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Abstract

We present three general mechanisms for constructing infinite families of
connected graphs with equal spectral radius. The first method gener-
ates families of uniformly loaded cycles by coalescing copies of a vertex-
rooted connected graph at uniformly spaced vertices of a cycle. The
second method is similar to the first one, except that now the load is
an edge-rooted connected graph and the operation of vertex-coalescence
is changed to edge-coalescence. The third method generates families of
bracelets. A bracelet resembles somehow a loaded cycle but the con-
struction mechanism is different in spirit. Among many other results, we
show that if a real number r is the spectral radius of a connected graph
that is not a tree, then r is realized as spectral radius by infinitely many
connected graphs.

1 Introduction

All graphs considered are undirected, loopless and without multiple edges. The
spectral radius %(G) of a graphG is the largest eigenvalue of the adjacency matrix AG.
In other words, %(G) is the largest root of the characteristic polynomial ϕ(λ,G) =
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det(λIn−AG), where n is the order of G. In what follows, we consider % as a function
on the set C of connected graphs and write

Φ(t) = {G ∈ C : %(G) = t}.

The spectral radius is defined for disconnected graphs as well, but in this paper we
focus on connected graphs. A nonnegative real t is called a spectral number if there
exists a connected graph G such that %(G) = t. In such a case, G is said to be a
realization of t. Since the characteristic polynomial of a graph is a monic polynomial
with integer coefficients, spectral numbers are either integers or irrationals. One
possible way of comprehending this work is to view the variable t as a target to be
attained or realized by one or several connected graphs. A difficult question of graph
theory is that of determining the number

f(t) = card[Φ(t)]

of connected graphs realizing a given target t, not to mention the even more difficult
problem of identifying the properties of such graphs or building as many of them as
possible. The situation is clear and fully understood when t ∈ [0, 2], cf. Table 1, but
it becomes involved as soon as t is above the threshold 2. Recall that the spectral
radius of the path Pn of order n is equal to τn = 2 cos(π/(n + 1)). The symbol
S(n1, n2, n3) denotes the starlike tree in which removing the vertex of degree 3 leaves
the disjoint paths Pn1 , Pn2 , and Pn3 .

spectral number t Φ(t) f(t)

0 P1 1
1 P2 1
τ3 P3 1

τn (n ≥ 4 even) Pn 1
τn (n ≥ 5 odd, not 11, 17, 29) Pn, S(1, 1, (n− 3)/2) 2

τ11 P11, S(1, 1, 4), S(1, 2, 2) 3
τ17 P17, S(1, 1, 7), S(1, 2, 3) 3
τ29 P29, S(1, 1, 13), S(1, 2, 4) 3
2 Smith graphs ∞

Table 1: f(t) for t ∈ [0, 2]

The spectral number 2 is the smallest one that is realized by infinitely many
connected graphs. The elements of the set Φ(2) are called Smith graphs. The
complete list of Smith graphs can be found in many references, see for instance [8,
Theorem 1.2]. Since f(2) = ∞ and the Cartesian product G ×H of two connected
graphs obeys the rule

%(G×H) = %(G) + %(H), (1)

it follows that f(t) = ∞ also for t ∈ {3, 4, 5, . . .}. What happens if t is a spectral
number between 2 and 3? Such a spectral number is irrational of course. Due to a
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density result of Shearer [5], there are infinitely many spectral numbers in the open
interval (2, 3). Two interesting examples are the spectral radii

%(U1) ≈ 2.1700864866

%(D1) ≈ 2.5615528128

of the paw graph U1 and the diamond graph D1, cf. Figure 1. These non-elementary
connected graphs of order 4 serve as toy examples for subsequently handling more
involved cases.

Figure 1: Diamond graph, paw graph, and paw-like graph.

It is common in practice to deal with pairs of connected graphs, not necessarily
of the same order, that have the same spectral radius. In this work we construct
various infinite families of connected graphs on which the spectral radius function
% is constant. Some of these families have an intrinsic interest and deserve a close
examination. The infinite family Φ(2) of Smith graphs is formed with graphs that
are well identified, but other infinite families are far more complex.

2 Getting started with two toy examples

The paw graph U1 is a 4-vertex graph whose presence, or absence, as induced sub-
graph in a larger graph is a matter of importance. In chemical graph theory, U1 rep-
resents the hydrogen depleted structure of a compound called methylcyclopropane.
Since the characteristic polynomial of the paw graph can be factorized as

ϕ(λ, U1) = (λ+ 1) (λ3 − λ2 − 3λ+ 1)︸ ︷︷ ︸
φ(λ)

,

we readily see that the spectral radius of U1 is equal to

π1 = (1/3) + (2/3)
√

10 cos
(
(1/3) arccos

(
10−3/2

))
.

The above formula is obtained by using Viète’s trigonometric representation of the
largest root of the cubic polynomial φ. Our first result is Proposition 2.1. We need
to introduce some terminology. A p -cyclic graph is a connected graph G whose
cyclomatic number c(G) = m(G) − |G| + 1 is equal to p. Here, |G| and m(G) are
the order and the size of G, respectively. As usual, 1-cyclic and 2-cyclic graphs are
called unicyclic and bicyclic graphs, respectively. A sun graph is a unicyclic graph
obtained by attaching a pendant vertex to each vertex of a cycle graph. By a broken
sun we mean a sun graph that has lost at least one of its pendant vertices. Note that
the paw graph is the smallest order broken sun.
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Proposition 2.1. There are infinitely many broken suns realizing the spectral radius
of the paw graph.

Figure 2: Left and center: U2 and U3. Right: Automorphism similarities in U2,3

We accidentally came across a meaningful example of a broken sun with the same
spectral radius as U1. Such a graph, denoted U2 and displayed in Figure 2, arises in
chemical graph theory. For instance, Mukherjee and Das [4, Example 2] refer to U2

as the p -Xylyl radical. The largest root of the characteristic polynomial

ϕ(λ, U2) = (λ3 + λ2 − 3λ− 1) (λ− 1)(λ+ 1)φ(λ)

is captured by the last factor. Inspired by this example, we subsequently construct
the broken sun U3, also shown in Figure 2. With a tedious computation we obtain

ϕ(λ, U3) = (λ4 − 4λ2 + λ+ 1)2(λ+ 1)φ(λ)

and see that the largest root is again captured by φ. The form of the subsequent Uk’s
is clear, but the computation of each ϕ( · , Uk) is time-consuming. So we shall prove
Proposition 2.1 without relying on characteristic polynomials but by exploiting the
automorphism similarity of their vertices. The notion of automorphism similarity
which we use is the classical one found in Harary and Palmer [3]: two vertices u and
v of a graph G are automorphically similar if σ(u) = v for some automorphism σ of
G. Automorphism similarity is an equivalence relation on the vertex set of a graph.
Furthermore, the eigenvector associated to %(G) has a special structure according to
the automorphism similarity classes. This is explained in the next lemma.

Lemma 2.1. Let G be a connected graph with vertices {v1, . . . , vn} and let x =
(x1, . . . , xn)> be an eigenvector of the adjacency matrix AG associated to %(G). Sup-
pose that vi and vj are automorphically similar, then xi = xj.

Proof. Let {e1, . . . , en} be the canonical basis of Rn. Let P be the permutation
matrix that permutes ei and ej, leaving unchanged the position of the remaining
canonical vectors. Since vi and vj are automorphically similar, P>AGP = AG.
Hence, P>AGPx = %(G)x or, equivalently, AGPx = %(G)Px. Since the eigenspace
of AG associated to %(G) is of dimension one, the vectors Px and x are collinear. But
such vectors are positive and have the same norm. Hence, Px = x and, a posteriori,
xi = xj.
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Our proof technique serves to prove a more general result concerning paw-like
graphs. For each integer q ≥ 1, the paw-like graph U1,q is obtained by attaching q
pendant vertices to a given vertex of the triangle K3, see the last graph in Figure 1. A
paw-like graph is a particular instance of a circular caterpillar. The later expression
refers to a unicyclic graph in which the removal of all pendant vertices results in a
cycle graph.

Proposition 2.2. Pick any integer q ≥ 1. Then the spectral radius of U1,q is equal
to

πq =
1

3
+

2

3

√
7 + 3q cos

(
1

3
arccos

[
10− 9q

(7 + 3q)3/2

])
. (2)

Furthermore, such a spectral number is realized by infinitely many circular caterpil-
lars.

Proof. A direct application of Proposition 1.1 in Topcu et al. [7] yields

ϕ(λ, U1,q) = λq−1(λ+ 1)(λ3 − λ2 − (q + 2)λ+ q) .

The largest root of this polynomial is found in the last factor. Viète’s representation
of such a root yields the characterization (2). For proving the second part of the
proposition, we construct a sequence {Uk,q}k≥1 of circular caterpillars growing in
size, but such that

%(Uk,q) = πq

for all k ≥ 1. The parameter q is considered as fixed. For each positive integer k,
we use a cycle C3k with vertices {v1, . . . , v3k} in clockwise order and k copies of the
star K1,q. The first copy of the star, whose leaves are denoted {v3k+1, . . . , v3k+q},
is loaded on the vertex v3 of the cycle. The second copy, whose leaves are denoted
{v3k+q+1, . . . , v3k+2q}, is loaded on the vertex v6, and so on. The last copy of the star
is loaded of course on the vertex v3k. Loading a star on a vertex v of a cycle simply
means that the central vertex of the star is glued to v. Note that Uk,q is a circular
caterpillar of order (3 + q)k. Its vertex set is partitioned into three automorphism
similarity classes: the class I contains the 2k vertices of degree 2, the class II contains
the k vertices of degree q + 2, and the class III contains the qk vertices of degree 1.
The adjacency matrix of Uk,q is given by

AUk,q
=

[
AC3k

M>

M Oqk

]
,

where AC3k
is the adjacency matrix of C3k, Od is the zero matrix of order d, and M

is a block structured matrix of size (qk)×(3k). The precise form of the {0, 1}-matrix
M is clear from the way Uk,q has been constructed. Now, consider the eigenvalue
equation

AUk,q
x = λx , (3)

where λ := %(Uk,q) and the eigenvector x has (3 + q)k positive components. By
taking into account the partition of the vertex set of Uk,q into three automorphism
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similarity classes we see from Lemma 2.1 that x has the form

x = ((α, α, β), . . . , (α, α, β)︸ ︷︷ ︸
k triplets

, γ, γ, . . . , γ︸ ︷︷ ︸
qk terms

)>, (4)

where the α-components, β-components, and γ-components are associated to the
vertices of type I, II, and III, respectively. The particular case U2,3 is illustrated in
Figure 2. The vector equation (3) is a system of (3 + q)k equalities. By substituting
(4) into (3), we obtain

2k equalities of type I : α + β = λα

k equalities of type II : 2α + q γ = λβ

qk equalities of type III : β = λγ.

We eliminate a certain number of repetitions: out of the 2k equalities of type I, we
keep two of them; out of the k equalities of type II, we keep only one; and out of the
qk equalities of type III, we keep q of them. We end up with a smaller system that
can be written in the compact form

AU1,qz = λz (5)

with z = (α, α, β, γ, γ, . . . , γ)> of dimension 3+q. Since (5) is the eigenvalue equation
for the adjacency matrix of U1,q, and z has positive components, we deduce that Uk,q
has the same spectral radius as U1,q.

We point out that a proof technique analogous to the one used in Proposition 2.2
has already been employed in the literature. See for instance [2, Theorem 5.5].

When k ≥ 2, U1,q is smaller than Uk,q in the sense that the first graph has fewer
vertices and fewer edges than the second one. Of course, U1,q is neither a proper
subgraph nor an induced subgraph of Uk,q, otherwise these graphs could not have the
same spectral radius. Proposition 2.1 is obtained by setting q = 1 in Proposition 2.2.
Hence, each broken sun Uk = Uk,1 realizes the spectral radius of the paw graph:

{Uk : k ≥ 1} ⊆ Φ(π1).

We are not saying that the Uk’s are the only graphs realizing π1. Exhaustive nu-
merical testing with connected graphs on up to 15 vertices shows that π1 is realized
by 26 graphs that are not of the type Uk, and 15 of them are not even unicyclic;
cf. Table 2.

We now switch attention to our second toy example. The diamond graph D1 is
another 4-vertex graph whose presence, or absence, as induced subgraph in a larger
graph is a matter of importance. The spectral radius of D1 is equal to

η = (1/2)(1 +
√

17 ).

This spectral number is realized by a great variety of connected graphs. Those
of order 8 or less are displayed in Figure 3. Table 3 brings a bit of structure to
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cyclomatic number
n total p = 0 p = 1 p ≥ 2

1,2,3 0 0 0 0
4 1 0 1 0

5,6,7 0 0 0 0
8 1 0 1 0
9 1 0 1 0
10 2 1 1 0
11 0 0 0 0
12 4 1 3 0
13 7 4 3 0
14 6 2 4 0
15 7 7 0 0

Table 2: Number of p -cyclic graphs of order n realizing the spectral radius of the paw
graph.

Figure 3: Connected graphs on up to 8 vertices realizing η.

this mosaic of graphs, classifying them as a function of their order and cyclomatic
number. Table 3 suggests that the number of connected graphs of order n realizing
η is nondecreasing as a function of n, but we do not have a formal proof of this fact.
It is clear however that η is realized by a large number of connected graphs. For
instance, within the connected graphs on up to 12 vertices, there are 214 realizations
of η. If n is allowed to grow without bound, then we end up with f(η) =∞. The next
proposition states something stronger. Recall that the girth of a connected graph G
is defined as the length of a shortest cycle contained in G as induced subgraph. The
diamond graph is a bicyclic graph of girth 3.

Proposition 2.3. For all integer p ≥ 1, there exists a planar p-cyclic graph of girth 3
with the same spectral radius as the diamond graph.

Proof. The case p = 1 is taken care by the 4-th graph in Figure 3, so we assume that
p ≥ 2. For convenience, we introduce the change of variables p = k + 1. For each
k ≥ 1, we construct a planar (k + 1)-cyclic graph Hk such that

%(Hk) = η. (6)
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cyclomatic number
n total p = 0 p = 1 p = 2 p = 3 p = 4 p ≥ 5

1,2,3 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0
5 1 0 0 1 0 0 0
6 1 0 0 1 0 0 0
7 1 0 1 0 0 0 0
8 5 0 0 2 3 0 0
9 13 0 2 6 5 0 0
10 28 1 3 9 15 0 0
11 43 1 6 21 15 0 0
12 121 0 13 50 48 10 0

Table 3: Number of p -cyclic graphs of order n realizing the spectral radius of the diamond
graph.

Consider a cycle C3k with vertices {v1, v2, . . . , v3k} in clockwise order and a group
of k isolated vertices {v3k+1, v3k+2, . . . , v4k}. For each i ∈ {1, . . . , k − 1}, we connect
v3k+i to the consecutive vertices v3i and v3i+1 of the cycle C3k. Analogously, we
connect v4k to the vertices v3k and v1. The planar graph Hk constructed in this way
is (k + 1)-cyclic: it has k triangles and the main cycle C3k. Since H1 = D1, equality
(6) is true for k = 1. Suppose that k ≥ 2. The vertex set of Hk is partitioned into
three automorphism similarity classes: the class I contains the 2k vertices of degree
3, the class II contains the k the vertices of degree 2 on the main cycle, and the class
III contains the k vertices of degree 2 off the main cycle. The adjacency matrix of
Hk is given by

AHk
=

[
AC3k

M>

M Ok

]
,

where M is a {0, 1}-matrix of size k × (3k) whose precise form is clear from the
way Hk has been constructed. The rest of the proof is as in Proposition 2.2, namely,
the eigenvalue equation for AHk

corresponding to %(Hk) reduces to the eigenvalue
equation for AH1 corresponding to %(H1) . The details are omitted.

The next result is a variant of Proposition 2.3.

Proposition 2.4. For all integers p ≥ 1, there exists a planar p-cyclic graph of girth
4 with the same spectral radius as the diamond graph.

Proof. For proving the case p = 1, we display a concrete example: take a cycle C4

with vertices {v1, v2, v3, v4} in clockwise order, attach three pendant vertices to v1
and two pendant vertices to v3. Let p ≥ 2. We consider again the change of variables
p = k+1. The case k = 1 can be worked by hand. It suffices to compute the spectral
radius of the first graph in the second row of Figure 3. Let k ≥ 2. We construct Zk
in the same way as Hk, except that, for each i ∈ {1, . . . , k − 1}, the isolated vertex
v3k+i is connected to v3i and v3i+2 and, analogously, v4k is connected to v3k and v2.
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The triangles in Hk become quadrilaterals in Zk. Hence, Zk is also (k+1)-cyclic but
has girth 4. The rest of the proof is as before.

It took us some time to discover the Hk’s and Zk’s needed for proving Proposi-
tion 2.3 and Proposition 2.4, respectively. A few preliminary numerical tests were
helpful to get some inspiration. It turns out that both sequences of graphs can be
rediscovered by using the general construction mechanisms that will be developed in
the next section.

3 Constructing infinite families of graphs on which % is con-
stant

The proof technique used for handling the toy examples of Section 2 is based on
automorphism similarity arguments. Such a technique can be used in wider context.
We next present three ways of generating families of connected graphs with a common
spectral radius:

• The method UVLC consists in building Uniformly Vertex-Loaded Cycles start-
ing from a vertex-rooted connected graph called load.

• The method UELC is a variant of the previous one. It consists in building
Uniformly Edge-Loaded Cycles starting from an edge-rooted connected graph,
again called load.

• The method B consists in building Bracelets starting from an edge-rooted con-
nected graph called jewel.

We use the expression “jewel” in a broad sense (bracelets are built with all sort of
jewels, after all) and not in the restricted sense of the jewel graph as defined by some
authors. The methods UVLC, UELC, and B, have some features in common and
it is possible to lift these techniques to a higher degree of generality. However, we
prefer to give a more down-to-earth presentation with a separate discussion for each
method.

3.1 Uniformly vertex-loaded cycles

The basic idea of the first method is to glue a copy of a given connected graph L,
called load, at certain vertices of a cycle graph. By obvious reasons, we refer to such
vertices as the supporting vertices of the cycle. Since we wish to construct a loaded
cycle as symmetric as possible, we suppose that two consecutive supporting vertices
are always at the same distance, say r. This explains the name of uniformly loaded
cycle. The integer r can be viewed as a periodicity parameter. For carrying out
a coalescence operation as mentioned above, we suppose that L is a vertex-rooted
graph. To be more precise, we let r ≥ 3 and, for each integer k ≥ 1, we construct
the graph

Wk = Υ(L, r, k) (7)



A. SEEGER AND D. SOSSA/AUSTRALAS. J. COMBIN. 87 (2) (2023), 258–276 267

as follows: we take a cycle Ckr with vertices

{v1, . . . , vr} ∪ {vr+1, . . . , v2r} ∪ · · · ∪ {v(k−1)r+1, . . . , vkr}

in clockwise order and, for each s ∈ {1, . . . , k}, we glue a copy of L at the vertex
vsr of the cycle Ckr, i.e., we identify the root-vertex of L with the vertex vsr . Such
a vertex coalescence operation is carried out k times, namely, at the supporting
vertices vr, v2r, . . . , vkr. Figure 4 displays some examples: the cycles in the first row
are loaded with L = P3 and the periodicity parameter is r = 4; the cycles in the
second row are loaded with L = K4 and the periodicity parameter is r = 3.

Figure 4: Examples of UVLCs. Supporting vertices are in black.

Theorem 3.1. Let L be a vertex-rooted connected graph and r ≥ 3 be an integer.
Then all the graphs in the infinite family

U(L, r) = {Υ(L, r, k) : k ≥ 1}

have the same spectral radius.

Proof. Note that (7) is a connected graph of order kr+k(`−1), where ` is the order
of L. We claim that

%(Wk) = %(W1) (8)

for all k ≥ 1. Equality (8) holds tautologically for k = 1, so we suppose that k ≥ 2.
We denote by u, u1, . . . , u`−1 the vertices of L, with u being considered as the root-
vertex. Let F be the possibly disconnected graph obtained from L by removing u
and the incident edges. The adjacency matrix AF of F is of order ` − 1. Up to
isomorphism, the adjacency matrix of W1 is given by

AW1 =

[
ACr M>

M AF

]
,

where M = (mi,j) is the (`− 1)× r matrix given by

mi,j =

{
1 if j = r and {u, ui} is an edge of L,

0 otherwise.
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More generally, the adjacency matrix of Wk has the block structure

AWk
=



M>

ACkr

. . .

M>

M AF
. . . . . .

M AF


, (9)

where AF shows up k times. In turn, ACkr
has the block structure

AC2r =

[
APr E + E>

E + E> APr

]
, ACkr

=


APr E O E>

E> APr

. . . O

O
. . . . . . E

E O E> APr

 for k ≥ 3, (10)

where APr is the adjacency matrix of the path Pr and E = (ei,j) is the matrix of
order r given by

ei,j =

{
1 if i = r, j = 1,

0 otherwise .

In the construction of Wk, besides the vertices on the cycle Ckr, let u
(s)
1 , . . . , u

(s)
`−1 be

the vertices on the s-th copy of F . Hence, the vertex set of Wk can be partitioned
into the following subsets:

{v1, vr+1, . . . , v(k−1)r+1}, {v2, vr+2, . . . , v(k−1)r+2}, . . . , {vr, v2r, . . . , vkr},

{u(1)1 , . . . , u
(k)
1 }, {u

(1)
2 , . . . , u

(k)
2 }, . . . , {u

(1)
`−1, . . . , u

(k)
`−1}.

The vertices on each one of these subsets are automorphically similar. Hence, Wk

has at most r + ` − 1 automorphism similarity classes and the eigenvector x in the
eigenvalue equation

AWk
x = λx, (11)

with λ := %(Wk), can be taken as x = (a>, . . . , a>, b>, . . . , b>)> with column vectors
a ∈ Rr and b ∈ R`−1 appearing k times each. By substituting such an x into (11)
and using (9)–(10), we obtain the system{

(APr + E + E>)a+M>b = λa

Ma+ AF b = λb
(12)

repeated k times. We avoid unnecessary repetitions and write the above system only
once. Since r ≥ 3, we have APr + E + E> = ACr . Hence, (12) can be written in the
compact form [

ACr M>

M AF

] [
a
b

]
= λ

[
a
b

]
,

which is precisely the eigenvalue equation for AW1 corresponding to the spectral
radius of W1. This shows that %(Wk) = %(W1) as claimed.
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Remark 3.1. For the sake of simplicity in the presentation of the theorem, we assume
that r ≥ 3. It is possible to use a periodicity parameter r ∈ {1, 2}, but this requires
fixing a technical detail. The condition kr ≥ 3 is necessary for making sure that Ckr
is indeed a cycle. For this reason, we let k start from 3 when r = 1 and from 2 when
r = 2. The proof of the theorem can be adapted to cover these special cases. To
avoid confusion, we continue working under the assumption r ≥ 3.

The proof of Proposition 2.2 consists essentially in applying Theorem 3.1 with
L = K1,q and r = 3. It is clear that Uk,q = Υ(K1,q, 3, k) is a circular caterpillar.
Theorem 3.1 is applicable to a great variety of cases, because we have absolute
freedom for choosing the load L and the periodicity parameter r ≥ 3.

Example 3.1. If we pick L = P3 and r = 4, then we get an infinite family

U(P3, 4) = {Υ(P3, 4, k) : k ≥ 1}

of unicyclic graphs, all of them with spectral radius equal to %(Υ(P3, 4, 1)) =[
3 +
√

3
]1/2

. The graph Υ(P3, 4, 1) = P3 ∗ C4 is the first one shown in Figure 4.

3.2 Bracelets

As an alternative to UVLCs, we may consider bracelets. Instead of a load L as in
Section 3.1, we now consider a “jewel” J and build a bracelet with several copies of
that jewel. We get in this way an infinite family

B(J, e) = {B(J, e, k) : k ≥ 1}

of bracelets, where k represents the number of copies of the jewel and e is one of
its noncut edges. The choice of e as distinguished edge and the precise construction
of B(J, e, k) is as follows. Since J is supposed to have at least one noncut edge,
the connected graph J is not a tree. In such a case, there exists an integer r ≥ 3
such that Cr is an induced subgraph of J . Let {v1, . . . , vr} be the vertices of Cr in
clockwise order. As distinguished edge of J , we consider

e = {w, v} with w = vr and v = v1.

The choice of the cycle Cr (and its length) is irrelevant. What actually matters is
the choice of e. Note that e is indeed a noncut edge of J . Let J − e be the proper
subgraph of J obtained by removing the edge e. Clearly, J − e contains, as induced
subgraph, the path Pr with vertices {v1, . . . , vr}. We take k copies of J − e and, for

each s ∈ {1, . . . , k}, we denote by {v(s)1 , . . . , v
(s)
r } the vertices of the path Pr on the

s-th copy of G− e. We connect the copies of G− e by adding the edges {v(s)r , v
(s+1)
1 }

for all s = 1, . . . , k− 1 and the edge {v(k)r , v
(1)
1 }. The bracelet B(G, e, k) constructed

in this way is clearly a connected graph. A bracelet resembles (and even may coincide
with) a uniformly loaded circle, but in general it is not quite the same type of graph.
The jewel J used to built a bracelet is not to be viewed as a load to be placed on
some vertices of a circle. The building of a bracelet is a more subtle operation.
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Theorem 3.2. Let J be a connected graph other than a tree. Let e be a noncut edge
of J . Then, for all integers k ≥ 1, the bracelet B(J, e, k) is a connected graph of
order k|J | and has the same spectral radius as J .

Proof. Let n = |J |. We construct B(J, e, k) as explained above. The theorem is true
for k = 1, because B(J, e, 1) coincides with J . Let k ≥ 2. For each s ∈ {1, . . . , k}, let

{u(s)1 , . . . , u
(s)
n−r} be the vertices of the s-th copy of J − e that are not on Pr. Hence,

the kn vertices of B(J, e, k) are

v
(s)
1 , . . . , v(s)r , u

(s)
1 , . . . , u

(s)
n−r with s = 1, . . . , k.

Let F be the possibly disconnected graph obtained from J by removing {v1, . . . , vr}
and their incident edges. Then, the adjacency matrix of B(J, e, k) is as on the right-
hand side of (9) with ACkr

as in (10). The only difference is that now M = (mi,j) is
an (n− r)× r matrix given by

mi,j =

{
1 if {ui, vj} is an edge of J ,

0 otherwise.

For computing the spectral radius ofB(J, e, k), we observe that vertex set ofB(J, e, k)
can be partitioned with the following subsets:

{v(1)1 , . . . , v
(k)
1 }, . . . , {v(1)r , . . . , v(k)r },

{u(1)1 , . . . , u
(k)
1 }, . . . , {u

(1)
n−r, . . . , u

(k)
n−r}.

The vertices on each one of these subsets are automorphically similar. The remaining
part of the proof follows the same steps as in Theorem 3.1. The details are omitted
for avoiding repetitions. The conclusion is that each B(J, e, k) has the same spectral
radius as B(J, e, 1) = J .

The next example illustrates how Theorem 3.2 works in practice.

Example 3.2. Take J as the house graph. As is well known, the house graph is
of order 5 and its spectral radius is equal to the largest root of the cubic equation
λ3 − 2λ2 − 2λ+ 2 = 0, i.e.,

%(J) ≈ 2.4811943041.

As distinguished edge e = {w, v}, we take for instance the edge joining the black-
colored vertices w and v; see the first graph in Figure 5. For each k ≥ 1, the bracelet
B(J, e, k) is of order 5k and has the same spectral radius as J . The choice of e is not
unique. We can also choose the edge on the bottom of the house. The corresponding
bracelet is different from the previous one, but the spectral radius is still the same. A
third possibility is to choose an edge on the roof of the house and a last possibility is
to choose an edge on one side of the house. Regardless of the choice of distinguished
edge and regardless of the choice of k, we always end up with a connected graph that
has the same spectral radius as the house graph.
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Figure 5: Jewel J (house graph) and bracelet B(J, e, 2) as function of e

The next corollary is a somewhat astonishing conclusion that can be drawn from
Theorem 3.2. In essence, Corollary 3.1 says that the case f(t) =∞ is rather the rule
and not an exception.

Corollary 3.1. Let t be a spectral number realized by some connected graph that is
not a tree. Then t is realized by infinitely many connected graphs.

3.3 Uniformly edge-loaded cycles

Finally, we present a variant of the method UVLC. The method UELC mimics the
procedure used for constructing Υ(L, r, k). Instead of gluing a copy of a vertex-rooted
graph L at the vertices {vr, v2r, . . . , vkr} of Ckr, we now suppose that the load L is
an edge-rooted graph and we glue a copy of this graph at the edges

er = {vr, vr+1}, e2r = {v2r, v2r+1}, . . . , ekr = {vkr, v1}

of Ckr. Clearly, er = {vr, v1} if k = 1. So, we perform k edge-coalescence operations
in all. By obvious reasons, {er, e2r, . . . , ekr} are called supporting edges of the cycle.
The integer r ≥ 3 again plays the role of a periodicity parameter. The resulting
UELC is denoted by Γ(L, r, k). For simplicity, the distinguished edge of L is not
included in this notation. See Figure 6 for an example with the paw graph U1 as
load and r = 3 as periodicity parameter. As root-edge of the paw graph we consider
the edge between the vertices of degree two.

Figure 6: Uniform edge-loading of paw graphs on growing cycles

Theorem 3.3. Let L be an edge-rooted connected graph and r ≥ 3 be an integer.
Then all the graphs in the infinite family

E(L, r) = {Γ(L, r, k) : k ≥ 1}

have the same spectral radius.
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Proof. This result is obtained by applying Theorem 3.2 with J = Γ(L, r, 1). This
jewel J is formed by carrying out a coalescence between the distinguished edge of
L and any edge of Cr, say ẽ = {vr, v1}. Note that J contains a cycle as induced
subgraph, namely Cr. Hence, J is not a tree and admits a noncut edge. As distin-
guished noncut edge e of J , we choose any edge on the cycle Cr, except ẽ. In such a
case, Γ(L, r, k) = B(J, e, k) for all k ≥ 1, and Theorem 3.2 finishes the job.

4 Realizing some special spectral numbers

We now apply the theorems stated in Section 3 to a large variety of situations. In
particular, we construct infinite families of connected graphs realizing a given number
of the form

ζ(a, b) = a+
√
b , (13)

where a ≥ 1 and b ≥ 2 are integers. For economy of language, a number as above
is called a zeta number. Let us consider first the pure square root case

√
b, which

is realized for instance by the star K1,b. Are there other connected graphs realizing√
b ? Table 1 settles this question when b ∈ {1, 2, 3, 4}. The choice b = 5 is the first

one for which
√
b is above 2.

Proposition 4.1. Let b ≥ 5 be an integer. Then
√
b is realized by infinitely many

planar connected graphs.

Proof. The case b = 5 is somewhat special. We apply Theorem 3.1 with L = P2

and r = 2. The periodicity parameter being smaller than 3, we start with k = 2 as
indicated in Remark 3.1. Each Υ(P2, 2, k) is a broken sun realizing

√
5. We consider

now the case b = 2q with q ≥ 3. The complete bipartite graph K2,q is not a tree. It is

a planar connected graph and its spectral radius is equal to
√
b. The edges of K2,q are

all automorphically similar (in the sense of automorphism similarity between edges),
so we choose any one of them and call it e. For all k ≥ 2, the bracelet B(K2,q, e, k)
is a planar connected graph and, thanks to Theorem 3.2, it has the same spectral
radius as K2,q. Finally, we consider the case b = 2q+1 with q ≥ 3. Let {v1, v2} be the

maximal degree vertices of K2,q. Let K̂2,q be the planar connected graph obtained
from K2,q by attaching one pendant vertex to v1 and another pendant vertex to v2.
A direct computation yields the characteristic polynomial

ϕ(λ, K̂2,q) = λq(λ2 − 1)(λ2 − 2q − 1)

and shows that
%(K̂2,q) =

√
2q + 1 =

√
b .

It now suffices to apply Theorem 3.2 with K̂2,q as jewel. As distinguished edge e, we
choose any noncut edge of the jewel.

Summarizing, we know that f(
√
b ) = ∞ for all integers b ≥ 4. We now pass to

the case of a zeta number. An obvious example of a connected graph realizing (13)
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is the Cartesian product of the complete graph K1+a and the star K1,b. Indeed, the
product rule (1) yields

% (K1+a ×K1,b) = % (K1+a) + % (K1,b) = a+
√
b .

In the above Cartesian product, instead of K1+a, we could choose any connected
graph whose spectral radius is a. A graph is said to be of Cartesian product type
if it is expressible as a Cartesian product of two or more graphs, each one with two
vertices at least.

Proposition 4.2. Let a ≥ 2 and b ≥ 2 be integers. Then

(a) There are infinitely many unicyclic graphs realizing 1 +
√
b.

(b) There are infinitely many connected graphs of Cartesian product type realizing
a+
√
b.

Proof. Part (a). For each k ≥ 3, let Σ(k, b) be the unicyclic graph of order kb
obtained by coalescing a path Pb at each vertex of the cycle Ck. Metaphorically
speaking, Σ(k, b) is a sun graph with long rays of equal length. Belardo et al. [1,
Theorem 4.1] show that %(Σ(k, b)) = 1+

√
b, regardless of the choice of k. Parenthet-

ically, the quoted result in [1] can be obtained by applying Theorem 3.1 with L = Pb
and periodicity parameter r = 1; recall Remark 3.1.

Part (b). Note that Φ(a − 1) is nonempty because it contains in particular the
complete graph Ka. For any G ∈ Φ(a− 1) and k ≥ 3, the product rule (1) yields

%(G× Σ(k, b)) = %(G) + %(Σ(k, b)) = (a− 1) + (1 +
√
b) = a+

√
b .

It suffices then to observe that

{G× Σ(k, b) : G ∈ Φ(a− 1), k ≥ 3} ⊆ Φ(a+
√
b ) (14)

and that the set on the left-hand side is formed with infinitely many connected graphs
of Cartesian product type.

Some comments on Proposition 4.2 are in order. The set on the left-hand side
of (14) contains infinitely many elements, but such elements are not unicyclic graphs.
Our second observation is that the inclusion (14) is strict. Indeed, Φ(a+

√
b) contains

many graphs that are not of Cartesian product type. By way of example, the zeta
number

ζ(1, 2) = 1 +
√

2 (15)

is realized by a rich variety of connected graphs, amongst which are the three highly
symmetric graphs shown in Figure 7. The second graph is of Cartesian product type,
but the two others are not. In turn, any one of these three graphs can be used as
jewel to produce sequences of bracelets realizing (15). Four sequences of this type
are shown in Figure 8. For each sequence, we draw only the particular case k = 2,
the case of a general k can be deduced by analogy.
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Figure 7: Connected graphs of order 6 realizing 1 +
√

2.

Figure 8: Jewels and corresponding bracelets realizing 1 +
√

2.

Our last result concerns the case of a spectral number of the half-zeta form

(1/2)ζ(a, b) = (1/2)(a+
√
b ).

There is an impressive variety of connected graphs whose spectral radius has this
special form, the diamond being just the tip of the iceberg. Proposition 4.3 concerns
the realization of the particular half-zeta number

%(A1) = (1/2)(1 +
√

13 ),

where A1 is the bull graph, also called the A-graph.

Proposition 4.3. The spectral radius of the bull graph is realized by infinitely many
broken suns.

Proof. For each k ≥ 1, we construct a graph Ak that looks similar to the broken
sun Uk mentioned in Section 2. The only difference is that now we attach a pendant
vertex to each vertex of C3k, except to the vertices v3, v6, . . . , v3k. That Ak is a broken
sun is clear (we may view Ak as a sort of complement of Uk: the missing pendant
vertices in Uk show up in Ak, and vice versa). The notation Ak is consistent with
the fact that A1 is the bull graph. By exploiting the usual automorphism similarity
argument, we see that %(Ak) = (1/2)(1 +

√
13 ) for all k ≥ 1. Alternatively, we

observe that Ak = B(A1, e, k), where e is the edge of the bull graph whose removal
produces the path P5 as proper subgraph. This observation confirms that Ak has the
same spectral radius as the bull graph.

Parenthetically, besides being the spectral radius of the bull graph, (1/2)(1+
√

13 )
is the minimal value of the spectral radius function % on the family of bicyclic graphs
of order 8, cf. Simić [6, Theorem 1].
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5 By way of conclusion

One can write dozens of additional propositions in the same spirit as those stated
in Section 4, but there is no need of further indulging in this matter. Analyzing the
two toy examples of Section 2 was an important step before arriving at the precise
formulation of Theorems 3.1, 3.2, and 3.3. We could have stated these powerful
theorems from the very beginning, but that is not a natural and pedagogical way
of proceeding. The construction method of a bracelet is quite subtle after all and
it is not the first idea that comes to mind when the aim is realizing a particular
spectral number. The conceptions of the methods UVLC, UELC, and B were the
final destinations after a long journey of trial-and-error. Several conclusions can be
drawn from our work.

• Perhaps the most striking conclusion is this: if a nonnegative real t is realized
by a connected graph that is not a tree, then it is realized by infinitely many
connected graphs. We have not seen this result in the literature.

• From a practical point of view, uniformly loaded cycles and bracelets provide
a large battery of examples of infinite families of connected graphs with a
prescribed spectral radius. However, uniformly loaded cycles and bracelets do
not cover all the possibilities. Indeed, such graphs are highly structured and
have a lot of symmetry in them.

• If we focus on a specific spectral number, say the value η corresponding to
the spectral radius of the diamond graph, then we quickly notice that Φ(η)
contains a large variety of connected graphs. Table 3 and Proposition 2.3 show
that if %(G) = η, then the cyclomatic number c(G) can be any nonnegative
integer. The order, size, girth, diameter, and many other graph invariants,
are also unpredictable. It is an intricate matter to identify all the members of
the family Φ(η). The same remark applies to Φ(t) for virtually every spectral
number t above 2.

There are two intriguing questions that we have not been able to solve.

Question 5.1. Besides t = 2, is there another spectral number that is realized by
infinitely many trees? If yes, how to identify such kind of spectral number.

Question 5.2. Let t be a spectral number. Table 1 shows that, when t ∈ [0, 2], f(t)
can be equal to 1, 2, 3, or ∞. Are there other possibilities when t > 2? If yes, which
is the set of values attained by the function f?

Bracelets and uniformly loaded cycles are not trees and, therefore, such graphs do
not help in answering Question 5.1. Question 5.2 is perhaps more difficult. Suppose
for instance that we have been able to find four trees with the same spectral radius,
say t. How can we know whether or not there exists yet another tree realizing t?
Since we are considering trees of arbitrary order, numerical experimentation is of
little help here.
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