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Abstract

Let F be a family of n unit discs in the plane, where n is odd. A
well-known open problem seeks to determine the minimum (over all such
families F) possible area OA(F) of all the points in the plane that belong
to an odd number of discs in F . In this paper we show that if F is a
family of n unit discs in the plane whose centers lie on a circle of radius r
where 0 ≤ r ≤ 1, centered at the origin, then OA(F) ≥ π. Furthermore,
we show that as we push the discs in F towards the origin, keeping their
centers on a circle centered at the origin, the function OA(F) decreases.
Additionally, we provide a separate proof for the interesting case of r = 1
using completely different ideas.

One of the key tools we use is a new trigonometric inequality that is
of independent interest. For a fixed odd integer n ≥ 3 and 0 ≤ α0 ≤
α1 ≤ . . . ≤ αn−1 ≤ 2π, we show∑

0≤i<j<n
(−1)j−i+1 sin(αj − αi) ≥ 0.

1 Introduction

For a family F of measurable sets in the plane we define OA(F) to be the area of
the set of all points in the plane that belong to an odd number of members in F (see
Figure 1).

With a slight abuse of notation, for a measurable set B we denote by OA(B)
the odd area of B. This is defined to be the infimum of OA(F) over all families F
consisting of an odd number of translates of the set B. The notion of odd area was
defined in [3]. It emerged from an Olympiad problem suggested by Uri Rabinovich
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Figure 1: A family F of 5 unit discs. The area in gray is covered an odd
number of times.

in [6]. See also [1, 5] for more results related to the notion of odd area of sets in the
plane.

The question of finding the odd area of the unit disc in the plane was suggested
by Igor Pak. It appears as an (unsolved) Exercise 15.14 in [2]. This is perhaps the
most exciting problem about odd area. The reason for this is because for discs the
problem is very symmetric and also because practically nothing until now is known
about the odd area of the unit disc, despite considerable effort.

Problem A. Given a family F of an odd number of unit discs in the plane, is it
true that OA(F) ≥ π?

The work of the second author in [4] gives necessary geometric and analytic
conditions for a family of discs F such that OA(F) has a local minimum in the sense
that any small shift of any of the discs in F will increase OA(F). It is further shown
in [4] that if F is a family of an odd number of unit discs such that the intersection
of all discs in F is a convex region whose boundary is composed of boundary parts
of all discs in F , then OA(F) ≥ π. A special case of this result is the case where the
centers of the discs in F lie on a circle of radius 0 < r < 1. In the current paper we
concentrate only on this special case and present several contributions beyond the
results in [4]. We provide a different proof showing that OA(F) ≥ π if the centers
of the discs in F lie on a circle of radius 0 < r < 1. Our proof, which relies on the
first part of [4], in fact preceded the work in [4] showing this very fact.

Our main theorem, which we prove in Section 3, is in fact stronger and shows
much more than what is shown in [4] about the case where the centers of the discs in
F lie on a circle of radius 0 < r < 1. We show that the odd area of the family F is
monotone increasing in r in the interval 0 < r < 1. Interestingly, this monotonicity
does not necessarily exist for r > 1. More precisely, our main theorem is the following:

Theorem 1. Let n be an odd positive integer and 0 ≤ α0, . . . , αn−1 ≤ 2π be fixed.
For every 0 ≤ r define f(r) to be equal to OA(F), where F is the family of unit
discs centered at (r cosαj, r sinαj) for j = 0, . . . , n − 1. Then f(r) is a monotone
increasing function of r for 0 < r < 1.
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We remark that an immediate consequence of Theorem 1 is that OA(F) ≥ π for
any family F of odd number of unit discs centered at points on a circle of radius
0 ≤ r ≤ 1. This is because the function f(r) in Theorem 1 is continuous and clearly
limr→0+ f(r) = π because n is odd.

In particular we conclude that f(1) ≥ π. In Section 4 we give an independent
proof of this fact using completely different ideas, not related in any way to those in
[4], that we hope may help in obtaining future progress on Problem A. The proof is
more elementary and very elegant and suggests further ideas for study.

Theorem 2. Let F be a family of an odd number of unit discs centered at points on
a circle of radius 1 (see Figure 2). Then OA(F) ≥ π. Equality is possible only if F
consists of pairs of identical unit discs plus another unit disc.

Figure 2: A family F of 5 unit discs whose centers lies on a common unit circle.

Our proof of Theorem 1 is based on the following independently interesting
trigonometric inequality whose proof we bring in Section 2.

Lemma 1. Let n ≥ 3 be a fixed odd integer. Assume 0 ≤ α0 ≤ α1 ≤ . . . ≤ αn−1 ≤
2π. Then ∑

0≤i<j<n
(−1)j−i+1 sin(αj − αi) ≥ 0.

We conclude this article with two examples. The first is an example of a family F
of discs whose centers lie on a unit circle and which satisfies the analytic conditions
required for a local minima as proved in [4]. This example motivated our study of
collections of discs whose centers are located on a circle. The second example shows
that f(r) is not necessarily monotone when r > 1 and encourages further work on
this case.

2 Proof of Lemma 1.

We prove the lemma by induction on n. For n = 3 the statement can be inter-
preted geometrically by considering the three unit vectors v0, v1, and v2 in directions
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α0, α1, and α2, respectively. Then the sum
∑

0≤i<j<n sin(αj − αi)(−1)j−i+1 is equal
to sin(α1−α0) + sin(α2−α1)− sin(α2−α0). It is enjoyable to verify that as long as
0 ≤ α0 ≤ α1 ≤ α2 this is twice the area of the triangle with vertices v0, v1, and v2.

Assume n > 3 (hence, n ≥ 5). Consider 0 ≤ α0 ≤ . . . ≤ αn−1 ≤ 2π such that∑
0≤i<j<n sin(αj − αi)(−1)j−i+1 is minimum. Notice that this minimum must be

attained when α0 < . . . < αn−1. This is because if say αk = αk+1, then we can
omit both indices k and k+ 1 and conclude by the induction hypothesis for the case
n − 2. This is because if αk = αk+1, then the terms involving αk and αk+1 in the
sum

∑
0≤i<j<n sin(αj − αi)(−1)j−i+1 cancel each other.

Consider now any fixed index 0 ≤ k < n. For convenience define α−1 = αn−1−2π
and αn = α0 + 2π. We think of αk as a variable x where αk−1 ≤ x ≤ αk+1. Let
fk : [αk−1, αk+1]→ R be the function defined by

fk(x) =
∑

0≤i<j<n,i,j 6=k
sin(αj − αi)(−1)j−i+1

+
∑
k<j

sin(αj − x)(−1)j−k+1 +
∑
i<k

sin(x− αi)(−1)k−i+1

=
∑

0≤i<j<n,i,j 6=k
sin(αj − αi)(−1)j−i+1

+
∑
k<j

sin(αj − x)(−1)j−k+1 −
∑
i<k

sin(αi − x)(−1)k−i+1.

Notice that we would like to show that fk(αk) ≥ 0. We will show something
even stronger. We will show that fk cannot have a minimum in the open interval
(αk−1, αk+1). It will follow then that fk must have a minimum either at x = αk−1 or
at x = αk+1.

By our assumption, fk has a minimum at x = αk. Because αk−1 < αk < αk+1,
we must have f ′k(αk) = 0. Moreover, we must also have f ′′k (αk) ≥ 0.

We observe that

f ′k(αk) =
∑
k<j

cos(αj − αk)(−1)j−k −
∑
i<k

cos(αi − αk)(−1)k−i. (1)

f ′′k (αk) =
∑
k<j

sin(αj − αk)(−1)j−k −
∑
i<k

sin(αi − αk)(−1)k−i. (2)

The equations above allow us to conclude that f ′′k (αk) > 0 (strictly greater).
Indeed, this is because the function fk has periodic derivatives of order 4 and
f (1)(αk) = −f (3)(αk) = 0 and f (2)(αk) = −f (4)(αk). If we assume to the con-
trary that f ′′k (αk) = 0, then it will follow that all the higher derivatives of fk vanish
and therefore fk is constant. In such a case we are done.

In order to reach a contradiction we consider the unit vectors v0, . . . , vn−1 ∈ R2

defined by vj = (cosαj, sinαj).
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Figure 3: The vectors Uk, Uk+1, vk, and vk+1.

Equations (1) and (2) and the fact that f ′k(αk) = 0 and f ′′k (αk) > 0 imply that if
we rotate the vector Uk =

∑
k<j vj(−1)j−k −∑

j<k vj(−1)j−k by angle αk about the
origin in the clockwise direction, the resulting vector will have x-coordinate equal to
0 and positive y-coordinate. This implies that if we rotate Uk by angle π

2
about the

origin in the clockwise direction, the resulting vector is a positive multiple of vk.

Consider now also the vector

Uk+1 =
∑
k+1<j

vj(−1)j−(k+1) −
∑

j<(k+1)

vj(−1)j−(k+1).

Here we may conclude in the same way that if we rotate Uk+1 by angle π
2

about the
origin in the clockwise direction, the resulting vector is a positive multiple of vk+1

(see Figure 3).

Observe that Uk + Uk+1 = vk − vk+1. This is geometrically impossible. It is
easily seen when αk+1 − αk <

π
2
, which we may indeed assume as we can choose

such k because n ≥ 5. In this case Uk + Uk+1 is to the left of vk+1 (in the sense that
det(vk+1, Uk+Uk+1) > 0) while vk−vk+1 is to the right of vk+1 (that is, det(vk+1, vk−
vk+1) < 0). �

3 Proof of Theorem 1.

The proof of Theorem 1 goes by computing f ′(r) and using Lemma 1 to show that
f ′(r) ≥ 0. Let g(x0, y0, . . . , xn−1, yn−1) be the function of 2n variables that is equal
to the odd area of the family of n unit discs centered at (x0, y0), . . . , (xn−1, yn−1),
respectively.
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We use the result in [4] to calculate the partial derivatives of g at (x0, y0, . . . ,
xn−1, yn−1) = (r cosα0, r sinα0, . . . , r cosαn−1, r sinαn−1).

For a circle C and two points A and B on C we denote by C(A,B) the arc
on C that starts at A and goes counterclockwise to B. We define a function g by
letting g(x0, y0, . . . , xn−1, yn−1) denote the odd area of the n unit discs centered at
(x0, y0), . . . , (xn−1, yn−1). The main theorem in [4] states as follows:

Theorem 3 ([4]). Let C = {C0, . . . , Cn−1} be a family of unit circles centered at the
pairwise distinct points v0 = (x0, y0), . . . , vn−1 = (xn−1, yn−1), respectively. Consider
a fixed index 0 ≤ i ≤ n − 1 and let m be the number of circles from C \ {Ci} that
intersect Ci. Let u0, . . . , u2m−1 denote the intersection points, with multiplicities, of
Ci with the m circles in C \ {Ci} that intersect Ci (notice that the number of these
intersection points must indeed be 2m, as we count touching points on Ci twice, if
there are any). We index the points u0, . . . , u2m−1 according to their counterclockwise
cyclic order on Ci.

Then (− ∂g
∂yi
, ∂g
∂xi

) is equal to 2M
∑2m−1

j=0 (−1)juj, where M is equal either to +1,

or to −1. M = +1 if the region bounded by Ci and adjacent to the arc of Ci(u0, u1)
belongs to an even number of discs bounded by C1, . . . , Cn. Otherwise, M = −1.

In the statement of Theorem 3 we assume without loss of generality that u0 6= u1,
otherwise m = 0, or m = 1 and u0 = u1 and the theorem is almost trivially true.

To be consistent with the notation in Theorem 3, for 0 ≤ j < n denote by Cj the
unit circle centered at (r cos θj, r sin θj). Fix 0 ≤ i < n. Consider the intersection
points of Ci with the other unit circles Cj. The crucial observation is that because
we assume 0 < r < 1, then Ci intersects at two points with every Cj where j 6= i.

Let Z denote the point ((r+ 1) cos θi, (r+ 1) sin θi). Notice that Z lies on Ci and
it does not belong to unit discs bounded by Cj for j 6= i.

For every j 6= i denote by Aj and Bj the two intersection points of Ci and
Cj such that Z,Bj, Aj is the counterclockwise cyclic order of these three points
on Ci. We observe (and leave the reader to verify this easy fact, which is also
shown in more generality in [4]) that the following counterclockwise cyclic order
Z,Bi+1, Bi+2, . . . , Bn−1, B0, B1 . . . , Bi−1, Ai+1, Ai+2, . . . , An−1, A0, A1 . . . , Ai−1 is the
counterclockwise cyclic order of these points on Ci (see Figure 4).

We take u0 = Bi+1 in Theorem 3. Then M = 1 in Theorem 3 because u1 = Bi+2

and points bounded by Ci very close to the arc Ci(u0, u1) = Ci(Bi+1, Bi+1) are
covered precisely twice: by the unit discs bounded by Ci and Ci+1, respectively.

Theorem 3 gives
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Figure 4: The intersection points of Ci with the other unit circles.

(− ∂g
∂yi

,
∂g

∂xi
) = 2M

2m−1∑
j=0

(−1)juj

= 2
n−1∑
j=i+1

(−1)j−i−1Bj + 2
i−1∑
j=0

(−1)j−iBj

+ 2
n−1∑
j=i+1

(−1)j−i−1Aj + 2
i−1∑
j=0

(−1)j−iAj. (3)

Notice that for every j 6= i we have (Aj − vi) + (Bj − vi) = vj − vi. Hence,
Aj +Bj = vj + vi. Inserting this in (3) we get:

(− ∂g
∂yi

,
∂g

∂xi
) = 2

n−1∑
j=i+1

(−1)j−i−1(vj + vi) + 2
i−1∑
j=0

(−1)j−i(vj + vi)

= 2
n−1∑
j=i+1

(−1)j−i−1vj + 2
i−1∑
j=0

(−1)j−ivj. (4)

We note that we used the fact that n is odd in the second equality in (4). Because
vj = (xj, yj) we conclude

∂g

∂xi
= 2

n−1∑
j=i+1

(−1)j−i−1yj + 2
i−1∑
j=0

(−1)j−iyj, (5)

and

∂g

∂yi
= −2

n−1∑
j=i+1

(−1)j−i−1xj − 2
i−1∑
j=0

(−1)j−ixj. (6)
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Observe that f(r) = g(r cosα0, r sinα0, . . . , r cosαn−1, r sinαn−1). We would like
to show that f ′(r) ≥ 0 for 0 < r < 1. The chain rule gives:

f ′(r) =
n−1∑
i=0

(
∂g

∂xi
cosαi +

∂g

∂yi
sinαi). (7)

Combining (5), (6) and (7) and keeping in mind that (xj, yj) = (r cosαj, r sinαj),
we get

f ′(r) = 2r
n−1∑
i=0

cosαi

n−1∑
j=i+1

(−1)j−i−1 sinαj + 2r
n−1∑
i=0

cosαi

i−1∑
j=0

(−1)j−i sinαj

−2r
n−1∑
i=0

sinαi

n−1∑
j=i+1

(−1)j−i−1 cosαj − 2r
n−1∑
i=0

sinαi

i−1∑
j=0

(−1)j−i cosαj

= 2r
n−1∑
i=0

n−1∑
j=i+1

(−1)j−i−1(cosαi sinαj − sinαi cosαj)

+2r
n−1∑
i=0

i−1∑
j=0

(−1)j−i(cosαi sinαj − sinαi cosαj)

= 2r
n−1∑
i=0

n−1∑
j=i+1

(−1)j−i−1 sin(αj − αi) + 2r
n−1∑
i=0

i−1∑
j=0

(−1)j−i sin(αj − αi)

= 2r
n−1∑
i=0

n−1∑
j>i

(−1)j−i−1 sin(αj − αi) + 2r
n−1∑
i=0

∑
j<i

(−1)j−i−1 sin(αi − αj)

= 4r
∑
j>i

(−1)j−i−1 sin(αj − αi).

We can now use Lemma 1 to conclude that f ′(r) ≥ 0 for 0 < r < 1, as desired. �

4 The case r = 1 revisited: Proof of Theorem 2.

In this section, we study the case where F is a family of an odd number of unit
discs whose centers lie on a fixed unit circle. We will prove Theorem 2 and show
that OA(F) ≥ π. As mentioned before, the result already follows from Theorem 1
because of the continuity of the function f(r) in Theorem 1. The main reason for
providing a separate proof for Theorem 2 is because we can prove this case using
completely different ideas. We hope that these new ideas will find a use in other
problems related to odd area and in particular the odd area of the unit disc.

Let F be a family of an odd number of unit discs whose set of centers P =
{P1, . . . , Pn} is contained in a unit circle C centered at the origin. (This is precisely
the case r = 1 in Theorem 1.) Let W denote the set of all points in the plane that
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belong to an odd number of discs from F . Observe that a point X belongs to W
if and only if the unit disc centered at X contains an odd number of points from
P1, . . . , Pn. For every 0 < α < π let Sα denote the set of all points X in the plane
such that the unit disc centered at X intersects C at an arc of length α (see Figure
5). Notice that Sα is a circle of radius r(α) = 2 cos α

2
centered at the origin.

C

Sα

α

Zα(θ)

θ

Figure 5: The definition of Sα and Zα(θ).

For every 0 < α < π and 0 < θ < 2π we denote by Zα(θ) the point (r(α) cos θ,
r(α) sin θ). This is the point on Sα with argument θ.

We observe that for every 0 < α < π
2

and 0 < θ < π at least one of the four points
Zα(θ), Zπ−α(θ+ π

2
), Zα(θ+ π), and Zπ−α(θ+ 3π

2
) must belong to W . This is because

the four unit discs centered at these four points partition C into four arcs that are
pairwise disjoint except at their endpoints. At least one of these arcs must contain
an odd number of points from P , because n is odd and the points P1, . . . , Pn lie on
C, as illustrated in Figure 6 (we neglect here cases where a point Pj is a common
endpoint of two of the arcs, as these cases have measure 0).

Let Iα be the set of all 0 < θ < π such that at least one of the points Zα(θ) and
Zα(θ + π) is in W . Denote by |Iα| the one-dimensional measure (length) of Iα. We
get a contribution of

|Iα|r(α)dr(α) = |Iα|2 cos
α

2
sin

α

2
dα

to the calculated area of W . For every 0 < θ < π not in Iα (the one-dimensional
measure of this set is π − |Iα|) it is true that at least one of Zπ−α(θ + π

2
) and

Zπ−α(θ + 3π
2

) is in W . This contributes

(π − |Iα|)r(π − α)dr(π − α)

= (π − |Iα|)2 cos(π
2
− α

2
) sin(π

2
− α

2
)dα

= (π − |Iα|)2 sin α
2

cos α
2
dα

to the calculated area of W .
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Zα(θ)

Zα(θ + π)

Zπ−α(θ +
π
2)

Zπ−α(θ +
3π
2 )

C

π − α

α

Figure 6: The unit discs centered at Zα(θ), Zπ−α(θ + π
2 ), Zα(θ + π), and

Zπ−α(θ + 3π
2 ) partition C into four pairwise disjoint arcs.

Altogether, we get a contribution of π2 sin α
2

cos α
2
dα to the calculated area of W .

Therefore, the area of W is at least π
∫ π

2

0
sinαdα = π. This proves that OA(F) ≥ π.

This proof allows us to analyze easily the case of equality. It follows from the
proof that the area of W is equal to π only if for almost (that is, up to measure
zero) every 0 < α < π

2
and 0 < θ < π exactly one of the four points Zα(θ), Zπ−α(θ +

π
2
), Zα(θ + π), and Zπ−α(θ + 3π

2
) belongs to W . This means that precisely one of

the four arcs that are the intersections of C with the four unit discs centered at
Zα(θ), Zπ−α(θ + π

2
), Zα(θ + π), and Zπ−α(θ + 3π

2
), contains an odd number of points

from P . We may assume that the points P1, . . . , Pn are pairwise distinct. If not,
then we remove pairs that are equal, as this does not change the set W . The number
of points n remains odd. If we remain with n > 1 distinct points P1, . . . , Pn, then we
can divide C into two half-circles, each of which contains a nonempty subset of P .
Let H1 (respectively, H2) denote the half-circle of odd (respectively, even) cardinality.
We notice that the half-circles H1 that we can choose have positive measure among
all possible half-circles of C.

Because H2 contains a nonempty subset of P , there is α such that the arc s of
length between α − ε and α + ε (for ε > 0 small enough) starting at one endpoint
of H2 contains an odd number of points of P . The partition of C into the four arcs
s,H2 \ s,−s,−(H2 \ s) has precisely three arcs that contain an odd number of points
from P . Indeed, each of the arcs s and H2 \s contains an odd number of points from
P . In addition, the union of the two arcs −s and −(H2 \ s) is equal to H1. The
half-circle H1 contains an odd number of points of P . Therefore, necessarily one of
−s and −(H2 \ s) must contain an odd number of points of P .

Therefore, if the discs in F are distinct, then unless n = 1, we must have a set of
positive measure of α and θ for which more than one of Zα(θ), Zπ−α(θ+ π

2
), Zα(θ+π),

and Zπ−α(θ + 3π
2

) must belong to W . Consequently, the odd area of F is strictly
greater than π in such a case.
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We conclude that OA(F) = π if and only if n = 1 or F is a union of pairs of
equal unit discs plus another unit disc. This completes the proof of Theorem 2. �

5 Further remarks and open problems

Consider the collection F of unit discs centered at (cos πi
3
, sin πi

3
) for i = 0, . . . , 5 (see

Figure 7).

The reader can easily verify that the partial derivatives ( ∂f
∂xi
, ∂f
∂yi

) satisfy the con-

ditions of Theorem 1 in [4] for any i = 0, . . . , 5. That is, the gradient of f is ~0,
however, this is a saddle point rather than a local extremum.

We are not aware of a similar example with an odd number of unit discs in F
(except for trivial variations like adding another copy of a unit disc not connected
to the rest). Moreover, notice that in the example in Figure 7 there are pairs of
touching discs. It will be interesting to find similar examples in which no two discs
touch.

Figure 7: An example of a collection of discs F such that the function f has
a ~0 gradient. The discs in F are centered at the vertices of a hexagon that is
enclosed inside a unit circle.

The next example shows the property f ′(r) > 0, proved in Theorem 1 for the
case 0 < r < 1 is not necessarily true in the case r > 1. Hence the result regarding
the odd area of discs for the case r > 1 cannot be derived in the same manner. In
the next example, the discs are located at (r cos 2πi

n
, r sin 2πi

n
) for i = 0, . . . , n− 1. In

this example, the number of discs is 23, although this behavior of f ′(r) occurs for
every n ≥ 9. As seen in Figure 8, f ′(r) fluctuate around 0 for 1 ≤ r ≤ 3.5 and we
note that a global minimum point is not reached in this example, i.e. f(r) > π for
every r.

Finally, we would like to mention an independently interesting problem directly
related to the study of this paper. Let D be any compact set in the plane. Consider
now a family F of an odd number of rotations of D about the origin O. What can be
said about OA(F)? Define the rotational odd area of D to be the infimum of OA(F)
over all such families F . Theorem 1 shows that if D is a unit disc that contains
the origin, then it has a rotational odd area that is equal to π. It is interesting to
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Figure 8: A plot of f ′(r) for different r, 1 ≤ r ≤ 3.5. The number of discs is
23, where the i’th is located at (r cos 2πi

23 , r sin 2πi
23 ) for i = 0, ..., 22.

study the rotational odd area of other sets and in particular of unit discs that do not
contain the origin. This is the unresolved case r > 1 in Theorem 1.
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