The spiral property of q-Eulerian numbers of type B

Zhe Wang Zhi-Yong Zhu
School of Mathematics and Statistics
Northeastern University at Qinhuangdao
Hebei 066004, P.R. China
wangzhepapers@stumail.neu.edu.cn zhiyongzhu@stumail.edu.cn

Abstract

We give a direct proof of the spiral property of the q-Eulerian numbers of type B, which arise from q-counting signed permutations in the hyperoctahedral group by the negative index. For a given nonnegative real number q, the spiral property implies that the q-polynomial of type B is unimodal and the maximum coefficient appears exactly in the middle.

1 Introduction

Let $[n]=\{1,2, \ldots, n\}$ and $\pm[n]=[n] \cup\{-1,-2, \ldots,-n\}$. Denote by B_{n} the hyperoctahedral group of rank n. Given $\pi \in B_{n}$. Elements of B_{n} are signed permutations of $\pm[n]$ with the property that $\pi(-i)=-\pi(i)$ for all $i \in[n]$. The number of descents of π is defined by

$$
\operatorname{des}_{B}(\pi)=\#\{i \in\{0,1,2, \ldots, n-1\}: \pi(i)>\pi(i+1)\},
$$

where $\pi(0)=0$. The negative index of π is defined by $N(\pi)=\#\{i \in[n]: \pi(i)<0\}$. The q-Eulerian polynomials of type B are given as follows:

$$
B_{n}(x, q)=\sum_{\pi \in B_{n}} x^{\operatorname{des}_{B}(\pi)} q^{N(\pi)}=\sum_{k=0}^{n} B_{n, k}(q) x^{k}
$$

Following [1, Theorem 3.4], the polynomials $B_{n}(x, q)$ satisfy the recurrence relation

$$
\begin{equation*}
B_{n}(x, q)=[1+(1+q) n x-x] B_{n-1}(x, q)+(1+q)\left(x-x^{2}\right) \frac{\partial}{\partial x} B_{n-1}(x, q) \tag{1}
\end{equation*}
$$

with the initial condition $B_{0}(x, q)=1$. The exponential generating function of $B_{n}(x, q)$ is given as follows:

$$
\sum_{n=0}^{\infty} B_{n}(x, q) \frac{t^{n}}{n!}=\frac{(1-x) \mathrm{e}^{t(1-x)}}{1-x \mathrm{e}^{t(1-x)(1+q)}}
$$

Various generalizations or variations of $B_{n}(x, q)$ have been extensively studied. For example, Fulman, Kim, Lee and Petersen [3] recently studied the joint distribution of descents and sign for elements of the hyperoctahedral group, where the sign of an element $\pi \in B_{n}$ is the product of $(-1)^{N(\pi)}$ and the sign of the underlying unsigned permutation. Below are the polynomials $B_{n}(x, q)$ for $n \leqslant 4$:

$$
\begin{aligned}
B_{1}(x, q)= & 1+q x, B_{2}(x, q)=1+\left(1+4 q+q^{2}\right) x+q^{2} x^{2}, \\
B_{3}(x, q)= & 1+\left(4+12 q+6 q^{2}+q^{3}\right) x+\left(1+6 q+12 q^{2}+4 q^{3}\right) x^{2}+q^{3} x^{3}, \\
B_{4}(x, q)= & 1+\left(11+32 q+24 q^{2}+8 q^{3}+q^{4}\right) x+\left(11+56 q+96 q^{2}+56 q^{3}+11 q^{4}\right) x^{2} \\
& +\left(1+8 q+24 q^{2}+32 q^{3}+11 q^{4}\right) x^{3}+q^{4} x^{4} .
\end{aligned}
$$

Let $f(x)=\sum_{i=0}^{n} f_{i} x^{i}$ be a polynomial with nonnegative coefficients. We say that $f(x)$ is unimodal if

$$
f_{0} \leqslant f_{1} \leqslant \cdots \leqslant f_{k} \geqslant f_{k+1} \geqslant \cdots \geqslant f_{n}
$$

for some k, where the index k is called the mode of $f(x)$. Following [2, 6], the polynomial $f(x)$ is said to be spiral if

$$
f_{n} \leqslant f_{0} \leqslant f_{n-1} \leqslant f_{1} \leqslant \cdots \leqslant f_{\lfloor n / 2\rfloor}
$$

It is clear that the spiral property is stronger than unimodality. We say that $f(x)$ is real-rooted if it has real roots only. And we say that $f(x)$ is symmetric if $f_{j}=f_{n-j}$ for each $0 \leq j \leq n$. The real-rootedness of $B_{n}(x, q)$ implies the unimodality of it; see [1, Corollary 3.7] for details. In particular, when $q=1$, the polynomial $B_{n}(x, 1)$ is symmetric. The spiral property of q-Eulerian numbers of type B was first proved in [4, Corollary 42] by using the bi- γ-positivity of certain colored Eulerian polynomials. In this note we give a direct proof of this property. The main result of this note is the following.

Theorem 1. For any $n \geq 1$, we have the following results:
(A) when $0<q<1$, the polynomial $B_{n}(x, q)$ is spiral;
(B) when $q>1$, the polynomial $x^{n} B_{n}(1 / x, q)$ is spiral.

Example 2. The first few $2^{n} B_{n}(x, 1 / 2)$ are given as follows:
$2 B_{1}(x, 1 / 2)=2+x, 2^{2} B_{2}(x, 1 / 2)=4+13 x+x^{2}, 2^{3} B_{3}(x, 1 / 2)=8+93 x+60 x^{2}+x^{3}$.
The first few $B_{n}(x, 2)$ are given as follows:

$$
B_{1}(x, 2)=1+2 x, B_{2}(x, 2)=1+13 x+4 x^{2}, B_{3}(x, 2)=1+60 x+93 x^{2}+8 x^{3} .
$$

The first few $B_{n}(x, 3)$ are given as follows:

$$
B_{1}(x, 2)=1+3 x, B_{2}(x, 2)=1+22 x+9 x^{2}, B_{3}(x, 2)=1+121 x+235 x^{2}+27 x^{3} .
$$

In [5], the sequences $\left\{B_{n, k}(2)\right\}_{k=0}^{n}$ and $\left\{B_{n, k}(3)\right\}_{k=0}^{n}$ appear as A225117 and A225118, respectively.

2 The proof of Theorem 1

Proof. (A) We first consider the case $0<q<1$. In order to show that

$$
B_{n, n}(q)<B_{n, 0}(q)<B_{n, n-1}(q)<B_{n, 1}(q)<\cdots<B_{n,\left\lfloor\frac{n}{2}-1\right\rfloor}(q)<B_{n,\left\lceil\frac{n}{2}\right\rceil}(q)
$$

when n is odd, one has $B_{n, \frac{n+1}{2}}(q)<B_{n, \frac{n-1}{2}}(q)$, and it suffices to prove the following inequalities:

$$
\begin{equation*}
B_{n, n-k}(q)<B_{n, k}(q)<B_{n, n-k-1}(q) \tag{2}
\end{equation*}
$$

for any $0 \leq k \leq\left\lceil\frac{n-3}{2}\right\rceil$, and in addition

$$
\begin{equation*}
B_{n, \frac{n+1}{2}}(q)<B_{n, \frac{n-1}{2}}(q) \tag{3}
\end{equation*}
$$

when n is odd. We proceed to prove the inequalities (2) and (3) by induction on n. It is clear that these inequalities hold for $1 \leq n \leq 3$. We now assume that they hold for all integers up to n. We aim to show that

$$
\begin{equation*}
B_{n+1, n+1-k}(q)<B_{n+1, k}(q)<B_{n+1, n-k}(q) \tag{4}
\end{equation*}
$$

for any $0 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$, and when $n+1$ is odd,

$$
\begin{equation*}
B_{n+1, \frac{n+2}{2}}(q)<B_{n+1, \frac{n}{2}}(q) . \tag{5}
\end{equation*}
$$

For $k=0$, we have $B_{n+1,0}(q)-B_{n+1, n+1}(q)=1-q^{n+1}>0$. It follows from (1) that

$$
B_{n, k}(q)=(k+k q+1) B_{n-1, k}(q)+[(n-k)+(n+1-k) q] B_{n-1, k-1}(q) .
$$

For $k=n$, we have $B_{n+1, n}(q)=(n+n q+1) B_{n, n}(q)+(1+2 q) B_{n, n-1}(q)>B_{n, n-1}(q)$. Therefore $B_{n+1, n}(q)>B_{n+1,0}(q)$ with $B_{n, n-1}(q)>B_{n, 0}(q)=B_{n+1,0}(q)$.

For $1 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$, we can get

$$
\begin{align*}
B_{n+1, n+1-k}(q) & =[(n+2-k)+(n+1-k) q] B_{n, n+1-k}(q)+[k+(k+1) q] B_{n, n-k}(q) ; \tag{6}\\
B_{n+1, k}(q) & =(k+k q+1) B_{n, k}(q)+[(n+1-k)+(n+2-k) q] B_{n, k-1}(q) ; \tag{7}\\
B_{n+1, n-k}(q) & =[n+1-k+(n-k) q] B_{n, n-k}(q)+[k+1+(k+2) q] B_{n, n-k-1}(q) . \tag{8}
\end{align*}
$$

It follows from (6) and (7) that

$$
\begin{aligned}
B_{n+1, k}(q)-B_{n+1, n+1-k}(p)= & (k+k q)\left[B_{n, k}(q)-B_{n, n-k}(q)\right] \\
& +[n-k+1+(n-k+1) q]\left[B_{n, k-1}(q)-B_{n, n-k+1}(q)\right] \\
& +\left[B_{n, k}(q)-B_{n, n-k+1}(q)\right]+q\left[B_{n, n-k}(q)-B_{n, k-1}(q)\right] .
\end{aligned}
$$

By induction, we see that the difference in every pair of parentheses in the above expression is positive. This implies that for $1 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$,

$$
\begin{equation*}
B_{n+1, k}(q)-B_{n+1, n+1-k}(q)>0 . \tag{9}
\end{equation*}
$$

Similarly, for $1 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$, in view of (7) and (8) we find

$$
\begin{aligned}
B_{n+1, n-k}(q)-B_{n+1, k}(q)= & (k+1+k q)\left(B_{n, n-k-1}(q)-B_{n, k}(q)\right) \\
& +[n-k+1+(n-k) q]\left(B_{n, n-k}(q)-B_{n, k-1}(q)\right) \\
& +2 q\left(B_{n, n-k-1}(q)-B_{n, k-1}(q)\right) .
\end{aligned}
$$

Again, by the inductive hypothesis, we deduce that for $1 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$,

$$
\begin{equation*}
B_{n+1, n-k}(q)-B_{n+1, k}(q)>0 . \tag{10}
\end{equation*}
$$

Combining (9) and (10) gives (4) for $0 \leq k \leq\left\lceil\frac{n-2}{2}\right\rceil$. It remains to verify (5) when $n+1$ is odd. By the recurrence relation for $B_{n, k}(q)$, we have

$$
\begin{aligned}
B_{n+1, \frac{n+2}{2}}(q) & =\left(\frac{n+4}{2}+\frac{n+2}{2} q\right) B_{n, \frac{n+2}{2}}(q)+\left(\frac{n}{2}+\frac{n+2}{2} q\right) B_{n, \frac{n}{2}}(q), \\
B_{n+1, \frac{n}{2}}(q) & =\left(\frac{n+2}{2}+\frac{n}{2} q\right) B_{n, \frac{n}{2}}(q)+\left(\frac{n+2}{2}+\frac{n+4}{2} q\right) B_{n, \frac{n-2}{2}}(q) .
\end{aligned}
$$

This yields

$$
\begin{aligned}
B_{n+1, \frac{n}{2}}(q)-B_{n+1, \frac{n+2}{2}}(q)= & \left(\frac{n+2}{2}+\frac{n+2}{2} q\right)\left[B_{n, \frac{n-2}{2}}(q)-B_{n, \frac{n+2}{2}}(q)\right] \\
& +\left[B_{n, \frac{n}{2}}(q)-B_{n, \frac{n+2}{2}}(q)\right]+q\left[B_{n, \frac{n-2}{2}}(q)-B_{n, \frac{n}{2}}(q)\right] .
\end{aligned}
$$

Again, by the inductive hypothesis, we obtain (5). The completes the proof of (2).
(B) Consider the case $q>1$. We shall prove that

$$
B_{n, 0}(q)<B_{n, n}(q)<B_{n, 1}(q)<B_{n, n-1}(q)<\cdots<B_{n,\left\lfloor\frac{n}{2}+1\right\rfloor}(q)<B_{n,\left\lceil\frac{n}{2}\right\rceil}(q)
$$

and when n is odd, one has $B_{n, \frac{n-1}{2}}(q)<B_{n, \frac{n+1}{2}}(q)$.
According to [1, Proposition 3.10], one has

$$
\begin{equation*}
B_{n, k}(q)=q^{n} B_{n, n-k}\left(\frac{1}{q}\right) . \tag{11}
\end{equation*}
$$

Let $p=1 / q$. Comparison with (4) and (11) yields

$$
B_{n+1, k}(p)<B_{n+1, n+1-k}(p)<B_{n, k+1}(p) .
$$

Comparison with (5) and (11) yields

$$
B_{n+1, \frac{n}{2}}(p)<B_{n+1, \frac{n+2}{2}}(p)
$$

when n is odd. This completes the proof.

Acknowledgements.

We wish to thank the referees for invaluable comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grant number 12071063).

References

[1] F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417-441.
[2] W.Y.C. Chen, R.L. Tang and A.F.Y. Zhao, Derangement polynomials and excedances of type B, Electron. J. Combin. 16(2) (2009), \#R15.
[3] J. Fulman, G. B. Kim, S. Lee and T. K. Petersen, On the joint distribution of descents and signs of permutations, Electron. J. Combin. 28 (2021), P3.37.
[4] S.-M. Ma, J. Ma, J. Yeh and Y.-N. Yeh, Excedance-type polynomials and gamma-positivity. arXiv:2102.00899.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.
[6] X.-D. Zhang, On the spiral property of the q-derangement numbers, Discrete Math. 159 (1996), 295-298.

