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Abstract

Two vertex colorings of a graph are Kempe equivalent if they can be
transformed into each other by a sequence of Kempe changes which in-
terchange the colors used on a component of the subgraph induced by
two color classes. It is PSPACE-complete to determine whether two given
vertex k-colorings of a graph are Kempe equivalent for any fixed k ≥ 3,
and it is easy to see that every two vertex colorings of any bipartite graph
are Kempe equivalent. In this paper, we consider Kempe equivalence of
almost bipartite graphs which can be obtained from a bipartite graph by
adding several edges, each connecting two vertices in the same partite set.
We give a conjecture of Kempe equivalence of such graphs, and we prove
several partial solutions and best possibility of the conjecture, but it was
recently proved by Cranston and Feghali that this conjecture is false in
general. This is a short version of the original paper [arXiv:2207.13244].

1 Introduction

A Kempe change was essentially introduced by Alfred Kempe in his false proof of
the four color theorem. Each Kempe change interchanges the colors used on a com-
ponent of the subgraph induced by two color classes. Even today, this remains one
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of the fundamental and most powerful tools in graph coloring theory. Two colorings
are Kempe equivalent if they are transformed into each other by a sequence of Kempe
changes. The Kempe equivalence of vertex colorings of graphs is deeply and widely
studied, since it is not only an important research subject in combinatorial recon-
figuration but also is related to many other subjects in graph theory; for example,
random coloring [16], perfectly contractile graph [2], a recoloring version of Had-
wiger’s conjecture [4, 13] and so on. Moreover, Kempe change has many applications
to various research fields; e.g., scheduling [10] and statistical physics [15]. On the
other hand, it is PSPACE-complete to determine whether two given k-colorings of a
graph G are Kempe equivalent for any fixed k ≥ 3 [3], where a k-coloring is a proper
vertex coloring with k colors. It is also PSPACE-complete even if k = 3 and G is a
planar graph with maximum degree 6. So it is hard in general to transform a given
k-coloring into another k-coloring by Kempe changes.

Mohar [14] surveyed the study of Kempe changes, and showed several fundamen-
tal results on Kempe equivalence of vertex/edge colorings. He also proposed many
interesting problems, one of which concerns Kempe equivalence of regular graphs and
is completely solved in [1]. Here we introduce two results described in [14] below,
which are used to prove our results (the second is originally proved in [13]).

Proposition 1.1 ([14]). Let G be a bipartite graph. Every two k-colorings of G with
k ≥ 2 are Kempe equivalent.

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at
most d.

Proposition 1.2 ([13, 14]). Let G be a d-degenerate graph with d ≥ 1. For any
integer k > d, every two k-colorings of G are Kempe equivalent.

By these results, it is an important problem to consider Kempe equivalence of
two colorings of non-bipartite graphs without small maximum degree. Then we focus
on almost bipartite graphs which can be obtained from a bipartite graph by adding
several edges, each connecting two vertices in the same partite set. Such a graph is
often investigated in various other contexts; for example, see [8, 12]. In this paper,
we give an interesting conjecture on Kempe equivalence of almost bipartite graphs
and show partial solutions of it. We also verify that the conjecture is best possible
in some sense. Moreover, we mention Kempe equivalence on color-critical graphs.

In the rest of this section, we precisely define the terminology used in this paper,
and then introduce our main conjecture and results.

1.1 Definitions

A graph G is k-colorable if there exists a map c : V (G) → {1, 2, . . . , k} with c(u) �=
c(v) for any uv ∈ E(G), where V (G) and E(G) denote the vertex and edge set of
G, respectively, and such a map is called a k-coloring. The chromatic number of G,
denoted by χ(G), is the minimum number k such that G is k-colorable. A graph G
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is k-chromatic if χ(G) = k. A graph G is k-critical if it is k-chromatic but every
proper subgraph of G is (k − 1)-colorable. An odd wheel is the graph obtained from
an odd cycle C by adding a vertex v and joining v to every vertex of C. Note that
every odd wheel is 4-chromatic and the smallest odd wheel is K4, where Kn denotes
the complete graph with n vertices.

For a graph G and a subset S ⊆ V (G), G[S] denotes the subgraph induced
by S. For a vertex colored graph G, G(i, j) denotes the subgraph induced by all
vertices colored with i or j. Every connected component D of G(i, j) is called a
Kempe component (or K-component), and such a component D is also called an
(i, j)-component. An edge e ∈ E(G(i, j)) is called an (i, j)-edge. By switching the
colors i and j on D, a new k-coloring can be obtained. This operation is called a
Kempe change (or K-change). In particular, we call a K-change on a component of
G(i, j) an (i, j)-change. If a K-change is applied on a component containing a vertex
v, then such a K-change is also called a K-change concerning v. Two k-colorings c1
and c2 of a graph G are Kempe equivalent (or K-equivalent), denoted by c1 ∼k c2, if
c1 can be obtained from c2 by a sequence of Kempe changes, possibly involving more
than one pair of colors in successive Kempe changes. Let Ck = Ck(G) be the set of
all k-colorings of G. The equivalence classes Ck/ ∼k are called the Kk-classes. The
number of Kk-classes of G is denoted by Kc(G, k).

For an integer � ≥ 0, a graph is called a B + E� graph (respectively, a B + M�

graph) if it is obtained from a bipartite graph B by adding some � edges (respectively,
a matching of size �), where a matching is a set of edges sharing no vertices with
each other. For such graphs, the bipartite graph B to which several edges are added
is called a base bipartite graph, and E� denotes the set of � edges added.

For fundamental terminology and notation undefined in this paper, we refer the
reader to [5].

1.2 Results & Problems

We start with the following observation.

Observation 1.3. Let G be a k-colorable B + E� graph. If neither S nor T has an
(i, j)-edge, then the k-coloring of G is Kempe equivalent to a k-coloring such that
i /∈ C(S) and j /∈ C(T ).

Proof. Suppose i, j ∈ C(S). Since G(i, j) has no edge in G[S], two vertices u, v ∈ S
colored by i and j respectively, belong to distinct components in G(i, j). Let Fu be
a component in G(i, j) containing u. By applying a (i, j)-change to Fu, we reduce
the number of vertices with color i in S. Therefore, by repeating such K-changes, we
obtain i /∈ C(S). Similarly, we can also obtain j /∈ C(T ) (preserving i /∈ C(S)).

For a k-colorable graph G, if |E(G)| < (
k
2

)
, then G(i, j) is disconnected for some

distinct colors i, j. In addition, if G is a B + E� graph, then there is no edge in
E� ∩ E(G(i, j)) for some distinct colors i, j. By Observation 1.3, we can obtain
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i /∈ C(S) and j /∈ C(T ) for such a B+E� graph G. In such a case, we have one more
observation as follows.

Observation 1.4. Let G be a k-colorable B +E� graph with � <
(
k
2

)
, and S and T

be partite sets of the base bipartite graph. Suppose that G is already colored by k
colors so that i /∈ C(S) and j /∈ C(T ). Then the k-coloring of G can be transformed
into a k-coloring by K-changes such that each component of G[S] (respectively, G[T ])
has a vertex of color j (respectively, i).

Proof. Suppose that a component H in G[T ] contains no vertex of color i. Let r be
a color used on a vertex of H . Since i /∈ C(S), an (r, i)-change on G(r, i) ∩ H can
make H have a vertex of color i. By repeating such operations, we have the desired
k-coloring of G.

By these observations, if the number of added edges is less than
(
k
2

)
for a k-

colorable B + E� graph, then we can have a k-coloring desired in Observation 1.4
by K-changes. Such a k-coloring may help us to show the K-equivalence of every
two colorings of a given graph. Therefore, we conjecture the following, but this is
recently disproved for k ≥ 8 by Cranston and Feghali [7].

Conjecture 1.5 (False for k ≥ 8). Let G be a (k − 1)-colorable B + E� graph with
k ≥ 4 and � <

(
k
2

)
. Then Kc(G, k) = 1.

Throughout this paper, we show several partial solutions (for small k) and the
sharpness of this conjecture. (We do not consider the case when k = 3 in the
conjecture since G is bipartite in that case.)

3- or 4-colorable case

For Kempe equivalence of colorings of 3- or 4-colorable B+E� or B+M� graphs,
we have the following results. Note that B + M� is 4-colorable for any � ≥ 0 and
that Theorem 1.7 proves Conjecture 1.5 when k = 4.

Theorem 1.6. Let G be a B+M� graph with k ≥ 4 and � <
(
k
2

)
. Then Kc(G, k) = 1.

Theorem 1.7. Let G be a 3-colorable B +E� graph with � ≤ 5. Then Kc(G, 4) = 1.

Theorem 1.6 (respectively, Theorem 1.7) is best possible by the following result
(respectively, by the k = 4 case of Proposition 1.9).

Proposition 1.8. For any k ≥ 3, there are infinitely many B +M� graphs G with
� =

(
k
2

)
and Kc(G, k) ≥ 2.

General case

If the answer of Conjecture 1.5 is yes, then the statement is best possible by the
following proposition.

Proposition 1.9. For any integer k ≥ 4, the following hold.
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(i) There are infinitely many (k − 1)-colorable B + E� graphs G with � =
(
k
2

)
and

Kc(G, k) ≥ 2.

(ii) There are infinitely many k-chromatic B + E� graphs G with � =
(
k
2

) − 1 and
Kc(G, k) ≥ 2.

We also give a partial positive solution of Conjecture 1.5, as follows.

Theorem 1.10. Let G be a (k − 1)-colorable B + E� graph with � <
(
k
2

)
and k ≥ 4.

If every component H induced by � edges added is a path, a cycle of length at least 4
or a complete bipartite graph, then Kc(G, k) = 1.

Remark 1.11. The proofs of Theorems 1.7 and 1.10 are just (long) case-by-case
arguments, and so we omit the proofs in this paper. The full version of this paper is
posted on arXiv; see [11].

A special case

A graph G is k-critical (or edge k-critical) if χ(G) = k and every proper subgraph
of G is (k − 1)-colorable. It is easy to see that for k = 1, 2 and 3, the only k-critical
graphs are K1, K2, and odd cycles, respectively. So, it is worthwhile to consider
k-critical graphs for k ≥ 4.

Chen et al. [6] gave a construction producing a B +M� graph from an arbitrary
given graph. The construction consists of two steps (see Figure 1):

G a

b c

d

G∗
Ia

IdIb Ic

G∗∗
xa ya

xd ydxb

yb yc

xc

Figure 1: Construction of G∗∗

First, for each vertex v of G, we construct an independent set Iv of size degG(v)
so that Iv ∩ Iu = ∅ if u �= v. For each edge uv of G, place an edge between Iu and
Iv so that these edges are vertex disjoint. Let G∗ be the resulting graph. Note that
G∗ consists of |E(G)| disjoint edges. Second, we add two new vertices xv and yv to
each set Iv joining them to each other and to all vertices of Iv. We denote by G∗∗

the resulting graph. Note that G∗∗ is a connected 4-colorable B+M� graph and that
it is 4-critical if G is 4-critical [6]. Moreover, since G∗∗ is 3-degenerate, the following
holds by Proposition 1.2.

Corollary 1.12. For every connected graph G, Kc(G∗∗, 4) = 1.
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This corollary is a partial solution for our conjecture described later (Conjec-
ture 1.13). Moreover, Corollary 1.12 implies that if a B + M� graph is isomorphic
to G∗∗ for some given graph G, then we can arbitrarily increase � in Theorem 1.6,
though � < 6 in general by Theorem 1.6.

Recently, Feghali [9] proved that for every 4-critical planar graph G, Kc(G, 4) = 1
(which is conjectured in [14]). Moreover, it is not known whether a 4-critical graph G
with Kc(G, 4) ≥ 2 exists though there are infinitely many 3-colorable graphs H with
Kc(H, 4) ≥ 2 (by Propositions 1.8 and 1.9), and from our various considerations, we
are convinced that for every 4-critical B + M� graph G, Kc(G, 4) = 1. Thus, we
propose the following conjecture.

Conjecture 1.13. For every 4-critical graph G, Kc(G, 4) = 1.

More generally, we also propose the following problem.

Problem 1.14. Is it true that for every k-critical graph G, Kc(G, k) = 1?

1.3 Organization of the paper

In Section 2, we introduce notation and several lemmas. In Section 3, we prove
Propositions 1.8 and 1.9. In Section 4, we prove Theorem 1.6. In the final section,
Section 5, we give a conclusion.

2 Notation and Lemmas

2.1 Notation

For a graph G and a vertex v ∈ V (G), NG(v) denotes the set of neighbors of v. For
a B + E� graph G, let S and T denote the partite sets of a base bipartite graph B.
For a vertex subset R, C(R) denotes the set of colors used on vertices in R. For the
sake of simplicity, let E be the set of � added edges and let ES (respectively, ET ) be
the subset of E in which each edge joins two vertices in S (respectively, T ). If E is
a matching, i.e., G is a B +M� graph, then we denote E,ES and ET by M,MS and
MT , respectively.

In several figures referenced in the proofs, we omit isolated vertices in G[S] and
G[T ]. Moreover, bold lines in those figures denote edges added to a base bipartite
graph.

2.2 Lemmas

We first prepare several lemmas to show our main results. Throughout this subsec-
tion, G denotes a k-colorable B + E� graph and is already colored by k colors.

Lemma 2.1. The following hold:



A. HIGASHITANI ET AL. /AUSTRALAS. J. COMBIN. 87 (1) (2023), 203–213 209

(i) If i /∈ C(S) and ET has no (i, j)-edge, then the k-coloring of G is Kempe
equivalent to a k-coloring such that j /∈ C(T ).

(ii) If a vertex v in T with color j is not adjacent to any vertex with i, then the
k-coloring f of G is Kempe equivalent to a k-coloring g such that j = f(v) �=
g(v) = i and f(u) = g(u) for any other vertex u �= v.

Proof. (i) This immediately follows from Observation 1.3.
(ii) We clearly have the desired coloring by a (i, j)-change concerning v.

Lemma 2.2. Suppose C(S) ∩ C(T ) = ∅. If each component in G[E] is either a
bipartite graph or an odd cycle, then every two colorings of S (or T ) are K-equivalent.

Proof. If G[S] is bipartite, then the lemma holds by Proposition 1.1. If G[S] is an odd
cycle, then it receives at least three colors, so the lemma holds by Proposition 1.2.

Lemma 2.3. Let c and c′ be two distinct k-colorings of G, and suppose that every
K-component in c is connected and that there is a K-component H in c′ which is not
isomorphic to any K-component in c. Then c and c′ are not K-equivalent.

Proof. It is clear that any sequence of K-changes cannot transform a K-component
in c into H , since every K-component in c is connected.

Finally, we show the Kempe equivalence of 3-colorings of a graph with a few
edges.

Lemma 2.4. Let H be a 3-colorable graph with |E(H)| ≤ 5. Then every two 3-
colorings of H are Kempe equivalent.

Proof. If |V (H)| ≤ 3, H is 2-degenerate by simplicity of H . If |V (H)| ≥ 4, H
is 2-degenerate since 2|E(G)|/|V (H)| ≤ 5/2 < 3. Therefore, the lemma holds by
Proposition 1.2.

3 Constructions

We first prove Proposition 1.8.

Proof of Proposition 1.8. For any k ≥ 3, let G be the graph shown in the left of
Figure 2. Form the graph G from Kk,k(k−1) as follows, where S is the larger part
and T is the smaller part. Add a matching of size k on the vertices of S. Use each
of colors 1, ..., k on a single vertex of T , and use each distinct pair in {1, ..., k} on
the endpoints of an edge added to S. Finally, remove each edge between parts with
endpoints colored the same.

Note that |S| = k(k−1) and |T | = k and that G has another k-coloring shown in
the right of Figure 2 (using only three colors). Since G(i, j) is connected for any i, j
in the left of Figure 2 and there is a K-component in the right coloring not isomorphic
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to any K-component in the left one, these two k-colorings are not K-equivalent by
Lemma 2.3. Moreover, it is easy to see that the order of G can be arbitrarily large
by adding isolated vertices in S or T suitably. Therefore, this completes the proof
of the proposition.

1 2 1 3

1 2 k − 1 k

S

T

2 3 2 3

1 1 1 1

S

T

k − 1

k
k − 2

k1 4 3 3 32 2 2

Figure 2: A B +M� graph G with k ≥ 3, � =
(
k
2

)
and Kc(G, k) ≥ 2

Next we prove Proposition 1.9.

Proof of Proposition 1.9. We first construct the graph for (i) shown in Figure 3.
Prepare a complete bipartite graph B with partite sets S and T , where |S| = (k −
2) + 2 · (2k − 3) = 5k − 8 and |T | = k. We add

(
k
2

)
edges to S so that those edges

induce Kk−2 ∪ (2k − 3)K2, and so T consists of (exactly) k isolated vertices. Then
we give a k-coloring of the graph as shown in the left of Figure 3: We color vertices
in T by colors 1, 2, . . . , k, color 2k − 3 independent edges in S by (1, k − 1), (2, k −
1), . . . , (k−2, k−1), (1, k), (2, k), . . . , (k−1, k), and colorKk−2 by colors 1, 2, . . . , k−2.
(This is possible since k ≥ 4.) According to the above coloring, we remove all edges
between S and T joining two vertices with the same color. The resulting graph is
a (k − 1)-colorable B + E� graph with � =

(
k
2

)
; see the left of Figure 3. It is easy

to check that every K-component of the coloring is connected, but there is another
k-coloring of the graph shown in the right of Figure 3, and hence, those k-colorings
are not K-equivalent by Lemma 2.3. This completes the proof of (i), since the order
of the above graph can be arbitrarily large as in the proof of Proposition 1.8.

Next we construct the graph for (ii) shown in Figure 4. Prepare a complete
bipartite graph B with partite sets S and T , where |S| = k and |T | = 3. We add
an edge to T joining two vertices of T , add

(
k−1
2

)
edges to S forming Kk−1, and add

k − 3 edges to S joining the (unique) vertex v not in the above Kk−1 and exactly
k − 3 vertices of the Kk−1. (This is possible since k ≥ 4.) Similarly to the above
case, we first give a k-coloring of the graph and then determine the base bipartite
graph according to the given coloring (see the left of Figure 4): Since T contains
exactly one edge xy and an isolated vertex z, we color x (respectively, y, z) by color
k − 1 (respectively, k), respectively. Then we color vertices of Kk−1 in S by colors
1, 2, . . . , k − 1 and v by color k − 2, and hence, we set vertices in S adjacent to v
be colored by colors 1, 2, . . . , k − 3. Finally, we remove two edges between S and
T ; one of them joins x and a vertex in S with color k − 1 and the other joins y
and a vertex with color k − 2 which is not v. The resulting graph is a k-chromatic
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B + E� graph with � =
(
k
2

) − 1; see the left of Figure 4. Every K-component of
the coloring is connected, but there is another k-coloring of the graph shown in the
right of Figure 4, and hence those k-colorings are not K-equivalent by Lemma 2.3.
As in (i), the order of the constructed graph can be arbitrarily large, and hence this
completes the proof of (ii).

1

S

T

Kk−2

2 k − 1 k

1

k − 1

2 k1 2 k − 2

k − 1

S

T

Kk−2

k − 1

1 21 2 k − 2

k − 1 k − 1

1 12 2

2k − 3 edges

Figure 3: Two non-K-equivalent k-colorings of a (k− 1)-colorable B+E�

graph with � =
(
k
2

)

S

T

k − 2k − 1 k − 3 2 1 k − 2

Kk−1

kkk − 1

S

T

k − 1k − 2 k − 3 2 1 k − 2

Kk−1

kk − 1k

v v

Figure 4: Two non-K-equivalent k-colorings of a k-chromatic B+E� graph
with � =

(
k
2

)− 1

4 Proof of Theorem 1.6

Let G be a B +M graph with k ≥ 4 and |M | < (
k
2

)
. Suppose that G is colored by k

colors 1, 2, . . . , k. In this proof, we show that every k-coloring ofG can be transformed
into a 4-coloring of G using colors in {1, 2, 3, 4} such that C(S)∩C(T ) = ∅. This 4-
coloring is called a standard 4-coloring of G. Note that every two standard 4-colorings
are K-equivalent by Lemma 2.2.

We may assume that G(1, k) contains no edge in M , and so we have C(S) ⊆
{1, 2, . . . , k−1} and C(T ) ⊆ {2, 3, . . . , k} by Observation 1.3. By repeatedly applying
Lemma 2.1(ii), we can make every edge in G[T ] have color k. We divide the remaining
proof into two cases.
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Case 1. MT has no (i, k)-edge for some i ∈ {2, 3, . . . , k − 1}.
Without loss of generality, we set i = 2. By Lemma 2.1(i), we have 1, 2 /∈ C(T ).

Then we can obtain C(S) ⊆ {1, 2} by (1, i)- and (2, i)-changes for i ∈ {3, . . . , k− 1}.
Therefore, since we can also obtain C(T ) ⊆ {3, 4} by Lemma 2.1(ii) again, the
resulting coloring is a standard 4-coloring.

Case 2. MT has an (i, k)-edge for every i ∈ {2, 3, . . . , k − 1}.
If MS contains a (2, 3)-edge uv where u is colored with 2, then the color of u

can be changed to color 1 by a (1, 2)-change concerning u since 1 /∈ C(T ). Thus, we
can make MS contain no (2, 3)-edge by repeated application of such (1, 2)-changes.
Moreover, since every edge in G[T ] has color k, there is no (2, 3)-edge in MT , either.
Thus, by Observation 1.3, we can make 1, 2 /∈ C(T ) by (2, 3)-changes, and hence,
this case can be deduced to Case 1.

5 Conclusion

The Kempe equivalence of colorings of graphs is an important concept in many ways.
Since every two colorings of any bipartite graph are Kempe equivalent, it is natural
to ask whether or not two given colorings of an almost bipartite graph are Kempe
equivalent. So we consider the Kempe equivalence ofB+E� graphs, and in particular,
we propose a conjecture of interest stating that every two k-colorings of any (k− 1)-
colorable B+E� graph with k ≥ 4 and � <

(
k
2

)
are Kempe equivalent (Conjecture 1.5).

This conjecture is recently disproved for k ≥ 8 by Cranston and Feghali [7], but the
conjecture is possibly true for small k. Throughout this paper, we show several non-
trivial partial solutions for small k and the sharpness of the conjecture. In particular,
the assumption of Theorem 1.10 needs to prove the theorem by induction on k. To
prove Conjecture 1.5 for k ∈ {6, 7}, we probably need to find a new proof method
without induction on k. Moreover, we also conjecture that every two 4-colorings
of any 4-critical graph are Kempe equivalent (Conjecture 1.13), and our results are
also partial solutions of this conjecture. However, neither of our proofs uses the
4-criticality of graphs. Therefore, we strongly believe that we can prove the Kempe
equivalence of 4-colorings of 4-critical graphs as the planar case by combining the
4-criticality and several ideas that we have not found yet.
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