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Abstract

DP-coloring of a graph was introduced by Dvořák and Postle [J. Com-
bin. Theory Ser. B 129 (2018), 38–54] as a generalization of a list coloring.
Kim and Ozeki [Discrete Math. 341 (2018), 1983–1986] proved that pla-
nar graphs without k-cycles where k ∈ {3, 4, 5, 6} are DP-4-colorable.
Kim and Yu [Graphs Combin. 35 (2019), 707–718] proved that every pla-
nar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. So it
was natural to ask whether every planar graph without i-cycles adjacent
to j-cycles is DP-4-colorable for i, j ∈ {3, 4, 5, 6} and i �= j. For each
k ∈ {5, 6}, Liu, Li, Nakprast, Sittitrai and Yu [Discrete Appl. Math.
277 (2020), 245–251] proved that every planar graph without 3-cycles
adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou
[Discrete Math. 341 (2019), 2984–2993] proved that every planar graph
without 4-cycles adjacent to k-cycles is DP-4-colorable. In this paper, we
answer the last case of this question and prove that every planar graph G
without 5-cycles adjacent to 6-cycles is DP-4-colorable. This result also
improves a result of Kim and Ozeki in the 2018 paper mentioned above.

1 Introduction

Coloring is one of the most popular topics in graph theory. Let G be a simple
graph. A proper coloring of G is a function c : V (G) → [k] = {1, 2, . . . , k} such that
c(u) �= c(v) for any edge uv ∈ E(G). A graph G is k-colorable if it has a k-coloring.
The chromatic number of G, denoted by χ(G), is the smallest integer k such that G
is k-colorable. A list assignment L of a graph G is a mapping that assigns a set of
colors to each vertex. An L-coloring of G is a function f : V (G) → ∪v∈V (G)L(v) such
that f(v) ∈ L(v) for any v ∈ V (G) and f(u) �= f(v) for any edge uv ∈ E. A graph
G is k-choosable if G has an L-coloring for every assignment L with |L(v)| ≥ k for
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each v ∈ V (G). The choice number of G, denoted by χl(G), is the smallest integer k
such that G is k-choosable.

As a generalization of list coloring, DP-coloring (or corresponding-coloring) was
first introduced by Dvořák and Postle [7]. The following equivalent definition is given
by Bernsheteyn, Kostochka and Pron [3].

Definition 1.1 Let G be a simple graph, and L be a list assignment of G. Definite
Lv = {u} × L(v) for any vertex v ∈ V (G), and let Muv be a matching (may be
empty) between sets of Lv and Lu. Let ML = {Muv : uv ∈ E(G)}, which is called
the matching assignment over L. Let GL be a graph, called an ML-cover of G, which
satisfies the following conditions.

• The vertex set of GL is ∪v∈V (G)Lv.

• GL[Lv] is a clique for any vertex v ∈ V (G).

• If uv ∈ E(G), then the edges between Lu and Lv form a matching in Muv.

• If uv /∈ E(G), then there is no any edge between Lu and Lv.

Definition 1.2 If GL contains an independent set of size |V (G)|, then we say that
G has an ML-coloring. If G has an ML-coloring for any k-list assignment L, and
any matching assignment ML over L, then G is DP-k-colorable. The DP-chromatic
number, denoted by χDP (G), is the minimum positive integer k such that G is DP -
k-colorable.

If for each uv ∈ E(G), we define edges on GL to match exactly the same colors
between L(u) and L(v), then this ML-coloring is the ordinary list coloring. So list
coloring is a special case of DP-coloring and χDP (G) ≥ χl(G) for each graph G.

DP-coloring has proved attractive recently. Dvořák and Postle [7] proved that
χDP (G) ≤ 5 if G is a planar graph, and χDP (G) ≤ 3 if G is a planar graph with girth
at least 5. Meanwhile, DP-coloring and list coloring are quite different. Bernshteyn
[2] showed that the DP-chromatic number of every graph with average degree d is
Ω(d/ log d), while Alon [1] proved that χl(G) = Ω(log d) and the gap is large. More
results about DP-coloring can be found in [2, 3, 4, 5, 8, 11, 10, 12, 14, 15] and others.

A k-cycle is a cycle of length k. Kim and Ozeki [8] proved that planar graphs
without k-cycles where k ∈ {3, 4, 5, 6} are DP-4-colorable. Kim and Yu [9] proved
that every planar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. One
naturally asked the following question.

Question 1.3 Is every planar graph without i-cycles adjacent to j-cycles DP-4-
colorable for i, j ∈ {3, 4, 5, 6} and i �= j?

For each k ∈ {5, 6}, Liu, Li, Nakprast, Sittitrai, Yu [13] proved that every planar
graph without 3-cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao
and Zhou [6] proved that every planar graph without 4-cycles adjacent to k-cycles
is DP-4-colorable. In this paper, we answer the last case of Question 1.3 and prove
the following result.
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Theorem 1.4 Every planar graph G without 5-cycles adjacent to 6-cycles is DP-4-
colorable.

A cluster in a plane graph G is a subgraph of G that consists of a minimal set of
3-faces such that no other 3-face is adjacent to any 3-face in this set. It is called a
k-cluster if it contains k 3-faces. We present four clusters here (see Figure 1).
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Figure 1: Four clusters

A face f in H3 is semi-poor, poor face if it is adjacent to exactly one or two
3-faces, respectively. So, there are two semi-poor faces and exactly one poor face in
any H3. A 4-vertex in H4 is called a hub.

Finally we introduce some notation and terminology used in this paper. Let G be
a simple plane graph. We use F or F (G) to denote the face set of G. For f ∈ F (G),
we write f = [u1u2 . . . un] if u1, u2, . . . , un are the boundary vertices of f in a cyclic
order. A face of G is said to be incident with all edges and vertices in its boundary.
The degree of a face f , denoted by dG(f), is the number of edges incident with it,
where a cut edge is counted twice. A k-vertex (k+-vertex, k−-vertex) is a vertex of
degree k (at least k, at most k). A k-face (k−-face or k+-face) is defined similarly. For
convenience, a k-face f = [v1v2 . . . vk] is often said to be a (d(v1), d(v2), . . . , d(vk))-
face. Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the
sets of vertices located inside and outside C, respectively. The cycle C is called a
separating cycle if int(C) �= ∅ �= ext(C).

2 Proof of Theorem 1.4

This section is devoted to proof of Theorem 1.4.
Let GL be a cover of a graph G with a list assignment L. Let G′ = G − H

where H is an induced subgraph of G. A list assignment L′ is a restriction of
L on G′ if L′(u) = L(u) for each vertex u in G′. A graph GL′ is a restriction
of GL on G′ if GL′ = GL[v × L(v) : v ∈ V (G′)]. Assume that GL′ has an ML′-
coloring. Then GL′ has an independent set I ′ of size |I ′| = |V (G)| − |V (H)|. Define
L∗
x = Lx−∪ux∈E(G){(x, c′) ∈ Lx : (u, c)(x, c′) ∈ E(GL), c

′ ∈ L(x), (u, c) ∈ I ′} for each
x ∈ V (H), and define GL∗ = GL[x× L∗(x) : x ∈ V (H)]. If H has an ML∗-coloring,
then GL∗ has an independent set I∗ of size |I∗| = |V (H)|. Since there are no edges
between I ′ and I∗, I ′ ∪ I∗ is an independent set in GL of size |I ′| + |I∗| = |V (G)|.
Thus, GL has an ML-coloring.

Lemma 2.1 ([8]) For each k ∈ {3, 4, 5, 6}, every planar graph without k-cycles is
DP-4-colorable.
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We now introduce extendability. Let G be a graph and C be a subgraph of G.
Then (G,C) is DP-4-colorable if every DP-4-coloring of C can be extended to G.
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Figure 2. A bad 4-cycle

A 4-cycle is bad if it is the outer 4-cycle in the subgraph isomorphic to the graph
in Figure 2 and good otherwise. For convenience, we say that every 3-cycle is a good
cycle. In order to prove Theorem 1.4, we prove a stronger result as follows.

Theorem 2.2 If G is a planar graph without 5-cycles adjacent to 6-cycles, then
every precoloring of a induced good k-cycle can be extended to a DP-4-coloring of G,
where k = 3, 4.

Proof of Theorem 1.4 via Theorem 2.2. By Lemma 2.1, we may assume that
G contains a k-cycle C, where k = 3, 4. By Theorem 2.2, every precoloring of C can
be extended to G, so G is also DP-4-colorable. �

Let (G,C0) be a minimal counterexample to Theorem 2.2 with |V (G)|+ |E(G)|
minimized, where C0 is a precolored k-cycle in G, where k = 3, 4. We claim that
C0 has no chord. Suppose otherwise that C0 has a chord e0 and two vertices of
e0 have colored different colors. Let G′ = G − e0. By the minimality of G, any
DP-4-coloring of C0 can be extended to a DP-4-coloring of G′. Thus, G has a DP-4-
coloring, a contradiction. If C0 is a separating cycle, then any precoloring of C0 can
be extended to int(C0) and ext(C0), respectively. Then we get a DP-4-coloring of G,
a contradiction. So we may assume that C0 is the boundary of the outer face of G
in the rest of this paper. A vertex v is an internal vertex if v /∈ C0. For an internal
4+-vertex v is in a cluster H , where H ∈ {H1, H2, H3, H4}, v is called i-type to H if
v is incident with exactly i edges in H .

Lemma 2.3 Each internal vertex is a 4+-vertex.

Proof. Suppose to the contrary that x is an internal 3−-vertex. By the minimality
of G, G′ = G− x admits an ML′-coloring where L′ is a restriction of L in G′. Thus
GL′ has an independent set I ′ of size |I ′| = |V (G′)|. Consider a list assignment L∗

on x. Since |L(x)| = 4 and d(x) ≤ 3, we obtain |L∗
x| ≥ 1. Clearly, (x, c) ∈ L∗

x is an
independent set in G[{x}]. Then I ′ ∪ {(x, c)} is an independent set of GL and hence
G has an ML-coloring, a contradiction. �

By Lemma 2.3, since G has no 5-cycles adjacent to 6-cycles, G has four clusters
depicted in Figure 1.

Lemma 2.4 G contains no separating good k-cycle, where k = 3, 4.
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Proof. Let C be a separating good k-cycle in G. By the minimality of (G,C0), any
precoloring of C0 can be extended to G− int(C). After that, C is precolored, then
again the coloring of C can be extended to int(C). Thus, G has a DP-4-coloring, a
contradiction. �

Lemma 2.5 (a) Assume that g is a 4-cycle which is not bad and f is a 3-face
which is not C0. If a 4-face g is adjacent to f , then f cannot be adjacent to
any 3-face and g cannot be adjacent to any 3- or 4-face h, where h �= f .

(b) If v is a 5+-vertex incident with three consecutive 3-faces, then none of the
3-faces can be adjacent to any other 3-faces.

(c) A 3-face f is not adjacent to a 5-face g.

(d) For k ≥ 5, a k-vertex is incident to at most k − 2 triangles.

Proof. (a) Let f = [uvw] and g = [uwxy]. Since f is not C0, x and y are outside f
and v is outside g by Lemma 2.4.

We first show that f cannot be adjacent to a 3-face. Suppose to the contrary
that f is adjacent to a 3-face h = [vzw] by symmetry. Since x and y are outside f ,
by Lemma 2.4, z is outside of both f and g. Let S = {u, v, w, x, y}. If z /∈ S, then
uvwxyu is a 5-cycle adjacent to a 6-cycle uvzwxyu, a contradiction. Thus, assume
that z ∈ S. Then z = x or z = y. If z = x, then u and y are either inside or outside
vwxw. In the former case, vuyxv is a 4-cycle. By Lemma 2.4, such a 4-cycle is a
4-face and hence d(y) = 2, contrary to Lemma 2.3. In the latter case, vwxv is a
3-face by assumption and hence d(w) = 3, contrary to Lemma 2.3. If z = y, then
u and x are either inside or outside vwyv of G. In each case, uwyu is a separating
3-cycle, contrary to Lemma 2.4.

Next we show that g cannot be adjacent to any other 3-face. Suppose to the
contrary that g is adjacent to a 3-face h �= f . By symmetry h shares exactly one
edge xw or xy with g.

We first assume that h = [xwz]. If z /∈ S, then uvwxyu is a 5-cycle adjacent to
a 6-cycle uvwzxyu, a contradiction. Thus, assume that z ∈ S. Since G is a simple
graph, z = v or z = y. Since x and y are outside of f , by Lemma 2.4, z is outside g.
If z = v, this is the case that x = z in above proof and we are done. If z = y, then
wuyw is a separating 3-cycle, contrary to Lemma 2.4.

Now let h = [zyx]. If z /∈ S, then uvwxyu is a 5-cycle adjacent to a 6-cycle
uvwxzyu, a contradiction. Thus, assume that z ∈ S. In this case, assume that z = v
or z = u by symmetry. Since x and y are outside of f , by Lemma 2.4, z is outside
g. If z = u, then uwxu is a separating 3-cycle, contrary to Lemma 2.4. If v = z,
then u and w are either inside or outside xyzx. In the former case, vuy is a 3-cycle,
by Lemma 2.4, d(u) = 3, contrary to Lemma 2.3. In the later case, either vuyv or
vwxv is a 3-cycle, by Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 3 (or
d(w) = 3), contrary to Lemma 2.3.

Finally, we show that g cannot be adjacent to a 4-face. Suppose to the contrary
that g is adjacent to a 4-face h. By symmetry h shares exactly one edge xw or xy
with g. Assume first that h = [xwzt]. If {z, t} ∩ S = ∅, then uvwxyu is a 5-cycle
adjacent to a 6-cycle uwztxyu, a contradiction. Thus, {z, t} ∩ S �= ∅. Since x and



X. LI AND M ZHANG/AUSTRALAS. J. COMBIN. 87 (1) (2023), 86–97 91

y are outside f , by Lemma 2.4, z, t are outside g. Assume first that z ∈ S and
t /∈ S. Since G is planar, z �= u. Then z = v or z = y. If z = v, then vwxtv is a
4-cycle. By Lemma 2.4, such a 4-cycle is a 4-face and hence d(w) = 3, contrary to
Lemma 2.3. If z = y, then G has a separating 3-cycle uywu, contrary to Lemma 2.4.
Then assume that z /∈ S and t ∈ S. If t = y, then wzyuw is a separating 4-cycle,
contrary to Lemma 2.4. If t = u, then xwux is a separating 3-cycle, contrary to
Lemma 2.4. If t = v, then G has a separating 3-cycle vwxv, contrary to Lemma 2.4.
Thus, {z, t} ⊂ S. Since G is planar, z = v and t = u. Then uyxu is a 3-cycle. By
Lemma 2.4, such a 3-cycle is a 3-face and hence d(y) = 2, contrary to Lemma 2.3.

Thus, assume that h = [yxzt]. If {z, t}∩S = ∅, then uvwxyu is a 5-cycle adjacent
to a 6-cycle uwxztyu, a contradiction. Thus, assume that {s, t}∩S �= ∅. Since x and
y are both outside of f , by Lemma 2.4, z and t are outside of g. Assume first that
one of s and t is in S. By symmetry, assume that t /∈ S and z ∈ S. If z = v, then
G has a separating 4-cycle vuyxv, contrary to Lemma 2.4. If z = w, then G has a
separating 4-cycle wuytw, contrary to Lemma 2.4. If z = u, then G has a separating
3-cycle uwxu, contrary to Lemma 2.4. Thus, assume that z and t are both in S.
Since G is simple, {z, t} ∩ {x, y} = ∅ and {z, t} ∩ {u, w} = ∅. By symmetry, assume
that z = v. Since G is planar, t = u. In this case, xwvx is a 3-cycle. By Lemma 2.4,
such a 3-cycle is a 3-face and hence d(w) = 3, contrary to Lemma 2.3.

(b) Assume that v is a 5+-vertex incident with three consecutive 3-faces f1 =
[uvw], f2 = [wvx] and f3 = [xvy]. Let S = {u, v, w, x, y}. Suppose to the contrary
that at least one of the three 3-faces is adjacent to another 3-face f4. By Lemma 2.4,
f4 shares exactly one edge with one of f1, f2 and f3. By symmetry we may assume
that f4 = [uzw] or [uvz] or [wzx]. If z /∈ S, then there exists a 5-cycle adjacent
to a 6-cycle, a contradiction. So, assume that z ∈ S. If f4 = [wxv], then v �= z
since f4 �= f2. Thus, let z = u by symmetry. In this case, xwux is a 3-cycle.
By Lemma 2.4, d(w) = 3, contrary to Lemma 2.3. By symmetry, assume that
f4 = [uwz]. If z = x, then xwux is a 3-cycle. By Lemma 2.4, such a 3-cycle is a
3-face and hence d(w) = 3, contrary to Lemma 2.3. Thus, f4 = [uzw] and z = y. In
this case, vwyv is a separating 3-cycle, contrary to Lemma 2.4.

(c) Suppose to the contrary that f = [xyz] and g = [uvwxy]. If z /∈ S, then
uvwxyu is a 5-cycle adjacent to a 6-cycle uvwxzyu, a contradiction. If z ∈ S, then
we assume z = u or z = v by symmetry. In the former case, xyux is a 3-cycle, by
Lemma 2.4, d(y) = 2 (or d(w) = 2), contrary to Lemma 2.3. In the later case, uvyu
(or xwvx) is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 2
(or d(w) = 2), contrary to Lemma 2.3.

(d) It follows that G has no 5-cycles adjacent to 6-cycles. �

Lemma 2.6 Two (4, 4, 4)-faces in int(C0) cannot share exactly one common edge
in G.

Proof. Suppose to the contrary that T1 = [uvx] and T2 = [uvy] share a common
edge uv. Let S = {u, v, x, y} and G′ = G− S. By the minimality of G, GL′ admits
an ML-coloring where L′ (and GL′) is a restriction of L (and GL, respectively). Thus
GL′ has an independent set I ′ of size |V (G′)| = |V (G)| − 4.
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We claim that xy /∈ E(G). Suppose otherwise. Then G has either a 3-cycle
D1 = xvyx such that u is in int(D1) or a 3-cycle D2 = xuyx such that v is in
int(D2). In the former case, since both x and y are 4-vertices, D1 is a separating
3-cycle, contrary to Lemma 2.4. In the latter case, similarly, D2 is a separating 3-
cycle, contrary to Lemma 2.4. Consider a list assignment L∗ on S. Since |L(v)| ≥ 4
for all v ∈ V (G), we have

|L∗
u| ≥ 3, |L∗

v| ≥ 3, |L∗
x| ≥ 2, |L∗

y| ≥ 2.

Since |L∗
v| > |L∗

x|, we can choose a vertex (v, c) in

L∗
v − {(v, c′) : (x, c′′) ∈ L∗

x, (v, c
′)(x, c′′) ∈ Mvx}.

Then L∗
x has at least two available colors. We color y, u, x in order, we can find

an independent set I∗ with |I∗| = 4. So I ′ ∪ I∗ is an independent set of GL with
|I ′ ∪ I∗| = |V (G)|. Then G has an ML-coloring, a contradiction. �

We are now ready to present a discharging procedure that will complete the proof
of the Theorem 1.4. For each x ∈ V ∪F , we define the initial charge ch(x) = d(x)−4
if x ∈ V ∪ (F \ {C0}) and ch(C0) = |C0|+ 4. By Euler’s Formula,∑

x∈V
ch(x) +

∑
x∈F\{C0}

ch(x) + ch(C0) =
∑
x∈V

(d(x)− 4) +
∑
x∈F

(d(x)− 4) + 8 = 0.

We define suitable discharging rules such that, for every x ∈ V ∪ (F \ {C0}), the
final charge of x, denoted ch′(x), is non-negative and ch′(C0) > 0. So, we get
0 <

∑
x∈V ∪F ch′(x) =

∑
x∈V ∪F ch(x) = 0. This contradiction proves our result.

A 5-vertex v is special if v is 3-type to H4 and 2-type to one of H2 and H3.
Denote by w(v → f) to transfer the charge from a vertex v to a face f . We define
the discharging rules as follows.

(R1) Let v be an internal vertex in a 3-face f .

(a) If v is a 4-vertex, then

w(v → f) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6
, if v is 3-type to H2;

1
7
, if v is 3-type to H3 and f is a semi-poor face;

2
7
, if v is 3-type to H3 and f is a poor face;

1
7
, if v is 3-type to H4 and f is a (4, 4, 5+)-face;

2
7
, if v is 3-type to H4 and f is a (4, 4, 4)-face.

(b) If v is a 5-vertex, then

w(v → f) =

⎧⎪⎨
⎪⎩

3
7
, if v is 3-type to H4;

1
7
, if v is 2-type to H2 or H3 and v is special;

1
3
, otherwise.

(c) If v is a 6+-vertex, then

w(v → f) =

{
3
7
, if v is 3-type to H4;

1
3
, otherwise.
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(R2) Every 4-face sends 2
5
to each adjacent 3-face; every k-face sends k−4

k
to each

adjacent 3-face, where k ≥ 6.

(R3) Every 5-face sends 1
5
to each adjacent 4-face.

(R4) Let v be an internal 4-vertex. If v is incident with two adjacent 6+-faces, then
each such a 6-face gives 1

6
to v and each such a 7+-face gives 3

14
to v.

(R5) The outercycle C0 gets ch(v) from each incident vertex and sends 1 to any
3-face sharing at least one vertex with C0.

It suffices to check that each x ∈ V (G) ∪ F (G) has nonnegative final charge and
C0 has positive final charge. By (R4), we have ch′(v) = 0 for each v ∈ V (C0). Thus,
we need to check ch′(v) ≥ 0 for each internal 4+-vertex v by Lemma 2.3.

(1) Let v be a 4-vertex. If v is incident with at most one 3-face, then v is 2-type
to one of H1, H2 and H3. By (R1)(a), ch′(v) = ch(v) = 0. If v is incident
with two nonadjacent 3-faces, then v is 2-type to one of H1, H2 and H3 and
also 2-type to the other of H1, H2 and H3. By (R1)(a), ch′(v) = ch(v) = 0. If
v is incident with three 3-faces, then v is 4-type to H3. Similarly by (R1)(a),
ch′(v) = ch(v) = 0. If v is incident with four 3-faces, then v is 4-type to H4.
Thus, ch′(v) = ch(v) = 0 by (R1) (a). Thus, assume that v is incident with two
adjacent 3-faces. Then v is 3-type to one of H2, H3 and H4. If v is 3-type to H2,
by Lemma 2.5(a) and (c), v is incident with two 6+-faces. By (R1)(a) and (R4),
ch′(v) = ch(v)+ 1

6
×2− 1

6
×2 = 0. If v is 3-type to H3, by Lemma 2.5(a) and (c),

v is incident with two 7+-faces since G has no 5-cycles adjacent to 6-cycles. By
(R1)(a) and (R4), ch′(v) = ch(v) + 3

14
× 2− (1

7
+ 2

7
) = 0. If v is 3-type to H4, by

Lemma 2.5(b), v is incident with two 7+-faces since G has no 5-cycles adjacent
to 6-cycles. By Lemma 2.6, v is incident with at least one (4, 4, 5+)-face in H4.
By (R1)(a) and (R4), ch′(v) = ch(v) + 3

14
× 2− (1

7
+ 2

7
) = 0.

(2) Let v be a 5-vertex. By Lemma 2.5(b), v is incident with at most three consecu-
tive 3-faces. If v is not incident with any 3-face, then ch′(v) = ch(v) = 1 ≥ 0 by
(R1)(b). If v is incident with exactly one 3-face, then v is 2-type to one of H1, H2

and H3. Thus, ch
′(v) = ch(v)− 1

3
= 2

3
> 0 by (R1)(b). If v is incident with two

nonadjacent 3-faces, then v is 2-type to one of H1, H2 and H3 and also 2-type to
the other one of H1, H2 and H3. By (R1)(b), ch′(v) = ch(v) − 2 × 1

3
= 1

3
> 0.

If v is incident with two adjacent 3-faces, then v is 3-type to one of H2, H3

and H4. If v is 3-type to H2 or H3, then v sends 1
3
to each 3-face. By (R1)(b),

ch′(v) = ch(v)−2× 1
3
= 1

3
> 0. If v is 3 type to H4, then ch′(v) = ch(v)−2× 3

7
=

1
7
> 0 by (R1)(b). We now assume that v is incident with three 3-faces. If v

is incident with consecutive three 3-faces, then v is 4-type to H3. By (R1)(b),
ch′(v) = ch(v)−3× 1

3
= 0. Thus, v is incident two adjacent 3-faces and the other

3-face. Then v is 3-type to one of H2, H3 and H4 and 2-type to one of H1, H2

and H3. If v is 3-type to one of H2 and H3 and 2-type of H1, H2 and H3. Then
ch′(v) = ch(v)− 1

3
× 3 = 0 by (R1)(b). If v is 3-type of H4 and 2-type to one of



X. LI AND M ZHANG/AUSTRALAS. J. COMBIN. 87 (1) (2023), 86–97 94

H2 and H3, then v sends 3
7
to each 3-face in the H4 and 1

7
to the other 3-face.

Thus, ch′(v) = ch(v)− (3
7
× 2 + 1

7
) ≥ 0 by (R1)(b).

(3) Let v be 6+-vertex. If v is not incident with 3-faces, then ch′(v) = ch(v) =
d(v) − 4 ≥ 2 > 0. By Lemma 2.5(d), v is incident with at most (d(v) − 2)
3-faces. Then ch′(v) ≥ (d(v)−4)− 3

7
× (d(v)−2) = 4

7
d(v)− 22

7
≥ 24

7
− 22

7
= 2

7
> 0

by (R1)(c).

We now check that ch′(f) ≥ 0 for each f ∈ F . For simplicity, we also use f to
denote the set of vertices of f for a face f . Let f1, f2, . . . , fl be 3-faces of a l-cluster
Hl. Define ch(Hl) = ch(f1) + · · ·+ ch(fl) and ch′(Hl) = ch′(f1) + · · ·+ ch′(fl).

We first check that f ∩ C0 �= ∅.

(1) Let f be a 3-face in G. If f is not adjacent with any other 3-face, then by (R5)
f gets 1 from C0. So ch′(f) ≥ 3− 4 + 1 = 0.

Assume that f is in H2. Let g be the 3-face in H2 adjacent to f . If C0 ∩ g �= ∅,
then C0 sends 1 to both f and g. Thus, ch′(H2) = −2 + 1 + 1 = 0 by (R5).
Thus, assume that C0 ∩ g = ∅. In this case, C0 sends charge 1 to f . By
Lemma 2.5, there are four 6+-faces adjacent to this H2. By (R2) and (R5),
ch′(H2) ≥ −2 + 1 + 1

3
× 4 > 0.

Assume that f is in H3. Assume that the H3 is induced by three 3-faces f , g
and h. If g ∩ C0 �= ∅ and h ∩ C0 �= ∅, then ch′(H3) = −3 + 1 + 1 + 1 = 0 by
(R5). Thus, assume that one of g ∩C0 and h∩C0 is not empty. By Lemma 2.5,
there are five 7+-faces adjacent to this H3. Thus, ch

′(H3) ≥ −3 + 1 + 3
7
× 5 > 0

by (R2) and (R5).

Assume that f is in H4. Let V (H4) = {u, v, w, x, y}, where x, y, u, v are 3-type
vertices to H4. Assume that x ∈ V (H4) ∩ C0 and x ∈ f . If |V (H4) ∩ C0| ≥ 2,
then G has a 5-cycle adjacent to a 6-cycle, a contradiction. Thus, V (H4) ∩
C0 = {x}. By Lemma 2.5, there are four 7+-faces adjacent to this H4, and the
C0 is incident with two 3-faces in H4. Applying Lemma 2.6 to the subgraph
induced by {y, u, v, w}, there are at least one 5+-vertex in int(C0) in H4. Thus,
ch′(H4) ≥ −4 + 1 + 1 + 3

7
× 4 + 3

7
× 2 > 0 by (R1)(b), (R2) and (R5).

(2) Let d(f) = 4. If |f ∩ C0| = 2, by Lemma 2.4, then f cannot be adjacent to
any 3-face rather than C0 (if C0 is a 3-face) since G has no 5-cycle adjacent to
6-cycle. Thus, ch′(f) = ch(f) = 0. Thus, assume that |f ∩ C0| = 1. By Lemma
2.5(a), f is adjacent to at most one 3-face. If f is not adjacent to any 3-face,
then ch′(f) = ch(f) = 0. If f is adjacent to one 3-face, then f is not adjacent
to any 4-face by Lemma 2.5(a). Thus, f is adjacent to three 5+-faces. By (R2)
and (R3), ch′(f) ≥ ch(f) + 1

5
× 3− 2

5
= 1

5
> 0.

(3) Let d(f) ≥ 5. If f is a 5-face, then f is not adjacent to any 3-face and adjacent
to at most five 4-faces. Thus, ch′(f) ≥ ch(f)− 1

5
× 5 = 0 by (R3). Thus, f is a

6+-face. By (R2), ch′(f) ≥ (k − 4)− k × k−4
k

= 0.
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From now on we may assume that f ∩ C0 = ∅.

(1) Let f be a 3-face. If f is H1, then f is adjacent to at most one 4-face. If f
is adjacent to one 4-face, by Lemma 2.5, the other faces incident with f are
6+-faces. By (R1), ch′(f) ≥ d(f)− 4+ 2

5
+2× k−4

k
≥ −1+ 2

5
+2× 1

3
> 0. Thus,

assume that f is not adjacent to any 4-face. Since G had no 5-cycle adjacent
to any 6-cycle, f cannot adjacent to any 5-face. Thus, f is adjacent to three
6+-faces. By (R1)(c), ch′(f) ≥ d(f)− 4 + 1

3
× 3 = 0.

Assume first that f is in H2. Then ch(H2) = −2 and let f1 and f2 be two
3-faces in H2. Let V (H2) = {u, v, x, y}, where x, y are 2-type to H2 and u, v
are 3-type to H2. Since G has no separating 3-cycle, x is not adjacent to y.
Since G has no 5-cycles adjacent to 6-cycles, each face adjacent to an internal
face of H2 is a 6+-face by Lemma 2.5. In this case, there are four 6+-faces
adjacent to this H2. By (R1), each such face sends 1

3
to f1 or f2 in H2. If one

of u and v is a 5+-vertex, then it sends 1
3
to each of the two adjacent 3-face by

(R1)(b), (R1)(c) and (R1)(e). Thus, ch′(H2) ≥ −2 + 1
3
× 4 + 1

3
× 2 = 0. We

now assume that each of u and v is a 4-vertex. By Lemma 2.6, at least one
of x and y is a 5+-vertex. Assume that x is a 5+-vertex. If x is a 6+-vertex
or a non-special 5-vertex, then x sends 1

3
to the 3-face in H3 by (R1)(c). By

(R1)(a), (R1)(b) and (R2), each of u and v sends 1
6
to each adjacent 3-faces.

Thus, ch′(H2) ≥ −2 + 1
3
× 4 + 1

3
+ 1

6
× 4 > 0. Thus, assume that x is a special

5-vertex. In this case, x is incident with two 7+-faces. So, there are two 6+-faces
and two 7+-faces adjacent to this H2. In this case x sends 1

7
to the 3-face in H2.

By (R1)(a), (R1)(b) and (R2), ch′(H2) ≥ −2 + 1
3
× 2 + 3

7
× 2 + 1

7
+ 1

6
× 4 > 0.

Next, assume that f is in H3. Then ch(H3) = −3 where f1, f2, and f3 are 3-faces
in H3. Let V (H3) = {u, v, w, x, y}, where v is 4-type to H3, u, w are 3-type to
H3, and x and y are 2-type to H3. By Lemma 2.4, x is not adjacent to w and
y is not adjacent to u. Since G has no 5-cycles adjacent to 6-cycles, each face
adjacent to an internal face of H3 is a 7+-face by Lemma 2.5. By (R2), each such
7+-face sends at least 3

7
to the H3. If v is a 5+-vertex, then v sends 1

3
to each of

three 3-faces in the H3 by (R1)(b). Thus, ch′(H3) ≥ −3 + 3
7
× 5 + 1

3
× 3 > 0.

If one of u and w, say u, is a 5+-vertex, then w is a 4+-vertex by Lemma 2.4.
In this case, u sends 1

3
to two 3-faces incident with u in the H3 by (R1)(b),

w sends 1
7
and 2

7
to two 3-faces incident with w in the H3 by (R1)(a). So,

ch′(H3) ≥ −3+ 3
7
×5+ 1

3
×2+ 2

7
+ 1

7
> 0. Now we assume that each of u, v, w is a

4-vertex. By Lemma 2.6, x and y are 5+-vertices. If x and y are 5-vertices, then
they may be special 5-vertices. By (R1)(b) and by (R1)(c), each of x and y sends
at least 1

7
to the 3-face in theH3. Each of u and w sends 2

7
and 1

7
to the two 3-faces

in theH3 by (R1)(a). Thus, ch′(H3) = −3+(3
7
×5)+(1

7
×2)+(2

7
×2)+(1

7
×2) > 0.

Finally, assume that f is in H4. Let x be a hub and u, v, w, y be 3-type to
H4. Similarly, ch(H4) = −4. where f1 = [xuv], f2 = [xvw], f3 = [xwy] and
f4 = [xyu] are 3-faces in H4. By Lemma 2.4, u is not adjacent to w, and v is
not adjacent to y. By Lemma 2.5, each 3-face in H4 is adjacent to a 7+-face.
By (R2), each such 7+-face sends at least 3

7
to the adjacent 3-face in the H4.
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By Lemma 2.6, at least two 3-type vertices to H4 are 5+-vertices. By (R1)(a),
(R1)(b) and (R1)(c), each 3-type 5+-vertex sends 3

7
to each incident 3-face in H4

and the other 3-type vertices to H4 are 4-vertices, each of which sends at least
1
7
to each incident 3-faces in H4. If H4 contains exactly two 3-type 5+-vertices,

then ch′(H4) ≥ −4 + 3
7
× 4 + 3

7
× 4 + 1

7
× 4 = 0. If H4 contains at least three

3-type 5+-vertices, then ch′(H4) ≥ −4 + 3
7
× 4 + 3

7
× 6 + 1

7
× 2 > 0.

(2) Let f be a 4-face. Let f = [v1v2v3v4]. By Lemma 2.5(a), f is adjacent to at most
one 3-face. If f is adjacent to a 3-face, then the other faces adjacent to f are 5+-
faces by Lemma 2.5(a). By (R1)(d) and (R2), ch(f) ≥ d(f)− 4+ 1

5
× 3− 2

5
> 0.

If f is not adjacent to any 3-face, then f is adjacent to at most four 4-faces.
Thus, ch(f) ≥ d(f)− 4 = 0.

(3) Let f be a 5+-face. If f is a 5-face, then f is adjacent at most five 4-faces. Since
G has no 5-cycles adjacent to 6-cycles, f is not adjacent to any 3-face. By (R2),
f sends 1

5
to each adjacent 4-face. Thus, ch′(f) ≥ d(f)− 4− 5× 1

5
= 0. Assume

that f is a k-face where k ≥ 6. Then f sends at most k−4
k

to 3-faces or 4-faces
by (R2). This yields ch′(f) ≥ (k − 4)− k × k−4

k
= 0.

We now consider the final charge of the outer face C0.
Let F ′

3 = {f : f is a 3-face and |b(f)∩C0| = 1} and F ′′
3 = {f : f is a k-face and

|b(f)∩C0| = 2}, and f ′
3 = |F ′

3|, f ′′
3 = |F ′′

3 |. Let E(C0, V (G)−C0) be the set of edges
between C0 and V (G)− C0 and let e(C0, V (G)− C0) be its size. Then by (R4),

ch′(C0) = |C0|+ 4 +
∑
v∈C0

(d(v)− 4)− f ′
3 − f ′′

3

= |C0|+ 4 +
∑
v∈C0

(d(v)− 2)− 2|C0| − f ′
3 − f ′′

3

= −|C0|+ 4 + (e(C0, V (G)− C0)− f ′
3 − f ′′

3 ).

So we may think that each edge e ∈ E(C0, V (G) − C0) contributes 1 to e(C0,
V (G) − C0). Note that each 3-face contains two edges in E(C0, V (G) − C0). Since
C0 is not a bad 4-cycle, any vertex v ∈ int(C0) is adjacent at most three vertices
on C0. Thus, if F ′′

3 �= ∅, then all the 3-faces in F ′′
3 contributes at least f ′′

3 + 1 to
e(C0, V (G) − C0) while get at most f ′′

3 from C0. Similarly, if F ′
3 �= ∅, then all the

3-faces in F ′
3 contribute at least f ′

3 + 1 to e(C0, V (G) − C0) while get at most f ′
3

from C0. Thus, if f ′
3 �= 0 or f ′′

3 �= 0, then e(C0, V (G) − C0) − f ′
3 − f ′′

3 > 0 and so
ch′(C0) > 0. Thus, f ′

3 = f ′′
3 = 0 and e(C0, V (G) − C0) − f ′

3 − f ′′
3 ≥ 0. If |C0| = 3,

then ch′(C0) > 0. Let |C0| = 4. If e(C0, V (G) − C0) = 0, then G is a 4-cycle, a
contradiction. If e(C0, V (G)− C0) �= 0, then ch′(C0) > 0.

This completes the proof.
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