is
different from 0.

Here if λ = 1, J = {0}, m = k or m = n, we will use, respectively, the notation
NHG,J(m,n;h, k), λNHG(m,n;h, k), λNHG,J(m,n) and λNHG,J(n; k).

Example 1.5 LetG be the dihedral group of order 6. Its elements are, for definition,
the pairs (x, y) : x ∈ (Z3,+3), y ∈ (Z2,+2), and the group operation is defined as
(x1, y1) + (x2, y2) = (x1 +3 (ϕy1x2), y1 +2 y2) where ϕ0 = 1 and ϕ1 = −1. Set
J = Z3 × {0}, we provide an example of a 4NHG,J(3; 2).

A :=
(1, 1) (2, 1)

(1, 1) (0, 1)
(0, 1) (2, 1)

Indeed, note that E(A) = [(0, 1), (0, 1), (1, 1), (1, 1), (2, 1), (2, 1)] and hence

[±x | x ∈ E(A)] =

[(0, 1), (0, 1), (0, 1), (0, 1), (1, 1), (1, 1), (1, 1), (1, 1), (2, 1), (2, 1), (2, 1), (2, 1)]

covers G \ J four times.

In [11], the authors focused on the case λ = 1, namely when the entries of the
array are pairwise distinct and considered only cyclic groups (see also [9] and [21]
for other results on the cyclic case). In particular, they proved the existence of an
NHZv ,J(m,n;h, k), where J is the subgroup of order t of Zv, whenever the trivial
necessary conditions nk = mh, v = 2nk

λ
+ t and t | v are satisfied. We also recall the

very recent paper [22] where the authors present complementary (and constructive)
results on arrays with non-zero row and column sums.
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In this paper, we will consider the existence problem for a generic value of λ and
we present an almost complete solution to this problem. For this purpose, in Section
2, we will first determine more general necessary conditions for the existence problem
from which a complete solution for |G| = 2 follows. Then, in Section 3, we will try to
solve this problem with direct constructions. In particular, we will present a complete
solution also when |G| = 3 and in the case of square arrays over abelian groups of
odd order. In Section 4, we will revisit the construction of [11] proving that there
exists a λNHG,J(m,n;h, k) whenever the necessary conditions are satisfied provided
that h and k are big enough if λ is considered fixed. With this procedure, for any
group G, we leave the problem open for an infinite number of arrays. This issue
is due to the fact that, generating uniformly at random the matrix, the probability
of the event that a given row (or a given column) sums to zero is not, in general,
independent from all the other entries of the array. Then, inspired by the Lovász
Local Lemma (see [18]), we impose a different distribution: we tessellate the array
with suitable tiles and we choose the elements of a tile uniformly at random among
a small prescribed set. Within these local considerations, we reduce the number of
dependencies among the events mentioned above. It will follow that there exists
a λ-fold non-zero sum Heffter array over G relative to J whenever the necessary
conditions are satisfied and |G| ≥ 41 leaving the problem open only for a finite set
of groups. This value can be turned down to 29 in case the array does not contain
empty cells. Finally, in the last section of this paper, we show that these arrays give
rise to biembeddings of multigraphs into orientable surfaces and we provide infinite
families of such embeddings.

2 Necessary conditions

In [11], the authors proved that an NHZv ,J(m,n;h, k), where J is the subgroup of
order t of Zv, exists whenever the trivial necessary conditions nk = mh, v = 2nk

λ
+ t

and t | v are satisfied. Those conditions can be easily generalized to the following
ones.

Remark 2.1 Given a subgroup J of a finite group G, a λNHG,J(m,n;h, k) can exist
only if the following necessary conditions are satisfied:

(∗)


nk = mh;

λ | 2nk;

|G| = 2nk
λ

+ |J |;
if G \ J contains an involution, then λ must be even.

We note that the latter condition is automatically satisfied in the case of cyclic groups
and we observe that |J | | 2nk

λ
since by the Lagrange’s theorem the order of J divides

the order of G.

Now we will see that in the case of groups isomorphic to Zr2 those conditions are not
sufficient. Indeed, for such groups, we can state more strict conditions. We begin by
presenting the case G = Z2.
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Theorem 2.2 For m ≥ k ≥ 1 and n ≥ h ≥ 1, there exists a λNHZ2(m,n;h, k) if
and only if the necessary conditions (∗) of Remark 2.1 hold and hk is odd.

Proof. Since we can fill the array only with the involution 1 ∈ Z2, hk must be odd.
On the other hand, it is easy to construct an m × n p.f. array that has exactly h
filled cells in each row and k filled cells in each column. 2

Next, in the following theorem, we consider the case where G is isomorphic to Zr2.

Theorem 2.3 Let (G,+) be a finite group isomorphic to Zr2 and let J be a proper
subgroup of G of order t that is isomorphic to Zr12 . Then there exists a λNHG,J(1, n)
if and only if the necessary conditions (∗) of Remark 2.1 are satisfied and one of the
following conditions holds:

1) t = 2 (i.e. r1 = 1) and n is an odd multiple of |G| − 2;
2) |G| = 2 (i.e. r = 1 and r1 = 0) and n is odd.

Proof. It is easy to check (see Theorem 1.2 of [1] for a reference) that the sum of the
elements of a group G which is isomorphic to Zr2 is non-zero only if r = 1. It follows
that the sum of the elements of G \ J is non-zero only when t or |G| are equal to 2.

Let us assume that there exists λNHG,J(1, n) and let us denote it by A. Since
G \ J only contains involutions we have that:

E(A) = E(R1) = (G \ J)λ/2.

Clearly, A can exist only if the sum of the elements of G \ J is non-zero. So we can
assume that t = 2 or |G| = 2.

If t = 2, then the sum of the elements of G \ J is non-zero but it is an involution
of G (G \ {0} only contains involution). It follows that∑

a∈E(R1)

a = λ/2
∑
g∈G\J

g 6= 0

only if λ/2 is odd, or equivalently, if n is an odd multiple of |G| − t.
The statement follows since the case |G| = 2 has already been considered in

Theorem 2.2. 2

Example 2.4 Let G = Z4
2 and let J be the subgroup generated by (0, 1, 1, 0), (1, 0,

0, 0), (1, 1, 1, 1). It is easy to see that J is isomorphic to Z3
2 and hence it has eight

elements. We now wonder whether a 2NHG,J(1, 8) exists. Since the sum of the
elements of both Z4

2 and J (which is isomorphic to Z3
2) is zero, we have∑

g∈G\J

g =
∑
g∈G

g −
∑
g∈J

g = 0.

It follows that there does not exist any 2NHG,J(1, 8).
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Remark 2.5 It must be noted that, for |G| = 2 and for the arrays of just one
row/column, the necessary conditions (∗) of Remark 2.1 are not sufficient. Theorems
2.2 and 2.3 are the only theorems presented in this paper where we need more
restrictive conditions. Hence we believe that the smallest groups G (and the arrays
with just one row/column) are, somehow, intrinsically different from the general case.

3 Some direct constructions

The goal of this section would have been to solve this problem with direct construc-
tions. Even though we fail to achieve this goal we are able to present a complete
direct solution when |G| = 3 and in the case of square arrays over abelian groups of
odd order.

3.1 A complete solution for G = Z3

Theorem 3.1 There exists a λNHZ3(m,n;h, k) whenever the necessary conditions
(∗) are satisfied.

Proof. Since nk = mh we have that r := nk
lcm(m,n)

is an integer. Then we have that
also the following quantities are integers

k

r
=

lcm(m,n)

n
and

h

r
=

lcm(m,n)

m
.

Hence we can define the following set of cells

Q := {(i, j) : 1 ≤ i ≤ k/r; 1 ≤ j ≤ h/r}.

Then, since
r · n
h

=
r ·m
k

=
mn

lcm(m,n)
= gcd(m,n),

we can consider the subset of the m× n array defined by:

B :=
r−1⋃
j=0

rn/h−1⋃
i=0

Q+ j(0, h/r) + i(k/r, h/r)


where Q + (x, y) is defined as {(i + x, j + y) | (i, j) ∈ Q} and all the arithmetic on
the row and column indices is performed modulo m and n respectively and the sets
of reduced residues are {1, 2, . . . ,m} and {1, 2, . . . , n}.

Here, we fill all the cells of B with 1’s obtaining the array A1. Now, if 3 | k
then we replace all the elements in the set of cells H1 by −1’s where the indices are
considered modulo m and where

H1 :=

dn/he⋃
i=1

skel(Rik) ,
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where Rik is the (ik)-th row of A1. We denote by A2 the array so defined. Here, if 3
does not divide k we set A2 = A1. Since every column intersects the rows of H1 in
either 1 or 2 cells, the sum of the elements in any given column of A2 is non-zero.

Similarly, if 3 | h then we change the sign to all elements of A2 in the set of cells
H2, i.e. the 1’s are replaced by −1’s and vice versa, where

H2 :=

dm/ke⋃
j=1

skel(Cjh) ,

where Cjh is the (jh)-th column of A2. We denote by A the array so defined. Here,
if 3 does not divide h we set A = A2. Since every row intersects the columns of H2

in either one or two cells, the sum of the elements in any given row of A is non-zero.
Moreover, since every column of A intersects H2 in either 0 or k cells and the sum of
the elements in any given column of A2 is non-zero, also the sum of all the elements
in any column of A is non-zero. Hence, we obtain a λNHZ3(m,n;h, k) such that
skel(A) = B. 2

Example 3.2 In the following, we provide an example of the sets B, H1, and H2

for m = n = 7 and k = h = 3. The black dots represent the cells contained in the
set B, the green cells are the ones contained in H1 ∩ H2, the red cells are the ones
contained in H1 \H2 and finally, the yellow cells are the ones in H2 \H1.

• • •
• • •
• • •
• • •
• • •

• • •
• • •

Then, applying the proof of Theorem 3.1 we get the following 21NHZ3(7; 3).

1 −1 −1
1 1 −1

1 −1 −1
1 1 −1

1 −1 1
−1 1 −1

1 −1 1

Example 3.3 Applying the proof of Theorem 3.1 we obtain the following
12NHZ3(4, 6; 3, 2).

1 1 −1
1 1 −1

1 1 −1
1 1 −1
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3.2 On abelian groups G of odd order

Theorem 3.4 Let (G,+) be a finite abelian group of odd order and let J be a sub-
group of G. For n ≥ k ≥ 1, there exists a λNHG,J(n; k) whenever the necessary
conditions (∗) are satisfied.

Proof. Since |G| is odd, also |J | must be odd: so, we can write |G \ J | = 2w. First,
we consider the case w ≥ 2.

Let Q be the set of cells given by Q := {(i, 1) : 1 ≤ i ≤ k}. We consider the
subset of the n× n array defined by:

B :=
n−1⋃
i=0

(Q+ i(1, 1))

where the sum is considered modulo n and the set of reduced residues is {1, 2, . . . , n}.
Let us order the elements of G \ J as g1, . . . , g2w with the additional property

that if x ∈ {g1, . . . , gw} then −x ∈ {gw+1, . . . , g2w}. We consider the multiset Ω =
{g1, . . . , gw}λ and an array A1 such that skel(A1) = B and E(A1) = Ω.

Clearly, if k = 1, however we fill the cells of B in the array with the elements
of Ω, we obtain a λNHG,J(n; k). So we may assume that k ≥ 2. In this case, for
each i ∈ [1, n], we denote by yi and xi the elements of the i-th column Ci that
are in positions (i, i), (i + 1, i) respectively (where the sum is considered modulo
n). Since w ≥ 2, we can choose yi in such a way that yi ± xi 6= 0. It suffices to
set xi = g2i+1 and yi = g2i where the indices are considered modulo w and then to
choose, arbitrarily among the remaining elements of Ω, the rest of the array.

We claim that there exists a choice between xi and −xi such that the sum of the
elements in the i-th column is different from zero either using yi or −yi.

Indeed, if xi does not have this property, we have that either ∑
a∈E(Ci)\{xi,yi}

a

+ xi + yi = 0 (3.1)

or  ∑
a∈E(Ci)\{xi,yi}

a

+ xi − yi = 0. (3.2)

If equation (3.1) holds then we have that ∑
a∈E(Ci)\{xi,yi}

a

− xi + yi 6= 0.

Moreover, since the group G is an abelian group of odd order and since yi 6= −xi by
construction, we have that

xi + yi 6= − (xi + yi) = −xi − yi,
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where in the last equality we used the fact that G is abelian. Hence we also have
that  ∑

a∈E(Ci)\{xi,yi}

a

− xi − yi 6= 0.

If equation (3.2) holds, instead, we have that ∑
a∈E(Ci)\{xi,yi}

a

− xi − yi 6= 0.

Moreover, as done before, since the group G is abelian of odd order and since yi 6= xi
by construction, we also have that ∑

a∈E(Ci)\{xi,yi}

a

− xi + yi 6= 0.

Based on this simple argument, we can assume that the element xi in position
(i+ 1, i) is such that the sum of the elements in the i-th column Ci is different from
zero either using yi or −yi. We denote by A2 the array so defined. Then, we replace
the element yi in position (i, i) of A2 by −yi for each row Ri ∈ [1, n] that sums to
zero. It follows that we obtain a λNHG,J(n; k) whenever w ≥ 2.

We now observe that, if |G| ≥ 5 is odd, then |G \J | ≥ 4 for any proper subgroup
J of G. The statement follows since the case G = Z3 has already been considered in
Theorem 3.1. 2

Example 3.5 Let G = Z13 and let J = {0} (i.e. t = 1). We are wondering whether
there exists a 2NHG,J(4; 3). Following the proof of Theorem 3.4, we define

Ω = [1, 2, 3, 4, 5, 6]2

and

A2 :=

1 3 5
2 4 −6
3 5 1
−6 2 4

Here we have that x1 = 2, x2 = 5, x3 = 2, x4 = 5 and y1 = 1, y2 = 4, y3 = 1, y4 = 4
and the xi’s are such that the sum of the elements in the i-th column Ci is non-zero
either using yi or −yi.

Then, since the sum of the elements of R2 and R4 is zero, we replace the elements
y2 and y4 with −y2 and −y4. Finally, we obtain the following 2NHG,J(4; 3):

A :=

1 3 5
2 −4 −6
3 5 1
−6 2 −4
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4 Our Method

The direct constructions presented in the previous section solve only some particular
instances of the existence problem. On the other hand, we do not believe it would
be possible to adapt these ideas to the general case since in both Theorem 3.1 and
Theorem 3.4 we use the fact that the group G is involution free. Therefore, in order
to attack this existence problem, we now develop a local variant (inspired by the
Lovász Local Lemma) of the probabilistic method used in [11].

4.1 Bound with Expected values

First, we revisit the method of [11] in order to obtain some sufficient conditions on
the existence of a λ-fold non-zero sum Heffter array.

Theorem 4.1 Let (G,+) be a group and let J be a subgroup of G. Then there exists
a λNHG,J(m,n;h, k) if the necessary conditions (∗) are satisfied and the following
inequality holds

λ

(
m

mh− h+ 1
+

n

nk − k + 1

)
< 1 .

Proof. Let Ω be a multiset of elements of G whose size is nk and such that ±Ω =
(G \ J)λ. We denote by B the set of cells of an m×n partially filled array A having
exactly h filled cells in each row and exactly k filled cells in each column that exists
due to Lemma 4.1 of [11]. Note that here we have skel(A) = B.

We prove that we can fill the cells of B in the array A with the elements of Ω in
such a way that the sum over each row and each column is non-zero. Let us pick
uniformly at random the elements of A among the multiset Ω. In this way, we will
ensure that E(A) = Ω. We denote by Xi the event that the i-th row sums to zero
and by P(Xi) its probability. Also, we name by X the random variable given by the
number of rows that sum to zero and by E(X) its expected value.

Due to the linearity of the expected value, we have that:

E(X) =
m∑
i=1

P (Xi) .

By symmetry, P(Xi) = P(X1) for every i = 1, . . . ,m, and hence

E(X) = m · P (X1) .

If we have already chosen, following the natural ordering from left to right, the
first h− 1 elements, x1, . . . , xh−1 of the first row then there exist at most λ elements
x̄ ∈ Ω \ {x1, . . . , xh−1} that make the sum zero. This means that

P (X1) ≤ λ

mh− (h− 1)
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and thus
E(X) ≤ λm

mh− (h− 1)
.

Analogously, if we denote by E(Y ) the expected value of the random variable Y
given by the number of columns that sum to zero then we obtain

E(Y ) ≤ λn

nk − (k − 1)
.

Therefore we can fill the cells of B in the array A with the elements of Ω such that
the sum over each row and column is non-zero whenever E(X) + E(Y ) < 1. 2

Remark 4.2 Note that the inequality in Theorem 4.1 is satisfied when the param-
eters h and k are sufficiently large if λ is considered fixed.

In the next sections, we improve the result of Theorem 4.1 by proving that there
exists a λ-fold non-zero sum Heffter array over G relative to J for |G| larger than a
small constant that does not depend on λ.

4.2 Tiling in LLL style

The procedure of the previous paragraph, for any group G, leave the problem open
for an infinite number of arrays. This problem is caused by the fact that, generating
the matrix uniformly at random, the probability of the event Xi (or Yi) that a given
row (or a given column) sums to zero depends on all the entries of the array. Here,
inspired by the Lovász Local Lemma (see [18]), we impose a different distribution: we
tessellate the array with suitable tiles and we choose the elements of a tile uniformly
at random among a small prescribed set. With these local considerations, we reduce
the number of dependencies among the events.

First, we define the set of admissible tiles we will use as bricks in our construction.

Definition 4.3 A set T of cells in a m × n array is said to be a nice tile if, for
any group G, for any subset S of G of size |T |, and for any vectors (r1, . . . , rm) and
(c1, . . . , cn) of, respectively, Gm and Gn, there exists an m × n partially filled array
A such that:

(a) skel(A) = T ;
(b) E(A) = S;

(c1) if the i-th row of A is non-empty, there exist βi ∈ [1, n] such that

skel(Ri) = {(i, βi), (i, βi + 1), . . . , (i, βi + hi − 1)}

where hi = |T ∩ skel(Ri)| and the indices are taken modulo n;
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(c2) if the j-th column of A is non-empty, there exist γj ∈ [1,m] such that

skel(Cj) = {(γj, j), (γj + 1, j), . . . , (γj + kj − 1, j)}

where kj = |T ∩ skel(Cj)| and the indices are taken modulo m;
(d1) if the i-th row of A is non-empty, the sum of its elements, following the natural

ordering from left to right and starting from the cell (i, βi), is different from ri;
(d2) if the j-th column of A is non-empty, the sum of its elements, following the nat-

ural ordering from top to bottom and starting from the cell (γj, j), is different
from cj.

Theorem 4.4 Let B be the skeleton of a m×n array A that has exactly h filled cells
in each row and k in each column. Then, given a finite group (G,+) and a subgroup
J of G, there exists a λNHG,J(m,n;h, k) whenever the necessary conditions (∗) are
satisfied and:

1) it is possible to partition B into nice tiles T1, . . . , T`;
2) |G \ J | ≥ maxi(|Ti|).

Proof. We first assume that λ is even. In this case we note that Ω = (G \ J)λ/2 is
such that ±Ω = (G\J)λ. Moreover, since the necessary conditions are satisfied, and
since the tiles partition B, we have that

λ

2
|G \ J | = nk =

∑̀
i=1

|Ti|.

Now we enumerate the u elements of G \ J as g1, . . . , gu. Here we want to define,
recursively, the sets S1, . . . , S` that we will use to fill the cells of the tiles T1, . . . , T`.
With abuse of notation, we will first define S1, . . . , S` as ordered lists of non-repeated
elements, and then we will consider the associated sets.

We set the list S1 to be (g1, . . . , g|T1|).

Given S1, . . . , Si, if i < `, we define Si+1 as follows. Naming gj as the last element
of the list Si, we set

Si+1 := (gj+1, . . . , gj+|Ti+1|)

where the indices are considered modulo u.

Here we note that, since u ≥ maxi(|Ti|), the lists S1, . . . , S` do not have repeated
elements and hence we can consider them to be sets.

Now we fill, recursively, the tiles T1, . . . , T` with the elements of S1, . . . , S`.

For the tile T1 we denote by R1 the set of the rows of A such that Ri ∈ R1 whenever
(B \ T1) ∩ skel(Ri) is empty. Set I1 = {i ∈ [1,m] : Ri ∈ R1}, we consider a vector
(r1, . . . , rm) ∈ Gm such that ri = 0 for any i ∈ I1. Similarly, we consider the set C1

of the columns of A such that Cj ∈ C1 whenever (B \ T1) ∩ skel(Cj) is empty. Set
J1 = {j ∈ [1, n] : Cj ∈ C1}. We consider a vector (c1, . . . , cn) ∈ Gn such that cj = 0
for any j ∈ J1. Since T1 is a nice tile, we can fill it with the elements of S1, obtaining
an array A1 such that
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(d1) if the i-th row of A1 is non-empty, the sum of its elements, following the natural
ordering from left to right, is different from ri;

(d2) if the j-th column of A1 is non-empty, the sum of its elements, following the
natural ordering from top to bottom, is different from cj.

Now we assume we have defined the arrays A1, . . . , Ab. Then, if b < `, we define the
array Ab+1 as follows. First, we denote by Āb the union

⋃b
i=1Ai that is them×n array

in which we have joined together all the non-empty elements of A1, . . . , Ab. Then
by R̄1, . . . , R̄m we denote the rows of Āb and by C̄1, . . . , C̄n its columns. Then we
consider the set Rb+1 of the rows of A such that (B\skel(Āb))∩skel(Ri) is non empty
but (B \ (skel(Āb) ∪ Tb+1)) ∩ skel(Ri) is empty. Set Ib+1 = {i ∈ [1,m] : Ri ∈ Rb+1},
and given i ∈ Ib+1, we have that, because of property (c1) of Definition 4.3, the cells
of B ∩ skel(Ri) are either of the form

{(i, αh′i1+1), . . . , (i, αh′i), (i, βi), (i, βi + 1), . . . , (i, βi + (hi − 1)), (i, α1), . . . , (i, αh′i1
)}

or

{(i, βi + hi1), . . . , (i, βi + (hi − 1)), (i, α1), (i, α2), . . . , (i, αh′i), (i, βi), . . . , (i, βi + (hi1 − 1))}

where the α’s appears in the cells of skel(Āb) and the β’s in those of Tb+1. In the
following, we will denote by āi,j the element of Āb in position (i, j). Here, given
i ∈ Ib+1, we consider a vector (r1, . . . , rm) ∈ Gm such that ri = −

∑h′i
j=1 ā(i,αj) where

the sum is taken, starting from the cell (i, α1), following the natural ordering from
left to right.
Similarly, we consider the set Cb+1 of the columns of A such that (B \ skel(Āb)) ∩
skel(Cj) is non empty but (B \ (skel(Āb) ∪ Tb+1)) ∩ skel(Cj) is empty. Set Jb+1 =
{j ∈ [1, n] : Cj ∈ Cb+1}, and given j ∈ Jb+1, we have that, because of property (c2)
of Definition 4.3, the filled cells of skel(Cj) are either of the form

{(αk′j1+1, j), . . . , (αk′j , j), (γj , j), (γj + 1, j), . . . , (γj + (kj − 1), j), (α1, j), . . . , (αk′j1
, j)}

or

{(γj+kj1 , j), . . . , (γj+(kj−1), j), (α1, j), (α2, j), . . . , (αk′j , j), (γj , j), . . . , (γj+(kj1−1), j)}

where the α’s appears in the cells of skel(Āb) and the γ’s in those of Tb+1. Here,
given j ∈ Jb+1, we consider a vector (c1, . . . , cn) ∈ Gn such that cj = −

∑k′j
i=1 ā(αi,j)

where, starting from the cell (α1, j), the sum is taken following the natural ordering
from top to bottom. Since Tb+1 is a nice tile, we can fill it with the elements of Sb+1,
obtaining an array Ab+1 such that

(d1) if the i-th row of Ab+1 is non-empty, the sum of its elements, following the
natural ordering from left to right, is different from ri;

(d2) if the j-th column of Ab+1 is non-empty, the sum of its elements, following the
natural ordering from top to bottom, is different from cj.
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Here we note that, given a row Ri ∈ Rb+1 with i ∈ Ib+1, because of property (c1) of
Definition 4.3, E(Ri ∩ Āb+1) is, following the natural ordering, either of the form

(āh′i1+1, . . . , āh′i , a1, a2, . . . , ahi , ā1, . . . , āh′i1
)

or
(ahi1+1, . . . , ahi , ā1, ā2, . . . , āh′i , a1, . . . , ahi1 )

where the ā’s belong to Āb and the a’s are elements of Ab+1.
In both cases, we have that

a1 + · · ·+ ahi 6= −(ā1 + · · ·+ āh′i) = −āh′i − · · · − ā1.

This implies, in the first case that

āh′i1+1 + · · ·+ āh′i + a1 + a2 + · · ·+ ahi + ā1 + · · ·+ āh′i1
6= 0

and, in the latter, that

ahi1+1 + · · ·+ ahi + ā1 + ā2 + · · ·+ āh′i + a1 + · · ·+ ahi1 6= 0.

This means that the sum of the elements of Ri is, in both cases, non-zero for any
i ∈ Ib+1.
Reasoning in the same way also for the columns, we obtain that the sum of the
elements of Cj is non-zero whenever j ∈ Jb+1.

Therefore, we have that
⋃`
i=1Ai defines a λNHG,J(m,n;h, k). Finally, we assume

that λ is odd. Here, since the necessary conditions are satisfied, we do not have
involutions in G \J and we note that if x ∈ G \J then also −x is in G \J . It follows
that |G \ J | is even and we can enumerate the elements of G \ J as g1, . . . , g2w with
the additional property that if x ∈ {g1, . . . , gw} then −x ∈ {gw+1, . . . , g2w}.
Here we note that

Ω = (G \ J)(λ−1)/2 ∪ {g1, . . . , gw}
is such that ±Ω = (G \ J)λ. Moreover, proceeding as in the case λ even, we have
that

λ− 1

2
|G \ J |+ 1

2
|G \ J | = λ

2
|G \ J | = nk =

∑̀
i=1

|Ti|.

It follows that we can partition Ω with lists S1, . . . , S` that do not have repeated
elements and such that |Si| = |Ti|. Then, proceeding as in the case λ even, we obtain
the statement also in the odd case. 2

Remark 4.5 The procedure of the previous theorem reduces the dependencies
among the events Xi’s (respectively Yi’s) and hence the edges in the dependencies
graph (see [18]). Indeed the event Xi, that the i-th row sums to zero, only depends
on the tiles that intersect Ri.

Here our first aim was to apply the Lovász Local Lemma (see [18]) to solve some
instances of the existence problem. However, since we only use nice tiles, even these
dependencies do not affect the procedure of Theorem 4.4, so we can fill the array in
a very general context, by simply acting locally, tile by tile.
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5 Totally Filled Arrays

The goal of this section is to prove that, if we consider a totally filledm×n rectangular
array B, we can define a λNHG,J(m,n) whose cells are those of B whenever the
necessary conditions (∗) are satisfied and |G| ≥ 30. First, we consider the case
m = 1.

Proposition 5.1 Let (G,+) be a finite group and let J be a subgroup of G. Then
there exists a λNHG,J(1, n) whenever the necessary conditions (∗) (and those of The-
orem 2.3 in case G is isomorphic to Zr2) are satisfied.

Proof. We may assume G is not isomorphic to Zr2 since this case has been already
considered in Theorem 2.3. This means that G is either non-abelian or isomorphic
to H ⊕ Zr12 where H is a non-trivial abelian group of odd order and r1 ≥ 0.

CASE 1: G is non-abelian. We claim that, in this case, we have two elements x, y in
G \ J such that x+ y 6= y + x. It is a well-known fact that a finite group cannot be
written as the union of two proper subgroups. It follows that there is y ∈ G \ J that
is not in the center of G. Here we have that the centralizer CG(y) of y is a proper
subgroup of J and hence, reasoning as before, there exists x ∈ G \ J that is not in
the centralizer of y and, in particular x+ y 6= y + x and x 6= ±y.
Now we order the u elements of G \ J as g1, . . . , gu so that g1 = x and g2 = y.
Moreover, if λ is odd, we have that G \ J does not contain any involution and thus
we can assume that ±{g1, . . . , gu

2
} = G \ J as done in the proof of Theorem 4.4. In

the following, we denote by B the set of cells of a 1 × n totally filled array. We fill
the elements of B so that, in position (1, i) we put the element gi where the index i is
considered modulo u. Denoting by A1 the array so defined, we have that its element
in position (1, i) is a1,i = gi (mod u).

Since the necessary conditions are satisfied, we have filled B with the elements of:

Ω :=

{
(G \ J)λ/2 if λ ≡ 0 (mod 2);

(G \ J)(λ−1)/2 ∪ {g1, . . . , gu
2
} otherwise.

In both cases, we have that the elements of ±E(A1) = ±Ω cover G \ J exactly λ
times.

Clearly, the sum over every column of A1 is non-zero so it is left to prove that we
can impose the sum over the first row to be non-zero. Let us assume that∑

a∈E(R1)

a = x+ y +
n∑
i=3

a1,i = 0. (5.1)

Indeed, if this equation does not hold, A1 is already a λNHG,J(1, n). If equation (5.1)
holds, since x+ y 6= y + x we must have that

y + x+
n∑
i=3

a1,i 6= 0.
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Therefore, if necessary, it suffices to switch x and y to obtain an array A that is a
λNHG,J(1, n).

CASE 2: Let G be isomorphic to H ⊕ Zr12 where H is a non-trivial abelian group of
odd order. In this case we have that G \ ({0} ⊕ Zr12 ) does not contain involutions
and has size at least 2|G|

3
> |G|/2. Since G \ J has size at least |G|/2, there exists a

non involution element x in G \ J .
Now we order the elements of G\J as we did in CASE 1 and we assume that g1 = x.
Also here we denote by B the set of cells of a 1×n totally filled array and we fill the
elements of B so that, in position (1, i) we put the element gi where the index i is
considered modulo u. Denoting by A1 the array so defined, we have that its element
in position (1, i) is a1,i = gi (mod u). Also in this case, we have that ±E(A1) covers
G \ J exactly λ times.

Clearly, the sum over every column of A1 is non-zero so it is left to prove that we
can impose the sum over the first row to be non-zero. Let us assume that∑

a∈E(R1)

a = x+
n∑
i=2

a1,i = 0. (5.2)

Indeed, if this equation does not hold, A1 is already a λNHG,J(1, n). If equation (5.2)
holds, since −x 6= x we must have that

−x+
n∑
i=2

a1,i 6= 0.

Therefore, in this case, it suffices to change x with −x to obtain an array A that is
a λNHG,J(1, n). 2

Example 5.2 Let G = Z3⊕Z2⊕Z2 and let J = {0}⊕Z2⊕Z2. We are wondering if
there exists a 2NHG,J(1, 8). Following the proof of Proposition 5.1, we set x = (1, 0, 0)
and we define

Ω = [(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 0, 1), (2, 1, 1)].

Here we note that
∑

g∈Ω g = 0. Therefore, if we change the sign of x, we obtain the
following 2NHG,J(1, 8):

(2, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 1) (2, 0, 0) (2, 1, 0) (2, 0, 1) (2, 1, 1)

Now we list two families of nice tiles that we will use as bricks to fill the rectangular
arrays.

Proposition 5.3 Let T be a set of cells of an m×n array that satisfies the following
conditions:

1) T has exactly 3 non-empty rows Rα, Rα+1, Rα+2 where the indices are considered
modulo m;
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2) Each row Rα, Rα+1, Rα+2 is non-empty exactly in the cells of the b ≥ 3 columns
Cβ, Cβ+1, . . . , Cβ+(b−1) where the indices are considered modulo n.

Then T is nice.

Proof. Let us consider a set S of |T | = 3b elements of a finite group G and vectors
(r1, . . . , rm) ∈ Gm, (c1, . . . , cn) ∈ Gn. Now we choose, uniformly at random, an array
A such that skel(A) = T and E(A) = S. Following the notation of Theorem 4.1,
we denote by P(Xi) the probability of the event Xi that the i-th row sums to ri.
Here, if i ∈ {α, α+ 1, α+ 2}, we have that, chosen the first b− 1 elements (following
the natural ordering) ai,β, . . . , ai,β+(b−2) of the i-th row, there is at most one element
x ∈ S such that

ai,β + · · ·+ ai,β+(b−2) + x = ri.

It follows that, if i ∈ {α, α + 1, α + 2},

P(Xi) ≤
1

|S| − (b− 1)
=

1

2b+ 1
.

Now we denote by E(X) the expected value of the random variable X given by the
number of rows Ri, with i ∈ {α, α + 1, α + 2}, that sums to ri. Due to the linearity
of the expected value, we have that:

E(X) = P(Xα) + P(Xα+1) + P(Xα+2) ≤ 3

2b+ 1
<

1

2
.

Similarly, if we denote by E(Y ) the expected value of the random variable Y given
by the number of columns Cj, with j ∈ {β, β + 1, . . . , β + (b− 1)}, that sums to cj,
we have that:

E(Y ) ≤ b

3b− 2
<

1

2
.

Since
E(X) + E(Y ) < 1

there exists an array A whose skeleton is T and such that E(A) = S and:

(d1) if the i-th row of A is non-empty, the sum of its elements is different from ri;

(d2) if the j-th column of A is non-empty, the sum of its elements is different from
cj.

It follows that T is a nice tile. 2

Example 5.4 Here we show an example of a nice tile T , |T | = 12, of an m×n array
with m = 5 and n ≥ 6, that has 3 non-empty rows and 4 non-empty columns. The
cells that belong to T are represented by a •.
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• • · · · • •
• • · · · • •

· · ·
· · ·

• • · · · • •

Proposition 5.5 Let T be a set of cells of an m×n array that satisfies the following
conditions:

1) T has exactly 2 non-empty rows Rα, Rα+1 where the indices are considered
modulo m;

2) Each row Rα, Rα+1 is non-empty exactly in the cells of the b ≥ 4 columns
Cβ, Cβ+1, . . . , Cβ+(b−1) where the indices are considered modulo n.

Then T is nice.

Proof. Let us consider a set S of |T | = 2b elements of a finite group G and vectors
(r1, . . . , rm) ∈ Gm, (c1, . . . , cn) ∈ Gn. We proceed as in the proof of Proposition 5.3
by choosing, uniformly at random, an array A such that skel(A) = T and E(A) = S.

Here, denoting by E(X) the expected value of the random variable X given by the
number of rows Ri, with i ∈ {α, α + 1}, that sums to ri, we have that:

E(X) ≤ 2

2b− (b− 1)
=

2

b+ 1
.

Similarly, if we denote by E(Y ) the expected value of the random variable Y given
by the number of columns Cj, with j ∈ {β, β + 1, . . . , β + (b− 1)}, that sums to cj,
we have that:

E(Y ) ≤ b

2b− 1
.

Since b ≥ 4, we have that

E(X) + E(Y ) ≤ 2

b+ 1
+

b

2b− 1
< 1.

Therefore there exists an array A whose skeleton is T and such that E(A) = S and:

(d1) if the i-th row of A is non-empty, the sum of its elements is different from ri;
(d2) if the j-th column of A is non-empty, the sum of its elements is different from

cj.

It follows that T is a nice tile. 2

Example 5.6 Here we show an example of a nice tile T , |T | = 10, of an m×n array
with m = 3 and n ≥ 7, that has 2 non-empty rows and 5 non-empty columns.
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• • · · · • • •
· · ·

• • · · · • • •

Using the nice tiles of Propositions 5.3 and 5.5, we can prove that

Theorem 5.7 Let G be a finite group and let J be a subgroup of G. Then there
exists a λNHG,J(m,n) whenever the necessary conditions (∗) (and those of Theorem
2.3 in case G is isomorphic to Zr2) are satisfied and |G \ J | ≥ 15.

Proof. We denote by B the set of cells of an m×n totally filled array and we assume,
without loss of generality, that m ≤ n.

In the following, we will assume that m > 1 since the case m = 1 has already been
considered in Proposition 5.1. Since m > 1, we can partition the rows of B into sets
H1, . . . ,H` of consecutive rows such that each Hi contains either two or three rows.
Here we will say that Hi has weight, respectively 2 or 3.

Now, if n ≥ 4, we can partition the cells that belong to each set Hi of weight 2 with
tiles defined in Proposition 5.5: it suffices to use tiles with b ∈ {4, 5, 6, 7} (i.e. that
has 4, 5, 6 or 7 non-empty consecutive columns).

Similarly, if n ≥ 3, we can partition the cells that belong to each set Hi of weight
3 with tiles defined in Proposition 5.3: it suffices to use tiles with b ∈ {3, 4, 5} (i.e.
that has 3, 4 or 5 non-empty consecutive columns).

Summing up, if n ≥ 4, we have that:

1) it is possible to partition B into nice tiles T1, . . . , T`;
2) maxi(|Ti|) ≤ 15.

Therefore, because of Theorem 4.4, there exists a λNHG,J(m,n) whenever the nec-
essary conditions are satisfied, n ≥ 4 and |G \ J | ≥ 15. It follows that the thesis
is proved whenever n ≥ 4. Now we assume that n < 4 which implies that either
n = m = 3 or mn ≤ 6. In the first case, if n = m = 3, B itself is nice, due to Propo-
sition 5.3. Therefore, because of Theorem 4.4, there exists a λNHG,J(3, 3) whenever
the necessary conditions are satisfied and |G \ J | ≥ 15 > 9.

Finally, let us suppose that mn ≤ 6; we have that |G \J | ≤ 12 which is in contradic-
tion with the hypothesis that |G\J | ≥ 15. It follows that there exists a λNHG,J(m,n)
whenever the necessary conditions are satisfied and |G \ J | ≥ 15. 2

We remark that, for any group G whose order v is odd we have that t ≤ v/3
while, if the order is even t ≤ v/2 where t is the order of a subgroup J . It follows
that

Corollary 5.8 Let G be a group of size v and let J be a subgroup of G. Then there
exists a λNHG,J(m,n) whenever the necessary conditions (∗) are satisfied (and those
of Theorem 2.3 in case G is isomorphic to Zr2) and v ≥ 30 if v is even, v ≥ 23
otherwise.
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6 Partially Filled Arrays

In this section, we will consider the case of arrays that are not totally filled. Since a
λNHG,J(m,n;h, k) is totally filled if and only if n = h, when needed, we will assume
that n > h. Due to the necessary conditions (∗), if a λNHG,J(m,n;h, k) exists, we
must have that nk = mh that implies that lcm(m,n)|(nk). In the following we will
provide a construction of a λNHG,J(m,n;h, k) according to whether r = nk

lcm(m,n)
is

1, 2 or at least 3.

6.1 Case r = 1

Proposition 6.1 Let G be a group and let J be a subgroup of G. If n > h = 1, there
exists a λNHG,J(m,n; 1, k) assuming that the necessary conditions (∗) are satisfied
and |G \ J | ≥ 4.

Proof. Note that due to the necessary condition mh = nk and h = 1 we have that
n = m/k. Now we denote by Q the set of cells given by

Q := {(i, 1) : 1 ≤ i ≤ k}.

We consider the subset of the m× n array defined by:

B :=

m/k−1⋃
i=0

Q+ i(k, 1).

We order the elements of G \ J as g1, . . . , gu in such a way that gi + gi+1 6= 0 for any
i ∈ {1, . . . , u} where the sum is considered modulo u. Note that this is possible since
u ≥ 4. Moreover, if λ is odd, we have that G\J does not contain any involution and
thus we can assume that ±{g1, . . . , gu

2
} = G\J as done in the proof of Theorem 4.4.

Now we fill the elements of B so that, in the i-th row we put the element gi where
the index i is considered modulo u. We denote by A1 the array so defined. Since the
necessary conditions are satisfied, we have filled B with the elements of:

Ω :=

{
(G \ J)λ/2 if λ ≡ 0 (mod 2);

(G \ J)(λ−1)/2 ∪ {g1, . . . , gu
2
} otherwise.

In both cases, we have that ±E(A1) = ±Ω cover G \ J exactly λ times. We note
that the filled cells in the i-th column are those of Q + (i − 1)(k, 1). Here, if k = 1
or k = 2 we obtain a λNHG,J(m,n; 1, k) since, for any j ∈ {1, . . . , u}, both gj and
gj + gj+1 are nonzero.

Let now assume k ≥ 3 and n ≥ 2 since n = 1 (or, symmetrically, m = 1) is
excluded by the hypotheses and has already been considered in Proposition 5.1.
We consider the first column Ci, whose elements are gj, gj+1, . . . , gj+k−1 where j =
(i − 1)k, that sums to zero. Here the next column is Ci+1 whose elements are
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gj+k, gj+k+1, . . . , gj+2k−1. We note that, since u ≥ 4, gj+k−1 6∈ {gj+k, gj+k+1} and
hence given x ∈ {gj+k, gj+k+1} we have that

gj + gj+1 + . . .+ gj+k−2 + x 6= 0.

Let now assume that

gj+k−1 + gj+k+1 + gj+k+2 + . . .+ gj+2k−1 = 0, (6.1)

since otherwise we can interchange the last element of Ci and the first of Ci+1 to
ensure that both these columns do not sum to zero. From equation (6.1) it follows
that

gj+k−1 + gj+k + gj+k+2 + . . .+ gj+2k−1 6= 0.

Therefore, also in this case, we can ensure that the columns Ci and Ci+1 do not
sum to zero by permuting the elements {gj+k−1, gj+k, gj+k+1} following the cycle
(gj+k−1, gj+k, gj+k+1).

Note that this procedure can be reiterated since it involves the last element of Ci,
the first two elements of Ci+1, and since k ≥ 3. Hence, we eventually obtain a
λNHG,J(m,n; 1, k) also when k ≥ 3. 2

Definition 6.2 We name by Q the set of cells of an m× n array given by

Q := {(i, j) : 1 ≤ i ≤ k; 1 ≤ j ≤ h}.

Then, given b such that bk ≤ m and bh ≤ n, the set of cells given by

T :=
b−1⋃
i=0

Q+ i(k, h)

is said to be an (k, h)-stair of length b.

Proposition 6.3 A (3, 2)-stair of length b, T , is nice whenever b ≥ 2.

Proof. Let us consider a set S of |T | = 6b elements of a group G and vectors
(r1, . . . , rm) ∈ Gm, (c1, . . . , cn) ∈ Gn. We note that T has exactly 3b rows each
with 2 non-empty cells. Here we consider a non-empty row Ri and we denote by
(i, β), (i, β + 1) its non-empty cells where the sum is considered modulo n. Now we
chose, uniformly at random, an array A such that skel(A) = T and E(A) = S and
we denote by P(Xi) the probability of the event Xi that the i-th row sums, following
the natural ordering, to ri. Here we have that, chosen the first element ai,β of the
i-th row there is at most one element x ∈ S such that

ai,β + x = ri.

It follows that
P(Xi) ≤

1

|S| − 1
=

1

6b− 1
.
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Now we denote by E(X) the expected value of the random variable X given by the
number of non-empty rows Ri that sums to ri. Due to the linearity of the expected
value, we have that:

E(X) =
∑

i: skel(Ri)∩T 6=∅

P(Xi) ≤
3b

6b− 1
.

Similarly, given a non-empty column Cj, we denote by P(Yj) the probability of the
event Yj that Cj sums to cj. Proceeding as we did for the rows, and noting that the
number of the elements in the j-th column is three, we have that

P(Yi) ≤
1

|S| − 2
=

1

6b− 2
.

Therefore, using again the linearity of the expected value, and denoting by E(Y ) the
expected value of the random variable Y given by the number of non-empty columns
Cj that sums to cj, we have that:

E(Y ) =
∑

j: skel(Cj)∩T 6=∅

P(Xj) ≤
2b

6b− 2
.

It follows that
E(X) + E(Y ) ≤ 3b

6b− 1
+

2b

6b− 2
<

5b

6b− 2
.

Since we are assuming that b ≥ 2, it follows that

5b

6b− 2
≤ 1.

Therefore, there exists an assignment of the values of the cells of T among S that
satisfies the conditions of Definition 4.3. 2

Example 6.4 Here we show an example of a nice (3, 2)-stair of length 3, T , |T | = 18,
of an m× n array with m = 9 and n = 6.

• •
• •
• •

• •
• •
• •

• •
• •
• •
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Now, as an application of the previous proposition, we use this tile in order to obtain
a 2NHG,J(9, 6; 2, 3). More precisely, let G = Z36, J = 2Z36 and let S = G \ J which
has size 18 = |T |. We fix the vectors (r1, . . . , r9) = (0, . . . , 0) and (c1, . . . , c6) =
(0, . . . , 0). Since, due to Proposition 6.3 the tile T is nice, we obtain the existence of
a 2NHG,J(9, 6; 2, 3) array A such that skel(A) = T and E(A) = S. We can consider,
for instance

A :=

1 −3
3 −1
5 −7

7 −5
9 −11

11 −9
13 −15
15 −17
17 −13

Note that Proposition 6.3 can be used also to avoid other row and column
sums. Here we consider again G to be Z36 but now we set S to be {1, 2, . . . , 9}
∪ {−1,−2, . . . ,−9} which has also size 18 = |T | and we fix the vectors (r1, . . . , r9) =
(1, . . . , 1) and (c1, . . . , c6) = (6, . . . , 6). Since by Proposition 6.3 we know that T is
a nice tile, there exists an array A such that skel(A) = T , E(A) = S and where the
sum of the elements in the i-th row (respectively i-th column) is different from the
value ri (respectively ci). We can consider, for instance

A :=

1 −1
2 −2
4 −4

3 −3
5 −5
6 −6

7 −7
8 −8
9 −9

Proposition 6.5 Let G be a group and let J be a subgroup of G. If n > h, there
exists a λNHG,J(m,n;h, k) assuming that r = nk

lcm(m,n)
= 1, the necessary conditions

(∗) are satisfied and |G \ J | ≥ 18.

Proof. In this case, we have nk = mh = lcm(m,n). It follows that

k =
lcm(m,n)

n

and
h =

lcm(m,n)

m
.
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We name by Q the set of cells given by

Q := {(i, j) : 1 ≤ i ≤ k; 1 ≤ j ≤ h}.

Then, since
n

h
=
m

k
=

mn

lcm(m,n)
= gcd(m,n),

we can consider the subset of the m× n array defined by:

B :=

n/h−1⋃
i=0

Q+ i(k, h).

Note that k = h would imply that m = n = lcm(m,n) and hence, since, r = 1 it
would be possible only if k = h = 1. Let u := |G \ J |. In this case any array A such
that skel(A) = B and E(A) is Ω where

Ω :=

{
(G \ J)λ/2 if λ ≡ 0 (mod 2);

(G \ J)(λ−1)/2 ∪ {g1, . . . , gu
2
} otherwise,

is a λNHG,J(m,n;h, k). Here, if λ is odd, we are assuming that±{g1, . . . , gu
2
} = G\J ,

as done in the proof of Theorem 4.4.

We can suppose now that h < k.

CASE h = 1: This case follows from Proposition 6.1.

CASE h = 2 and k = 3: Here we can assume that (m,n) 6= (3, 2) since otherwise B
would be the skeleton of a totally filled array. In this case, B can be tessellated with
tiles of type (3, 2)-stair of length either two or three. Since those tiles are nice and
their sizes are at most 18, they define a λNHG,J(m,n;h, k).

Otherwise we have that h ≥ 3 and k > h. In this case, we have that Q itself can be
tessellated with tiles whose sizes are at most 15 as done in Theorem 5.7. Hence the
same can be done, by translation, with B.

It follows that, assuming r = 1, there exists a λNHG,J(m,n;h, k) whenever the
necessary conditions are satisfied and |G \ J | ≥ 18. 2

6.2 Case r = 2

Proposition 6.6 Let (G,+) be a finite group and let J be a subgroup of G. Then
there exists a λNHG,J(n; 2) assuming that the necessary conditions (∗) are satisfied
and |G \ J | ≥ 4.

Proof. We name by Q the set of cells given by

Q := {(1, j) : 1 ≤ j ≤ 2}.
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We consider the subset of the n× n array defined by:

B :=
n−1⋃
i=0

Q+ i(1, 1)

where the sum is considered modulo n.
We order the elements of G \ J as g1, . . . , gu in such a way that gi + gi+1 6= 0 for any
i ∈ {1, . . . , u} where the sum is considered modulo u. Note that this is possible since
u ≥ 4. Moreover, if λ is odd, we have that G\J does not contain any involution and
thus, as done in the proof of Theorem 4.4, we can assume that ±{g1, . . . , gu

2
} = G\J .

Now we divide the proof according to whether λ is even or odd.
CASE 1: λ is even. Here we fill the elements of B so that, we put in the i-th row,
in order, the elements g2i−1 and g2i where the indices are considered modulo u. We
denote by A the array so defined.
Since the necessary conditions are satisfied, we have that skel(A) = B and E(A) = Ω
where

Ω = (G \ J)λ/2.

Moreover, because of the definition and considering the indices modulo u, we have
that for any i ∈ [1, n], {

g2i−1 + g2i 6= 0;

g2i + g2i+1 6= 0.

Note that, since λ is even, here we have that E(C1) = {g1, gu}. It follows that
E(Ri) = {g2i−1, g2i} and E(Ci+1) = {g2i, g2i+1}, where the row indices are considered
modulo n and the group ones modulo u, and hence A is a λNHG,J(n; 2).
CASE 2: λ is odd. Here we fill the elements of B so that, in the i-th row we put,
in order, the elements g2i−1 and g2i where the indices are considered modulo u

2
. We

denote by A the array so defined.
Since the necessary conditions are satisfied, we have that skel(A) = B and E(A) = Ω
where

Ω = {g1, . . . , gu
2
}λ.

Moreover, because of the definition of A, we have that if x ∈ E(A), then −x 6∈ E(A).
It follows that the sum over each row and column is non-zero. Therefore, A is a
λNHG,J(n; 2). 2

Definition 6.7 Let h, k be positive even integers. We name by Q the set of cells of
an m× n array given by

Q := {(i, j) : 1 ≤ i ≤ k/2; 1 ≤ j ≤ h/2}.

Then, given b such that bk/2 ≤ m and bh/2 ≤ n, the set of cells given by

T :=

(
b−1⋃
i=0

Q+ i(k/2, h/2)

)⋃(
b−1⋃
i=0

Q+ (0, h/2) + i(k/2, h/2)

)
is said to be a double (k/2, h/2)-stair of length b.
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Proposition 6.8 A double (2, 1)-stair of length b, T , is nice whenever b ≥ 3.

Proof. Let us consider a set S of |T | = 4b elements of a finite group (G,+), and
vectors (r1, . . . , rm) ∈ Gm, (c1, . . . , cn) ∈ Gn. We note that T has exactly 2b rows
each with 2 non-empty cells. Here we consider a non-empty row Ri and we denote
by (i, β), (i, β + 1) its non-empty cells where the sum is considered modulo n. Now
we chose, uniformly at random, an array A such that skel(A) = T and E(A) = S and
we denote by P(Xi) the probability of the event Xi that the i-th row sums, following
the natural ordering, to ri. Here we have that, chosen the first element ai,β of the
i-th row there is at most one element x ∈ S such that

ai,β + x = ri.

It follows that
P(Xi) ≤

1

|S| − 1
=

1

4b− 1
.

Now we denote by E(X) the expected value of the random variable X given by the
number of non-empty rows Ri that sums to ri. Due to the linearity of the expected
value, we have that:

E(X) =
∑

i: skel(Ri)∩T 6=∅

P(Xi) ≤
2b

4b− 1
.

Similarly, given a non-empty column Cj, we denote by P(Yj) the probability of the
event Yi that Cj sums to cj. Proceeding as we did for the rows, and noting that the
number of the elements of the j-th column is four except when j = 1 or j = b + 1
when is two, we have that, if j ∈ {2, 3, . . . , b}

P(Yj) ≤
1

|S| − 3
=

1

4b− 3

and
P(Y1) = P(Yb+1) ≤ 1

|S| − 1
=

1

4b− 1
.

Therefore, using again the linearity of the expected value, and denoting by E(Y ) the
expected value of the random variable Y given by the number of non-empty columns
Cj that sums to cj, we have that:

E(Y ) =
∑

j: skel(Cj)∩T 6=∅

P(Yj) ≤
b− 1

4b− 3
+

2

4b− 1
.

It follows that, assuming b ≥ 3,

E(X) + E(Y ) ≤ 2b

4b− 1
+

b− 1

4b− 3
+

2

4b− 1
< 1.

Therefore, there exists an assignment of the values of the cells of T among S that
satisfies the conditions of Definition 4.3. 2
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Example 6.9 Here we show an example of a double (2, 1)-stair of length 3, T ,
|T | = 12, of an m× n array with m = 6 and n = 4.

• •
• •
• •
• •
• •
• •

Now we consider the group G = Z24; we set S to be {1, 2, . . . , 6}∪ {−1,−2, . . . ,−6}
which has size 12 = |T |, and we fix the vectors (r1, . . . , r6) = (1, . . . , 1) and
(c1, c2, c3, c4) = (3, 8,−2, 1). Since by Proposition 6.8 we know that T is a nice
tile, there exists an array A such that skel(A) = T , E(A) = S and where the sum
of the elements in the i-th row (respectively i-th column) is different from the value
ri (respectively ci). We can consider, for instance

A :=

1 −1
−2 2

−3 3
4 −4

5 −5
6 −6

With essentially the same proof we also obtain that:

Proposition 6.10 A double (3, 1)-stair of length b, T , is nice whenever b ≥ 2.

Example 6.11 Here we show an example of a double (3, 1)-stair of length 3, T ,
|T | = 18, of an m× n array with m = 9 and n = 4.

• •
• •
• •
• •
• •
• •
• •
• •
• •

Now we consider the group G = Z36; we set S to be {1, 2, . . . , 9}∪ {−1,−2, . . . ,−9}
which has size 18 = |T |, and we fix the vectors (r1, . . . , r9) = (1, . . . , 1) and
(c1, c2, c3, c4) = (3, 4, 3, 0). Since by Proposition 6.10 we know that T is a nice
tile, there exists an array A such that skel(A) = T , E(A) = S and where the sum
of the elements in the i-th row (respectively i-th column) is different from the value
ri (respectively ci). We can consider, for instance
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A :=

1 −1
−2 2

3 −3
4 −4
−5 5

6 −6
7 −7
−8 8
−9 9

We are now ready to prove the following result.

Proposition 6.12 Let (G,+) be a finite group and let J be a subgroup of G. Then
there exists a λNHG,J(m,n;h, k) assuming that r = nk

lcm(m,n)
= 2, the necessary con-

ditions (∗) are satisfied and |G \ J | ≥ 20.

Proof. In this case, we have that nk = mh = 2 lcm(m,n). It follows that both k, h
are even,

k

2
=

lcm(m,n)

n
and

h

2
=

lcm(m,n)

m
.

We name by Q the set of cells given by

Q := {(i, j) : 1 ≤ i ≤ k/2; 1 ≤ j ≤ h/2}.

Then, since
2n

h
=

2m

k
=

mn

lcm(m,n)
= gcd(m,n),

we can consider the subset of the m× n array defined by:

B :=

2n/h−1⋃
i=0

Q+ i(k/2, h/2)

⋃2n/h−1⋃
i=0

Q+ (0, h/2) + i(k/2, h/2)

 .

Note that k = h would imply that m = n = lcm(m,n) and hence, since, r = 2 it
would be possible only if k = h = 2. In this case, the thesis follows from Proposition
6.6.

We can suppose now that h < k.

CASE h = 2 and k = 4: In this case, m is at least 6 and B can be tessellated with
double (2, 1)-stair of length either three or four or five. Since those tiles are nice and
their sizes are at most 20, they define a λNHG,J(m,n;h, k).

CASE h = 2 and k = 6: In this case, m is at least 9 and B can be tessellated with
double (3, 1)-stair of length either two or three. Since those tiles are nice and their
sizes are at most 18, they define a λNHG,J(m,n;h, k).
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CASE h = 2 and k ≥ 8: In this case Q∪ (Q+ (0, h/2)) is a (k/2)× 2 rectangle and,
since k/2 ≥ 4, can be tessellated with tiles whose sizes are at most 15 as done in
Theorem 5.7. Hence the same can be done, by translation, with B. It follows that,
also in this case, we obtain a λNHG,J(m,n;h, k).

Otherwise we have that h ≥ 4 and k > h. In this case Q∪(Q+(0, h/2)) is a (k/2)×h
rectangle and, since k/2 ≥ 3 and h ≥ 4, can be tessellated with tiles whose sizes are
at most 15, again as done in the proof of Theorem 5.7. Hence the same can be done,
by translation, with B.

It follows that, assuming r = 2, there exists a λNHG,J(m,n;h, k) whenever the
necessary conditions are satisfied and |G \ J | ≥ 20. 2

Example 6.13 Let G = Alt(5) be the alternating group of degree 5, i.e., the sub-
group of order 60 given by the even permutations of the symmetric group S5. Set
J = 〈(1, 2)(3, 4), (1, 2, 3)〉, then it can be seen that |G \ J | = 48.

We provide an example of a 2NHG,J(12, 8; 4, 6) in Figure 1 that is constructed
using Proposition 6.12. Since r = nk

lcm(m,n)
= 2 and |G \J | = 48 ≥ 20, the hypotheses

of Proposition 6.12 are satisfied and hence we can use four of the 3 × 4 nice tiles
defined in Proposition 5.3 to tessellate the skeleton of the array (the colors in Figure
1 represent the nice tiles used to construct the array).

Let A be the array shown in Figure 1; then it is easy to see that E(A) =
G \ J = [(3, 4, 5), (3, 5, 4), (2, 3)(4, 5), (2, 3, 5), (2, 4, 5), (2, 4)(3, 5), (2, 5, 3), (2, 5, 4),
(2, 5)(3, 4), (1, 2)(4, 5), (1, 2)(3, 5), (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 5, 3), (1, 2, 4,
3, 5), (1, 2, 5, 4, 3), (1, 2, 5), (1, 2, 5, 3, 4), (1, 3, 4, 5, 2), (1, 3, 5, 4, 2), (1, 3)(4, 5),
(1, 3, 5), (1, 3, 2, 4, 5), (1, 3, 5, 2, 4), (1, 3)(2, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 4, 5, 3, 2),
(1, 4, 3, 5, 2), (1, 4, 5), (1, 4)(3, 5), (1, 4, 5, 2, 3), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5),
(1, 4)(2, 5), (1, 5, 3, 4, 2), (1, 5, 3), (1, 5, 4, 3, 2), (1, 5, 2), (1, 5)(2, 3), (1, 5, 4, 2, 3),
(1, 5, 4), (1, 5)(3, 4), (1, 5, 3, 2, 4), (1, 5)(2, 4), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3)], and hence
[±x | x ∈ E(A)] covers G \ J twice.

6.3 The general case r ≥ 3

In this case, we consider the following kind of tiles.

Definition 6.14 Let m,n be two positive integers such that n ≥ m. Identified the
m × n array with the elements of Zm ⊕ Zn, and given a < n, b ≤ m, we say that a
set T of cells is an (a, b)-diagonal tile if its non-empty cells are exactly the following
ones:

{(̄ı, ̄) + (x, x), (̄ı, ̄+ 1) + (x, x), . . . , (̄ı, ̄+ (a− 1)) + (x, x) : x ∈ [0, b− 1]}

for some (̄ı, ̄) ∈ Zm ⊕ Zn.

Proposition 6.15 A (3, b)-diagonal tile T is nice whenever b ≥ 4 and either b ≤
n− 2 or b = m.
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Figure 1: A 2NHG,J(12, 8; 4, 6) where G = Alt(5) is the alternating group of order 5
and J = 〈(1, 2)(3, 4), (1, 2, 3)〉.



S. COSTA ET AL. /AUSTRALAS. J. COMBIN. 87 (2) (2023), 301–339 331

Proof. First, we note that the property (c1) of Definition 4.3 is always satisfied while
property (c2) holds since either b ≤ n− 2 or b = m.

Let us consider a set S of |T | = 3b elements of a group G and vectors (r1, . . . , rm) ∈
Gm, (c1, . . . , cn) ∈ Gn. Since T is a (3, b)-diagonal tile, it has exactly b rows each
with three non-empty cells. We consider a non-empty row Ri and we denote by
(i, β), (i, β + 1), (i, β + 2) its non-empty cells where the sum is considered modulo
n. Now we choose, uniformly at random, an array A such that skel(A) = T and
E(A) = S, and we denote by P(Xi) the probability of the event Xi that the i-th row
sums, following the natural ordering, to ri. Here we have that, having chosen the
first two elements ai,β, ai,β+1 of the i-th row, there is at most one element x ∈ S such
that ai,β + ai,β+1 + x = ri. It follows that

P(Xi) ≤
1

|S| − 2
=

1

3b− 2
.

Now we denote by E(X) the expected value of the random variable X given by the
number of non-empty rows Ri that sum to ri. Due to the linearity of the expected
value, we have that:

E(X) =
∑

i: skel(Ri)∩T 6=∅

P(Xi) ≤
b

3b− 2
.

Similarly, given a non-empty column Cj, we denote by P(Yj) the probability of the
event Yi that Cj sums to cj. Proceeding as we did for the rows, denoting by |Cj| the
number of the elements of the j-th column, we have

P(Yi) ≤
1

|S| − |Cj|+ 1
=

1

3b− |Cj|+ 1
.

To estimate the expected value E(Y ) of the random variable Y given by the number
of non-empty columns Cj that sums to cj, we divide the discussion into three cases.

CASE 1: b ≤ n− 2. Here T has exactly b− 2 columns with 3 non-empty cells, two
columns with 2 non-empty cells, and two columns with one non-empty cell. Due to
the linearity of the expected value, we have:

E(Y ) ≤ b− 2

3b− 2
+

2

3b
+

2

3b− 1
.

It follows that

E(X) + E(Y ) ≤ b

3b− 2
+

b− 2

3b− 2
+

2

3b
+

2

3b− 1
< 1.

CASE 2: b = n − 1. Here T has exactly b − 1 columns with 3 non-empty cells and
two columns with 2 non-empty cells. Due to the linearity of the expected value, we
have:

E(Y ) ≤ b− 1

3b− 2
+

2

3b− 1
.
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It follows that

E(X) + E(Y ) ≤ b

3b− 2
+

b− 1

3b− 2
+

2

3b− 1
< 1.

CASE 3: b = n. Here T has exactly b columns with 3 non-empty cells. Due to the
linearity of the expected value, we have:

E(Y ) ≤ b

3b− 2
.

It follows that
E(X) + E(Y ) ≤ 2b

3b− 2
< 1.

2

Example 6.16 Here we provide an example of a (3, b)-diagonal tile T of an m× n
array with n ≥ m = b = n− 2.

• • •
• • •
• • •
• • •

. . . . . . . . .
• • •

• • •

Now we suppose that T is a (3, 7)-diagonal tile of an m × n array with m = 7
and n = 9. Here we consider the group G = Z28, we set S to be {1, 2, . . . , 11} ∪
{−1,−2, . . . ,−10} which has size 21 = |T | and we fix the vectors (r1, . . . , r7) =
(0, . . . , 0) and (c1, . . . , c9) = (2, . . . , 2). Since by Proposition 6.15 we know that T is
a nice tile, there exists an array A such that skel(A) = T , E(A) = S and where the
sum of the elements in the i-th row (respectively i-th column) is different from the
value ri (respectively ci). We can consider, for instance

A :=

1 −1 2
−2 3 −3

4 −4 5
−5 6 −6

7 −7 8
−8 9 −9

10 −10 11

With essentially the same proof we also have that:

Proposition 6.17 A (4, b)-diagonal tile T is nice whenever b ≥ 3 and either b ≤
n− 3 or b = m.
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Example 6.18 Here we provide an example of a (4, b)-diagonal tile T of an m× n
array with n ≥ m = b = n− 2.

• • • •
• • • •
• • • •
• • • •

. . . . . . . . . . . .
• • • •

• • • •
• • • •

Proposition 6.19 A (5, b)-diagonal tile T is nice whenever b ≥ 2 and either b ≤
n− 4 or b = m.

Example 6.20 Here we provide an example of a (5, b)-diagonal tile T of an m× n
array with n ≥ m = b = n− 1.

• • • • •
• • • • •
• • • • •

. . . . . . . . . . . . . . .
• • • • •

• • • • •
• • • • •
• • • • •

Proposition 6.21 Let (G,+) be a finite group and let J be a subgroup of G. Then
there exists a λNHG,J(m,n;h, k) assuming that r = nk

lcm(m,n)
≥ 3, the necessary con-

ditions (∗) are satisfied and |G \ J | ≥ 21.

Proof. We can assume, without loss of generality, that n ≥ m and that the array is
not totally filled. Here we have that, necessarily, n ≥ m > r ≥ 3. Otherwise, since
the array is not totally filled, we would have k < 3, and hence

r =
nk

lcm(m,n)
<

3n

lcm(m,n)
< 3,

contradicting the hypothesis that r ≥ 3.

Assuming now that n ≥ m > 3, nk = mh and r = nk
lcm(m,n)

≥ 3, we identify the
cells of an m× n array with the elements of the group Zm ⊕Zn and we consider the
subgroup H generated by (1, 1). It is easy to see that H contains exactly lcm(m,n)

m

filled cells in each row and lcm(m,n)
n

filled cells in each column. Moreover, since the
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array is not totally filled, H,H + (0, 1), . . . , H + (0, r − 1) are disjoint cosets. Now
we set

B :=
r−1⋃
i=0

{H + (0, i)}.

Then B contains exactly
mh

lcm(m,n)

lcm(m,n)

m
= h

filled cells in each row and

nk

lcm(m,n)

lcm(m,n)

n
= k

filled cells in each column.

Since r ≥ 3, we can partition the family of cosets H := {H,H + (0, 1), . . . , H +
(0, r − 1)} into subfamilies H1, . . . ,H` of adjacent ones each of which contains (i.e.
it has weight) either 3, 4 or 5 cosets. This means that each of those families is of the
following form Hi = {H + (0, j), H + (0, j + 1), . . . , H + (0, j + w − 1)} where w is
the weight of Hi and j ∈ [0, r − w].

Now, if w = 3 and since m ≥ 4, the cells that belong to Hi can be tessellated with
(3, b)-diagonal tiles each of which has b ∈ {4, 5, 6, 7} and b = m when m ∈ {4, 5, 6, 7}
or b ≤ m − 4 < n − 2 otherwise. If instead w = 4 we have that m > r ≥ 4. Then
the cells that belong to Hi can be tessellated with (4, b)-diagonal tiles each of which
has b ∈ {3, 4, 5} and b = m when m = 5 or b ≤ m− 3 ≤ n− 3 otherwise. Finally, if
w = 5 we have that m > r ≥ 5. Then the cells that belong to Hi can be tessellated
with (5, b)-diagonal tiles each of which has b ∈ {2, 3} and b ≤ m− 4 ≤ n− 4.

Since all those tiles are nice and their sizes are at most 21, we have that there exists
a λNHG,J(m,n;h, k) assuming that r = nk

lcm(m,n)
≥ 3, the necessary conditions are

satisfied and |G \ J | ≥ 21. 2

Example 6.22 We provide an example in Figure 2 of the family of cosets H, intro-
duced in the previous proposition, for m = n = 10, k = h = 6, and r = 6. The black
dots represent the cells contained in the set B, the green cells are the elements of
the family H1 = {H,H + (0, 1), H + (0, 2)} and the red cells are the elements of the
family H2 = {H + (0, 3), H + (0, 4), H + (0, 5)}.

Now, we provide an example in Figure 3 where the cells that belong to H1 and
H2 can be tessellated using four (3, 5)-diagonal tiles.

From the result of this section, reasoning as in Corollary 5.8, we obtain the main
result of this paper.

Theorem 6.23 Let G be a group of size v and let J be a subgroup of G. If n >
h, there exists a λNHG,J(m,n;h, k) assuming that the necessary conditions (∗) are
satisfied and v ≥ 42 if v is even, v ≥ 29 otherwise.
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• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 2: Example of the family of cosets H, defined in Proposition 6.21, for m =
n = 10, k = h = 6, and r = 6.

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

Figure 3: Example of a possible tessellation of the cells that belong to H1 and H2

using four (3, 5)-diagonal tiles.

7 Application to Biembeddings

In [3], Archdeacon introduced Heffter arrays also because they are useful for finding
biembeddings of cycle decompositions, as shown, for instance, in [8, 9, 12, 13, 14,
15, 16]. In this section, generalizing some of his results we show how starting from a
λ-fold non-zero sum Heffter array it is possible to obtain suitable biembeddings. In
this context, we equip a multigraph Γ with the following topology.

• If Γ is a simple graph, Γ is viewed with the usual topology as a 1-dimensional
simplicial complex.
• If Γ is a multigraph, we consider the topology naturally induced on Γ by a

simple graph Γ′ that is a subdivision of Γ.

Note that this topology is well-defined because two multigraphs Γ and Γ′ are home-
omorphic if and only if there exists an isomorphism from some subdivision of Γ to
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some subdivision of Γ′. Now we provide the following definition; see [19, 23, 24] for
the simple graph case.

Definition 7.1 An embedding of a multigraph Γ in a surface Σ is a continuous
injective mapping ψ : Γ→ Σ, where Γ is viewed with the topology described above.

The connected components of Σ \ ψ(Γ) are called ψ-faces. If each ψ-face is
homeomorphic to an open disc, then the embedding ψ is said to be cellular.

Definition 7.2 An embedding ψ of a multigraph Γ in a surface Σ is said to be a
biembedding if it is face 2-colourable.

Given a λ-fold non-zero sum Heffter array λNHG,J(m,n;h, k), say A, and permu-
tations ωr1 , . . . , ωrm for the cells of each row, and ωc1 , . . . , ωcn for the cells of each
column, we define ωr := ωr1 ◦ ωr2 ◦ · · · ◦ ωrm and ωc := ωc1 ◦ ωc2 ◦ · · · ◦ ωcn . Then we
say that ωr and ωc are compatible if ωc ◦ ωr is a cycle of length |skel(A)|.

Following the proof of Theorem 5.5 of [14], we obtain:

Theorem 7.3 Let (G,+) be a finite group, J be a subgroup of G of order t and let A
be a λ-fold relative Heffter array λNHG,J(m,n;h, k) that admits compatible orderings
ωr and ωc. Then there exists a cellular biembedding of λK( 2nk

λt
+1)×t into an orientable

surface whose face lengths are multiples of k and h.
Moreover, if the sum of the elements in every row (following the ordering ωr) and

the sum of the elements in every column (following the ordering ωc) are non-zero,
the face lengths are strictly larger than k and h respectively.

Remark 7.4 Let A be a λ-fold relative Heffter array λNHG,J(m,n;h, k) as in the
previous theorem and let G be abelian. In this case, the sum of the elements in
a given row/column does not depend on the chosen ordering and is hence always
non-zero. Here the existence of compatible orderings implies that there exists a
cellular biembedding of λK( 2nk

λt
+1)×t into an orientable surface whose face lengths are

multiples of k and h strictly larger than k and h respectively.

As already remarked in [13], looking for compatible orderings led us to investigate the
following problem introduced in [10]. Let A be an m×n toroidal p.f. array. By ri we
denote the orientation of the i-th row, precisely ri = 1 if it is from left to right and ri =
−1 if it is from right to left. Analogously, for the j-th column, if its orientation cj is
from top to bottom then cj = 1 otherwise cj = −1. Assume that an orientation R =
(r1, . . . , rm) and C = (c1, . . . , cn) is fixed. Given an initial filled cell (i1, j1) consider
the sequence LR,C(i1, j1) = ((i1, j1), (i2, j2), . . . , (i`, j`), (i`+1, j`+1), . . .) where j`+1 is
the column index of the filled cell (i`, j`+1) of the row Ri` next to (i`, j`) in the
orientation ri` , and where i`+1 is the row index of the filled cell of the column Cj`+1

next to (i`, j`+1) in the orientation cj`+1
. The problem is the following:

Crazy Knight’s Tour Problem. Given a toroidal p.f. array A, do there exist R
and C such that the list LR,C covers all the filled cells of A?
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By P (A) we will denote the Crazy Knight’s Tour Problem for a given array A.
Also, given a filled cell (i, j), if LR,C(i, j) covers all the filled positions of A we will
say that (R, C) is a solution of P (A). For known results about this problem see [10].
The relationship between the Crazy Knight’s Tour Problem and λ-fold non-zero sum
Heffter arrays is explained in the following result which is an easy consequence of
Theorem 7.3. For notation simplicity, we will state it only in the case of abelian
groups.

Corollary 7.5 Let (G,+) be a finite abelian group, J be a subgroup of G of order t
and let A be a λ-fold relative Heffter array λNHG,J(m,n;h, k) such that P (A) admits
a solution (R, C). Then there exists a cellular biembedding of λK( 2nk

λt
+1)×t into an

orientable surface whose face lengths are multiples of k and h strictly larger than k
and h respectively.

To present an existence result about biembeddings, we need to introduce some no-
tation.

Given an n × n p.f. array A, for i ∈ {1, . . . , n} we define the i-th diagonal of A
as follows

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.
Here all the arithmetic on the row and column indices is performed modulo n, where
{1, 2, . . . , n} is the set of reduced residues. The diagonals Di+1, Di+2, . . . , Di+k are
called k consecutive diagonals.

Definition 7.6 Let n, k be integers such that n ≥ k ≥ 1. An n × n p.f. array A is
said to be:

1) k-diagonal if the non-empty cells of A are exactly those of k diagonals,
2) cyclically k-diagonal if the non-empty cells of A are exactly those of k consec-

utive diagonals.

We recall the following results about solutions of P (A).

Proposition 7.7 ([10]) Given a cyclically k-diagonal λNHZv ,J(n; k), where J is a
subgroup of Zv, A, there exists a solution (R, C) of P (A) in the following cases:

1) if nk is odd, n ≥ k ≥ 3, and gcd(n, k − 1) = 1,
2) if nk is odd, n ≥ k, and 3 < k < 200,
3) if nk is odd, n ≥ k ≥ 3, and n ≥ (k − 2)(k − 1).

In all these cases A also admits a pair of compatible orderings.

We note that all the λNHG,J(n; k) obtained in Theorem 6.23 are cyclically k-diagonal.
Therefore, considering these λNHG,J(n; k)’s over cyclic groups Zv, we obtain that:

Theorem 7.8 Let v be an even integer larger than or equal to 42 or an odd one
larger than or equal to 29, t be a divisor of v and let n ≥ k ≥ 3 be odd integers
such that v = 2nk

λ
+ t and that satisfy one of the hypotheses of Proposition 7.7. Then

there exists a cellular biembedding of λK( 2nk
λt

+1)×t into an orientable surface whose
face lengths are multiples of k strictly larger than k.
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