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Abstract

Let P (k) denote the largest size of a non-collinear point set in the plane
admitting at most k distinct angles. We prove P (2) = P (3) = 5, and we
characterize the optimal sets. We also leverage results from Fleischmann
et al. [Disc. Comput. Geom. (2023)] to provide the general bounds k+2 ≤
P (k) ≤ 6k, although the upper bound may be improved pending progress
toward the Strong Dirac Conjecture. We conjecture that the lower bound
is tight, providing infinite families of configurations meeting the bound
and ruling out several classes of potential counterexamples.
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1 Introduction

1.1 Background

In 1946, Erdős [3] introduced the problem of finding asymptotic bounds on the
minimum number of distinct distances among sets of n points in the plane. The
Erdős distance problem, as it has become known, proved infamously difficult and
was only finally (essentially) resolved by Guth and Katz [8] in 2015.

The Erdős distance problem has also spawned a wide variety of related ques-
tions, including the problem of finding maximal point sets with at most k distinct
distances. Erdős and Fishburn [4] determine maximal planar sets with at most k
distinct distances. Recent results by Szöllősi and Österg̊ard [14] and Xianglin [15]
classify the maximal 3-distance sets in R4, 4-distance sets in R3, and 6-distance sets
in R2. Epstein et al. [12] and Brenner et al. [1, 2] investigate Euclidean point sets
with a low number of distinct triangles. In even more recent work, Fleischmann et al.
[6, 7] consider a number of angle analogues of distinct distance problems. Newfound
connections to frame theory and engineering have renewed interest in few-distance
sets [14].

Characterizing the largest possible point sets satisfying a given property is a clas-
sic problem in discrete geometry. As another example, Erdős and Kelly [5] introduced
the problem of finding maximal point sets of all isosceles triangles in 1947. Ionin [10]
completely answers this question in Euclidean space of dimension at most 7.

We study one variation of a related problem of Erdős and Purdy [11]. They ask
about A(n), the minimum number of distinct angles formed by n not-all-collinear
points in the plane. In general, the best-known bounds are n/6 ≤ A(n) ≤ n−2 [6, 7].
We consider the related problem of maximum size planar point sets admitting at most
k distinct angles in (0, π). Throughout, we ignore angles of 0 and π to adhere to the
convention in related research (see [13], for example), although we provide results
including the 0 angle as corollaries. We completely answer this question for k = 2
and k = 3 and note that the results of Fleischmann et al. [6] immediately imply
asymptotically tight linear bounds for k > 3. We conjecture that the computed
explicit lower bounds are tight, providing infinite families of tight examples and ruling
out several classes of potential counterexamples. In resolving this question for k = 2
and k = 3, we systematically consider all possible triangles in such configurations and
then reduce to adding points in a finite number of positions by geometric casework.
We classify all optimal configurations.

1.2 Definitions and Results

By convention, we only count angles of magnitude strictly between 0 and π. Our
computations still answer the related optimal point configuration questions including
0 angles (see Corollaries 3.6, 4.4). We begin by introducing convenient notation.

Definition 1.1. Let P ⊂ R2. Then

A(P) := #{|∠abc| ∈ (0, π) : a, b, c distinct, a, b, c ∈ P}.
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Now we define the quantity we are interested in studying.

Definition 1.2. For all k ≥ 1, define

P (k) := max{#P : P ⊆ R2, not all points in P are collinear, A(P) ≤ k}.

We first provide general linear lower and upper bounds for P (k). In particular,
we have the following theorem.

Theorem 1.3. For all k ≥ 1,

2k + 3 ≤ P (2k) ≤ 12k;

2k + 3 ≤ P (2k + 1) ≤ 12k + 6.

In the distance setting, the best known upper bound on the analogous parameter
is the quadratic (2 + k)(1 + k), and no lower bound is well-understood [14]. It is
therefore interesting and surprising that we find P (k) = Θ(k) in the angle setting.
We prove Theorem 1.3 in Section 2.

In fact, we conjecture that the lower bounds stated in Theorem 1.3 are sharp.
In Section 2, we describe several infinite families of point configurations meeting the
lower bound and rule out many classes of potential counterexamples (see Theorems
2.4, 2.7, 2.8).

Furthermore, we explicitly compute P (1), P (2), and P (3) and exhaustively iden-
tify all extremal point configurations for each.

Proposition 1.4. We have P (1) = 3, and the equilateral triangle is the unique
extremal configuration.

In order to have only a single angle, every triangle of three points in the configu-
ration must be equilateral. As this is impossible for point configurations that are not
the vertices of an equilateral triangle, P (1) = 3. P (2) and P (3) are considerably less
trivial quantities. We calculate P (2) and P (3) via exhaustive casework, simultane-
ously characterizing all of the unique optimal point configurations up to rigid motion
transformations and dilation about the center of the configuration. We proceed by
first considering sets of three points and then characterize the additional points that
may be added without determining too many angles. We prove Theorem 1.5 in
Section 3 and Theorem 1.6 in Section 4.

Theorem 1.5. We have P (2) = 5. Moreover, the unique optimal point configuration
is four vertices in a square with a fifth point at its center (see I in Figure 1).

Theorem 1.6. We have P (3) = 5. There are 5 unique optimal configurations, shown
in Figure 1.
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Figure 1: Optimal two and three angle configurations with α = π
5
, β =

2π
5
, γ = 3π

5
. Configuration I is the unique configuration on five points admit-

ting two distinct angles.

2 General Bounds

Although one may in principle calculate P (k) for small constant k by extensive
casework (as we later calculate P (2), P (3)), it quickly becomes overwhelming. As
such, we instead provide general bounds on P (k). We conjecture that our lower
bound is tight, providing several infinite families of point configurations meeting the
bound. We also prove several results limiting the set of candidate counterexample
configurations.

In [6] the authors study the quantity A(n), the minimum number of angles ad-
mitted by a non-collinear point set of n points in the plane. They show in Lemma
2.2 and Theorem 2.5 that n/6 ≤ A(n) ≤ n−2. As mentioned in [6], the lower bound
may be improved pending progress toward the Strong Dirac Conjecture.

Conjecture 2.1 (Strong Dirac Conjecture). For some c0 > 0, every set P of non-
collinear points in the plane contains a point incident to at least

⌊
n
2

⌋
− c0 of the lines

formed by the points in P.

Let `(n) be the best known lower bound on this quantity. Then, from Lemma 2.2

of [6], `(n)−1
2
≤ A(n). By a result of Han [9], we know `(n) ≥

⌈
n
3

⌉
+ 1. Indeed, this is

where the lower bound n/6 ≤ A(n) arises from. Now, since A(n) ≤ n − 2, we have
n ≥ A(n) + 2, and so we deduce that P (k) ≥ k + 2. Similarly, we have P (k) ≤ 6k.
Resolution of Conjecture 2.1 would improve the upper bound in Proposition 2.2 to
4k + 2c0 + 3. Combining these bounds gives the following result.

Proposition 2.2. k + 2 ≤ P (k) ≤ 6k.

This implies all bounds in Theorem 1.3 except for the bound 2k+ 3 ≤ P (2k). As
stated in Remark 2.3 of [6], the point configuration of a regular 2n-gon with a point
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added in the center admits precisely (n−2) distinct angles. The added central point
does not increase the number of distinct angles beyond that of the 2n-gon. This
implies that 2k + 3 ≤ P (2k). Configuration I in Figure 1 gives an example of this
configuration starting from a regular 4-gon.

In fact, we conjecture that our lower bound constructions have the maximum
number of possible points.

Conjecture 2.3. The lower bound on P (k) in Theorem 1.3 is tight. Namely,
P (2k) = 2k + 3 and P (2k + 1) = 2k + 3 for all k ≥ 1.

Via the correspondence between A(n) and P (k), a resolution of Conjecture 2.3
would amount to finding the optimal bounds of A(n), thereby resolving a longstand-
ing conjecture of Erdős and Purdy [11] and an open problem from [6]. Nonetheless,
we provide some supporting evidence for Conjecture 2.3.

2.1 Tight Examples

We describe several infinite families of point configurations that meet the lower bound
of Conjecture 2.3. For P (2k), the vertices of a regular (2k+2)-gon with a point added
in the center admit exactly 2k distinct angles. Another example is the stereographic
projection of a regular (2k+ 2)-gon onto a line (see Theorem 2.8 and Figure 3), with
the reflection of the point off the projected line added as a (2k + 3)rd point.

For P (2k+1), there are several more examples. Of course, the two configurations
above admit 2k ≤ 2k + 1 distinct angles and have 2k + 3 points. These both
correspond to I in Figure 1. In addition, the regular (2k+ 3)-gon and the projection
of the regular (2k+ 3)-gon onto a line (see Theorem 2.8 and Figure 3) admit exactly
2k + 1 distinct angles. These correspond to II and III of Figure 1, respectively.

2.2 Restrictions on Counterexamples

Now we prove that several large classes of point configurations cannot serve as coun-
terexamples to Conjecture 2.3. We begin with a simple theorem.

Theorem 2.4. Let P ⊂ R2 with |P| = n. If there exists p ∈ P such that p is on the
convex hull of P and shares no line with two other points in P, then A(P) ≥ n− 2.

Proof. Consider the angles formed with p as the apex. Let q be the next point in P
on the convex hull, moving in a counterclockwise fashion. Now, consider all of the
n−2 angles formed with p as the apex and q one of the legs. Since p is on the convex
hull of P and shares no line with two other points in P , these n − 2 angles can be
ordered such that each one is strictly contained in the next. See Figure 2. Namely,
they are all distinct and A(P) ≥ n− 2, as desired.

As a consequence, any counterexample point configuration to Conjecture 2.3 must
not satisfy the conditions of Theorem 2.4. As a corollary, this resolves the problem
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Figure 2: Choice of p and q inducing n − 2 distinct angles. The third legs
of the angles are marked r1, r2, etc. according to the ordering of the angles
they induce.

completely for point configurations with no three points on a line, answering an open
problem from [6].

Corollary 2.5. We have Ano3l(n) = n− 2, where Ano3l(n) is the minimum number
of distinct angles formed by P ⊆ R2 with |P| = n and no three points in P sharing
a line.

To further restrict the classes of possible counterexamples to Conjecture 2.3, we
begin with a constraining lemma.

Lemma 2.6. Given a sequence of n positive integers, x1, x2, . . . , xn, there are at least
n distinct sums of consecutive subsequences. Moreover, there are exactly n distinct
sums of consecutive subsequences if and only if xi = xj for all i 6= j.

Proof. First, the number of distinct sums of consecutive subsequences is evidently
at least n since x1, x1 + x2, . . ., x1 + x2 + · · ·+ xn are all distinct. Now suppose that
not all xi’s are equal. Namely, suppose that xj 6= x1 and is the first element of the
sequence to differ from x1. Then, observe that x2 + x3 + · · ·+ xj < x1 + x2 · · ·+ xj
and x2 + x3 + · · · + xj > x1 + x2 · · · + xj−2 since x1, xj > 0. Then, since xj 6= x1,
x2+x3+· · ·+xj 6= x1+x2+· · ·+xj−1. Hence, there are at least n+1 distinct sums of
consecutive subsequences, yielding the forward implication. The reverse implication
is clear.

As a first application of Lemma 2.6, we show that the regular n-gon is a partic-
ularly special low angle point configuration.

Theorem 2.7. Let P ⊂ R2 with |P| = n, each point of P on the convex hull of P,
and no three points in P on a line. Then, A(P) ≥ n− 2. Moreover, A(P) = n− 2
if and only if the points in P form the vertices of a regular n-gon.

Proof. Fix some point p. Label the remaining points x1, . . ., xn−1, in clockwise order
around the convex hull starting at p. Let αi = ∠xipxi+1. The angles formed with p as
the apex are precisely the distinct sums of consecutive subsequences of α1, . . . , αn−2.
By Lemma 2.6, A(P) ≥ n− 2. Suppose A(P) = n− 2. Then, again by Lemma 2.6,
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αi = αj for all i 6= j. Moreover, the value of the angles formed cannot depend on
the choice of p. Then, consider 4x1pxn−1. We know that ∠x1pxn−1 = (n − 2)α,
∠px1xn−1 = α, and ∠pxn−1x1 = α. Hence, α = π/n and the points in P form the
vertices of a regular n-gon, as desired.

We now show that the only n-point configurations with n−1 points on a line and
(at most) n− 2 distinct angles are the stereographic projections of regular polygons
onto a line, as in III of Figure 1. See Figure 3 for examples for small n.

Figure 3: Point configurations for Theorem 2.8 with n = 5 and n = 6.

Theorem 2.8. Let P ⊂ R2 with all but one point on a single line. If |P| = n, then
A(P) ≥ n−2. Moreover, A(P) = n−2 if and only if P is the stereographic projection
of a regular polygon onto a line, with the line being tangent to the circumcircle at a
vertex of the polygon for n even or coincident to an edge of the polygon for n odd.

Proof. Let p ∈ P be the point off of the line. Without loss of generality, assume
that the x-axis is the line. Then, let x1 be the point in P on the x-axis with the
most negative x-coordinate. Label the remaining points in P from x2, . . . , xn−1 in
increasing order of their x-coordinates. Now, observe that the distinct angles formed
with p as the apex are exactly given by the distinct sums of consecutive subsequences
of ∠x1px2, ∠x2px3, . . ., ∠xn−2pxn−1. Hence, by Lemma 2.6, A(P) ≥ n− 2.

Now, suppose that A(P) = n−2. Then, again, by Lemma 2.6, we have that each
of these angles must be equal to some α, and the n− 2 angles formed with p as the
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apex are α, 2α, . . . (n−2)α. Next, assume without loss of generality that dn−1
2
e points

on the lines have x-coordinate at most the x-coordinate of p. Then, observe that the
sequence ∠px1x2,∠px2x3, . . .∠pxdn−1

2
exdn−1

2
e+1 is strictly increasing. Moreover, the

sequence ∠px2x1,∠px3x2, . . .∠pxdn−1
2
exdn−1

2
e−1 of supplementary angles to the first

sequence is strictly decreasing. The angles in the former sequence are all at most
π/2 and in the latter are all at least π/2 since the x coordinates of these points are
at most that of p.

If n is even, then dn−1
2
e = n/2. In this case, there are at least n/2 + n/2 − 1

angles. To get n− 2 distinct angles, the angle π/2 must be repeated. As such, there
are n/2− 1 points with x-coordinate at most that of p, one point sharing the same
x-coordinate as p, and the remaining n/2− 1 points with x-coordinate at least that
of p. If n is odd, there cannot be an angle of π/2 or else, without loss of generality,
there are (n + 1)/2 points with x-coordinate at most that of p. Then, the same
sequences induce at least n− 1 distinct angles.

Namely, if n is even, we then have that the sequence ∠px1x2, ∠px2x3, . . .
∠pxdn−1

2
exdn−1

2
e+1 is precisely α, 2α, . . . , nα/2 = π. The sequence of supplementary

angles is then (n − 2)α, (n − 3)α, . . . , π. If n is odd, the sequences are α, 2α, . . .
(n− 1)α/2 and (n− 2)α, (n− 3)α, . . . , (n+ 1)α/2, respectively.

To show that these configurations are exactly the stereographic projection of a
regular polygon onto a line, it remains to show that α = π/n. But consider the
triangle 4px1xn−1. First, ∠x1pxn−1 = (n − 2)α. By the above and by symmetry,
∠px1xn−1 = ∠pxn−1x1 = α. Hence α = π/n, yielding the desired result.

3 Proof of Theorem 1.5

Proof. In any valid point configuration with at least three points there are triangles.
For any point configuration with at most two angles, all triangles must be isosceles.
We divide into two cases based on whether or not there is an equilateral triangle.
Unless otherwise specified, when considering points belonging to some region, we
consider the interior of that region. Oftentimes the boundaries must be treated
separately.

3.1 There is an equilateral triangle

We begin by considering point configurations with three of the points forming an
equilateral triangle.

Claim 3.1. In any configuration of four not all collinear points with three forming
an equilateral triangle, there are at least three distinct angles.

Proof. We consider adding a fourth point in cases (Figure 4).

Case 1: p ∈ A. Then ∠acp < π/3 and ∠cap > π/3, leading to more than two
angles.
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Figure 4: The regions for an equilateral triangle.

Case 2: p ∈ ab. Then ∠bcp < π/3 and one of ∠cpb and ∠apc ≥ π/2, leading to
more than two angles.

Case 3: p ∈ ac~

~

to the upper-right of a. Then ∠cbp > π/3 and ∠cpb < π/3, again
leading to more than two angles.

Case 4: p ∈ B. In this case, ∠cbp > π/3 and ∠cpb < π/3, leading to more than
two angles.

Case 5: p is in the interior of 4abc. In this case, one of ∠apb,∠bpc,∠cpa ≥ 2π/3
and ∠acp < π/3, leading to more than two angles.

Up to symmetry, these cases are exhaustive. Thus if there is an equilateral
triangle in the configuration, there can only be at most three points.

3.2 There is no equilateral triangle

Now, let a, b, and c be the vertices of an isosceles triangle with base angle β and
α the apex vertex. We reduce the number of possibilities for additional points by
partitioning the plane into regions Ai (Figure 5). Note that we may without loss of
generality assume that no fourth point is added within the interior of 4abc as we
could then choose one of the resultant interior triangles as our initial triangle. Also
note that A1 and A′1, A3 and A′3, and ac~

~

and ab~

~

are equivalent up to symmetry.

Claim 3.2. No additional points may be added in A1, A
′
1, A2, A

′
2, A3, or A′3 without

inducing a third distinct angle.

Proof. We treat each case separately, appealing to symmetry for A′1, A
′
2, and A′3.

Case 1: p ∈ A1. In this case, ∠pab > α and ∠pcb > β. So, regardless of whether
α or β is greater, adding p introduces an additional angle. So, no additional points
can be in A1.

Case 2: p ∈ A2. In this case, ∠pcb and ∠pbc are greater than β, so both must be α
to not add additional angles. But then ∠cpb = π − 2α 6= β. Then, in order to not
add additional angles, we must have 3α = π. But, this implies 4pcb is an equilateral
triangle. Thus no points may be added in A2.
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Figure 5: The regions for an isosceles triangle.

Case 3: p ∈ A3. In this case, ∠bap > α and ∠abp > β, so there is an additional
angle added regardless and no additional points are possible.

This completes the proof of the claim.

A point may be added in the remaining regions, but the placement of that point
heavily restricts the point configuration.

Claim 3.3. If p ∈ A4, then acpb is a square.

Proof. The conditions of Theorem 2.7 apply, so, in order for the point configuration
to have two distinct angles, acpb must be a square.

Claim 3.4. If p ∈ bc~

~

, then β = π/4, α = π/2, and p is the midpoint of edge bc.

Proof. This is immediate by Theorem 2.8 since the projection of a onto bc~

~

must be
the midpoint of the edge bc since 4abc is isosceles.

Claim 3.5. If p ∈ ac~

~

, then β = π/4, α = π/2, and 4cbp is an isosceles right triangle
with b the apex vertex, p on ac~

~

to the upper right of a, and a at the center of side pc.

Proof. This will again follow from Theorem 2.8. Since ∠acb < π/2, the projection of
b onto ac~

~

cannot be at c. By Theorem 2.8, the projection must then either be a or
p. If the projection is at a, the desired result holds. If the projection were at p, then
p would have to be the midpoint of ac and β = π/2, contradicting the assumption
that 4abc is isosceles.

As such, in order to add additional points to an isosceles triangle point configu-
ration without adding additional angles, we must have α = π/2 and β = π/4. The
four additional possible points are marked in Figure 6.
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Figure 6: Compatible points with the right triangle.

Note that ∠x4ax1,∠x4ax2 > π/2. So, x4 cannot be in the same point configu-
ration as x1 or x2. The same follows for x3. However, we may have both x1 and
x2 or both x3 and x4, either of which give the unique extremal configuration I in
Figure 1.

Corollary 3.6. If the trivial 0-angle is included in the count, then P (2) = 4 and the
unique configuration is the square.

Proof. The only 5-point configuration no longer holds when we count the 0-angle.
Figure 6 displays all valid four point configurations which define only 2 angles ex-
cluding 0, as detailed in the proof of P (2). All the shown points but x4 define a
0-angle, so the only valid 4-point configuration is the square.

4 Proof of Theorem 1.6

Lemma 4.1. Let abcd be a convex quadrilateral defining three angles or fewer. Then,
they form one of the three configurations of Figure 7, where 5.1 is a rectangle, 5.2
is two attached equilateral triangles, and 5.3 is four of the five vertices of a regular
pentagon.

Proof. If all the angles of the quadrilateral are π/2, we are in the case of Figure 5.1.
Then we may assume that there is at least one obtuse angle, γ, and one acute angle,
β. Any angle α formed by splitting β is less than β and thus must be exactly β/2 so
as not to create two additional angles for a total of four. These three angles α = β/2,
β, γ are then exactly the three angles in the configuration. Now we consider each
of the four cases of placing β and γ about the quadrilateral, with the first listed
angle corresponding to vertex a, the second to b, and so on, and with a, b, c, and d
in clockwise cyclic order.
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Figure 7: Configurations of points in a convex quadrilateral defining at most
three distinct angles.

Case γβγβ: Equal opposite angles implies that the quadrilateral is a parallelogram.
The fact that bd bisects the two β angles implies that abcd is in fact a rhombus.
Thus, ac also bisects the γ angles, implying that γ/2 = β. So, 6β = 2π and
α = π/6, β = π/3, and γ = 2π/3 in this case. Given that abcd is a rhombus,
the configuration in this case is similar to Figure 5.2.

Case γγββ: Note that we have γ + β = π from the angle sum of the quadrilateral.
This implies that ab and cd are parallel. So, by analyzing the alternate interior
angles given by the transversal ac, we have γ = α + (γ − α), where α = ∠cab and
γ−α = ∠cad. Thus, γ−α = β and 3β/2 = γ, so α = π/5, β = 2π/5, and γ = 3π/5.
Then by considering isosceles triangles dab and abc, we see that segments da, ab, and
bc are all of equal length. Thus, the configuration is similar to Figure 5.3 in this
case.

Case γγγβ: Diagonal bd bisects the angle β. Then, since the sum of the angles of
4bcd and 4abd are both π and β 6= γ, we must have ∠abd = ∠dbc = β/2. The
diagonal ac must then also bisect angles ∠dab and ∠dcb or else yield more than three
distinct angles. But then, 3β = π = 4β from the angle sums of 4acd and 4abc, a
contradiction.

Case βββγ: By an argument analogous to the previous case, we must have that
diagonal bd bisects the angle γ at d and ∠abd = ∠dbc = β. But then, 4α = π = 6α
by looking at the angle sums of 4abd and 4bcd, a contradiction.

To handle the configurations without convex quadrilaterals, we will make use of
the following proposition.

Proposition 4.2. Let a, b, c, d be points such that d is contained in the interior of
4abc and the configuration induces at most three distinct angles. Then, 4abc must
be equilateral and d must be in the center of 4abc.

Proof. Note that ∠adb > ∠acb > ∠acd. This is similarly true of ∠bdc,∠bac,∠bad
and of ∠adc,∠abc,∠abd. Symmetry and the maximum of three distinct angles then
allows the completion of all angles in the configuration, finishing the proof. See
Figure 8.
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Figure 8: Triangular configuration resultant from Proposition 4.2.

Lemma 4.3. Let a, b, c, d, and E be five points such that their convex hull is 4abc,
no four of them form a convex quadrilateral, and the configuration induces at most
three distinct angles. Then there is only one possible configuration (namely, the stere-
ographic projection of the points of a regular pentagon onto a line, III of Figure 1).

Proof. We proceed by casework on the number of points in the interior of 4abc.
Case 1: No points in the interior of 4abc. If neither d nor e are in the interior
of 4abc then, since the convex hull of the five points is 4abc, d and e must both
be on the edges of 4abc. If they are not on the same side of the triangle, then the
quadrilateral formed by d, e, and the ends of the edge which neither d nor e lie on is
convex, yielding a contradiction.

Now, suppose without loss of generality that d and e lie on ab with the order of
the points being a, d, e, and then b. Three distinct angles are immediately induced in
this case. Namely, ∠acd = α < ∠ace = β < ∠acb = γ. Since the difference between
each pair of angles is also induced by this configuration, we have that β = 2α and
γ = 3α. Since ∠adc > ∠aec > ∠abc, we have ∠adc = γ,∠aec = β, and ∠abc = α.
This is similarly true of ∠ceb,∠cdb, and ∠cab by symmetry. Thus, the angle sum of
4acb implies 5α = π and thus α = π/5, β = 2π/5, and γ = 3π/5. So, in this case
the points are configuration of III of Figure 1.

Case 2: One point in the interior of 4abc. Suppose without loss of generality
that d is the point along an edge of 4abc, say ab. Then, e is in the interior of 4abc.
Now e must be on cd or else one of adec or bced is a convex quadrilateral.

Now, from Proposition 4.2, 4abc must be equilateral and e must be the center
of the triangle. This induces angles of π/6, π/3, 2π/3. However, d and e form a
right angle, yielding more than three distinct angles. Hence, there are no valid
configurations in this case.

Case 3: Both points in the interior of 4abc. From Proposition 4.2, 4abc must
be equilateral and both d and emust be the center of the triangle, a contradiction.

Now we exhaustively check the points that may be added to the configurations
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given by Lemmas 4.1 and 4.3. All valid configurations of five points inducing at
most three distinct angles arise from either adding a point to a configuration from
Lemma 4.1 or the configuration given in 4.3. This is because the convex hull of the
configuration must have at least three vertices (by definition of P (k)) and, if the
convex hull has five vertices, any four of the vertices forms a convex quadrilateral.

Figure 5.1: Consider adding a point to the configuration shown in Figure
5.1, with the angles formed by the vertices of the rectangle being α < β < γ with
α + β = γ = π/2. Label the vertices of the rectangle shown in 5.1 of Figure 7 as a,
b, c, and d starting from the top left as a and proceeding clockwise. Then, if a point
e is added in the exterior of abcd, it will form an obtuse angle with one edge of the
angle being a side of the rectangle. For example, if e is added below cd, then ∠bce
is obtuse. If e is added to edge ab, then ∠deb is obtuse. It will similarly induce an
obtuse angle if it is added to any other edge. Finally, if e is added to the interior
of abcd, then the only way e may be added without inducing an obtuse angle is if
all the segments from e to the vertices of the rectangle form angles of π/2 with each
other at e. However, this would imply that the diagonals of abcd intersect at e at a
right angle, implying that abcd is a square.

So, the only valid configurations require that abcd form a square. Moreover, if
abcd form a square, we can still not induce any obtuse angles. This is because the
other two angles in any triangle with an obtuse angle could not both be π/4 (and
cannot be π/2), yielding more than three distinct angles. Thus, the only extremal
configuration in this case is adding a fifth point e as the centerpoint of a square, I
of Figure 1.

Figure 5.2: In Figure 5.2, the angles are all determined: α = π/6, β = π/3, and
γ = 2π/3. Let the points a, b, c, and d be in clockwise order around the configuration
such that ac is the segment dividing the two equilateral triangles. In order to not
contradict Lemma 4.1, any added point must be in the interior of the rhombus (no
point may be added to decrease the number of vertices in the convex hull since abcd
is a parallelogram). In order for e to not yield any angles smaller than α, e must be
in the center of 4abc or 4cda. However, in either case, this yields a new angle of
π/2. So, no points may be added in this case.

Figure 5.3: As in Figure 5.2, the angles in Figure 5.3 are all determined: α =
π/5, β = 2π/5, and γ = 3π/5. Label the points abcd clockwise starting from the top
left as in the diagram of 5.3 in Figure 7. In order to not violate Lemma 4.1, any
added point must be in the interior of abcd, must result in a triangular convex hull,
or must be outside of abcd and have every convex quadrilateral in the configuration
an instance of Figure 5.3. In the former case, in order to not add an angle smaller
than α, e must be added at the intersection of ac and bd. In the second case, e must
be added at the intersection of ad~

~

and bc~

~

. In the last case, the configuration with the
added point cannot have a convex hull of a quadrilateral, as that quadrilateral could
not be an instance of Figure 5.3. Thus, it must be a pentagon. In order to guarantee
that every convex quadrilateral in the configuration is a copy of Figure 5.3, it must
be regular. All three configurations (II, IV, and V of Figure 1) are valid, but are
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not mutually compatible as adding multiple of these points would form an angle of
magnitude less than α.

III of Figure 1: As in Lemma 4.3, suppose that the convex hull of the configu-
ration is 4abc with d and e on ab such that the points are in the order a, d, e, and
then b.

If another point were added to this configuration, either the convex hull would
remain a triangle or there would be four points which form a convex quadrilateral.
In the former case, no point could be in the interior of a triangle, as that would
force the angles to be as in Proposition 4.2, which they are not. Thus, an additional
added point would have to be placed on an existing edge. It could not be placed
on ab, as it would split an angle of α. If it were placed on ac or bc it would form
a convex quadrilateral with c, d, and e. Given the induced values of the angles in
this case, that quadrilateral would have to be similar to the configuration in Figure
5.3. However, from the prior casework, no configuration containing a similar copy of
Figure 5.3 may have more than five points. Hence, the only extremal configuration
in this case is III of Figure 1.

Therefore, P (3) = P (2) = 5, with five optimal configurations as in Figure 1.

Corollary 4.4. If the trivial 0-angle is included in the count, then P (3) = 5, and
the square with the center-point and the regular pentagon are the only valid configu-
rations.

Proof. Since this is a more restricted setting, the set of valid five-point configurations
be a subset of the configurations identified above. By direct inspection, the square
with the center-point and the pentagon are the only of the five in Figure 1 which
define only three angles. All the others define three angles greater than zero and also
the 0-angle by collinearity.

5 Future Work

While it seems possible to compute P (k) by exhaustive casework for higher values
of k, the casework quickly becomes overwhelming. Nonetheless, as is visible from
the applications of Theorems 2.7 and 2.8 in Section 3, stronger general structural
restrictions could facilitate such a pursuit.

An important future direction is the resolution of Conjecture 2.3. Given the sup-
porting evidence provided in Section 2, we believe that future work should improve
the upper bound of P (n) ≤ 6n, either via progress towards the Strong Dirac Conjec-
ture (which would still fall short of our conjecture) or by some other means. There
is significant room for ruling out broad swaths of potential counterexamples.

Alternatively, future research may find a more efficient method of constructing
viable point sets without the need for the exhaustive search we perform. It is also
an open problem to investigate P (k) with point sets in more than two dimensions.
Low angle configurations using variations of Lenz’s construction, as in [6], may yield
insight into optimal structures in higher dimensions.
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