Every planar graph without 5-cycles adjacent to 6-cycles is DP-4-colorable

XIANGWEN LI* MAO ZHANG

School of Mathematics and Statistics Central China Normal University Wuhan 430079, China

Abstract

DP-coloring of a graph was introduced by Dvořák and Postle [J. Com*bin. Theory Ser. B* 129 (2018), 38–54] as a generalization of a list coloring. Kim and Ozeki [Discrete Math. 341 (2018), 1983–1986] proved that planar graphs without k-cycles where $k \in \{3, 4, 5, 6\}$ are DP-4-colorable. Kim and Yu [Graphs Combin. 35 (2019), 707–718] proved that every planar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. So it was natural to ask whether every planar graph without *i*-cycles adjacent to j-cycles is DP-4-colorable for $i, j \in \{3, 4, 5, 6\}$ and $i \neq j$. For each $k \in \{5, 6\}$, Liu, Li, Nakprast, Sittitrai and Yu [Discrete Appl. Math. 277 (2020), 245–251] proved that every planar graph without 3-cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou [Discrete Math. 341 (2019), 2984–2993] proved that every planar graph without 4-cycles adjacent to k-cycles is DP-4-colorable. In this paper, we answer the last case of this question and prove that every planar graph Gwithout 5-cycles adjacent to 6-cycles is DP-4-colorable. This result also improves a result of Kim and Ozeki in the 2018 paper mentioned above.

1 Introduction

Coloring is one of the most popular topics in graph theory. Let G be a simple graph. A proper coloring of G is a function $c: V(G) \to [k] = \{1, 2, ..., k\}$ such that $c(u) \neq c(v)$ for any edge $uv \in E(G)$. A graph G is k-colorable if it has a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable. A list assignment L of a graph G is a mapping that assigns a set of colors to each vertex. An L-coloring of G is a function $f: V(G) \to \bigcup_{v \in V(G)} L(v)$ such that $f(v) \in L(v)$ for any $v \in V(G)$ and $f(u) \neq f(v)$ for any edge $uv \in E$. A graph G is k-choosable if G has an L-coloring for every assignment L with |L(v)| > k for

^{*} Supported by the NSFC (12031018)

each $v \in V(G)$. The *choice number* of G, denoted by $\chi_l(G)$, is the smallest integer k such that G is k-choosable.

As a generalization of list coloring, DP-coloring (or corresponding-coloring) was first introduced by Dvořák and Postle [7]. The following equivalent definition is given by Bernsheteyn, Kostochka and Pron [3].

Definition 1.1 Let G be a simple graph, and L be a list assignment of G. Definite $L_v = \{u\} \times L(v)$ for any vertex $v \in V(G)$, and let M_{uv} be a matching (may be empty) between sets of L_v and L_u . Let $\mathcal{M}_L = \{M_{uv} : uv \in E(G)\}$, which is called the *matching assignment* over L. Let G_L be a graph, called an \mathcal{M}_L -cover of G, which satisfies the following conditions.

- The vertex set of G_L is $\bigcup_{v \in V(G)} L_v$.
- $G_L[L_v]$ is a clique for any vertex $v \in V(G)$.
- If $uv \in E(G)$, then the edges between L_u and L_v form a matching in M_{uv} .
- If $uv \notin E(G)$, then there is no any edge between L_u and L_v .

Definition 1.2 If G_L contains an independent set of size |V(G)|, then we say that G has an \mathcal{M}_L -coloring. If G has an \mathcal{M}_L -coloring for any k-list assignment L, and any matching assignment \mathcal{M}_L over L, then G is DP-k-colorable. The DP-chromatic number, denoted by $\chi_{DP}(G)$, is the minimum positive integer k such that G is DP-k-colorable.

If for each $uv \in E(G)$, we define edges on G_L to match exactly the same colors between L(u) and L(v), then this \mathcal{M}_L -coloring is the ordinary list coloring. So list coloring is a special case of DP-coloring and $\chi_{DP}(G) \geq \chi_l(G)$ for each graph G.

DP-coloring has proved attractive recently. Dvořák and Postle [7] proved that $\chi_{DP}(G) \leq 5$ if G is a planar graph, and $\chi_{DP}(G) \leq 3$ if G is a planar graph with girth at least 5. Meanwhile, DP-coloring and list coloring are quite different. Bernshteyn [2] showed that the DP-chromatic number of every graph with average degree d is $\Omega(d/\log d)$, while Alon [1] proved that $\chi_l(G) = \Omega(\log d)$ and the gap is large. More results about DP-coloring can be found in [2, 3, 4, 5, 8, 11, 10, 12, 14, 15] and others.

A k-cycle is a cycle of length k. Kim and Ozeki [8] proved that planar graphs without k-cycles where $k \in \{3, 4, 5, 6\}$ are DP-4-colorable. Kim and Yu [9] proved that every planar graph without 3-cycles adjacent to 4-cycles is DP-4-colorable. One naturally asked the following question.

Question 1.3 Is every planar graph without i-cycles adjacent to j-cycles DP-4colorable for $i, j \in \{3, 4, 5, 6\}$ and $i \neq j$?

For each $k \in \{5, 6\}$, Liu, Li, Nakprast, Sittitrai, Yu [13] proved that every planar graph without 3-cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou [6] proved that every planar graph without 4-cycles adjacent to k-cycles is DP-4-colorable. In this paper, we answer the last case of Question 1.3 and prove the following result.

Theorem 1.4 Every planar graph G without 5-cycles adjacent to 6-cycles is DP-4colorable.

A *cluster* in a plane graph G is a subgraph of G that consists of a minimal set of 3-faces such that no other 3-face is adjacent to any 3-face in this set. It is called a k-cluster if it contains k 3-faces. We present four clusters here (see Figure 1).

Figure 1: Four clusters

A face f in H_3 is semi-poor, poor face if it is adjacent to exactly one or two 3-faces, respectively. So, there are two semi-poor faces and exactly one poor face in any H_3 . A 4-vertex in H_4 is called a hub.

Finally we introduce some notation and terminology used in this paper. Let G be a simple plane graph. We use F or F(G) to denote the face set of G. For $f \in F(G)$, we write $f = [u_1u_2...u_n]$ if $u_1, u_2, ..., u_n$ are the boundary vertices of f in a cyclic order. A face of G is said to be incident with all edges and vertices in its boundary. The degree of a face f, denoted by $d_G(f)$, is the number of edges incident with it, where a cut edge is counted twice. A k-vertex (k^+ -vertex, k^- -vertex) is a vertex of degree k (at least k, at most k). A k-face (k^- -face or k^+ -face) is defined similarly. For convenience, a k-face $f = [v_1v_2...v_k]$ is often said to be a $(d(v_1), d(v_2), \ldots, d(v_k))$ face. Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the sets of vertices located inside and outside C, respectively. The cycle C is called a *separating cycle* if $int(C) \neq \emptyset \neq ext(C)$.

2 Proof of Theorem 1.4

This section is devoted to proof of Theorem 1.4.

Let G_L be a cover of a graph G with a list assignment L. Let G' = G - Hwhere H is an induced subgraph of G. A list assignment L' is a restriction of L on G' if L'(u) = L(u) for each vertex u in G'. A graph $G_{L'}$ is a restriction of G_L on G' if $G_{L'} = G_L[v \times L(v) : v \in V(G')]$. Assume that $G_{L'}$ has an $\mathcal{M}_{L'}$ coloring. Then $G_{L'}$ has an independent set I' of size |I'| = |V(G)| - |V(H)|. Define $L_x^* = L_x - \bigcup_{ux \in E(G)} \{(x, c') \in L_x : (u, c)(x, c') \in E(G_L), c' \in L(x), (u, c) \in I'\}$ for each $x \in V(H)$, and define $G_{L^*} = G_L[x \times L^*(x) : x \in V(H)]$. If H has an \mathcal{M}_{L^*} -coloring, then G_{L^*} has an independent set I^* of size $|I^*| = |V(H)|$. Since there are no edges between I' and I^* , $I' \cup I^*$ is an independent set in G_L of size $|I'| + |I^*| = |V(G)|$. Thus, G_L has an \mathcal{M}_L -coloring.

Lemma 2.1 ([8]) For each $k \in \{3, 4, 5, 6\}$, every planar graph without k-cycles is DP-4-colorable.

We now introduce *extendability*. Let G be a graph and C be a subgraph of G. Then (G, C) is DP-4-colorable if every DP-4-coloring of C can be extended to G.

Figure 2. A bad 4-cycle

A 4-cycle is *bad* if it is the outer 4-cycle in the subgraph isomorphic to the graph in Figure 2 and *good* otherwise. For convenience, we say that every 3-cycle is a good cycle. In order to prove Theorem 1.4, we prove a stronger result as follows.

Theorem 2.2 If G is a planar graph without 5-cycles adjacent to 6-cycles, then every precoloring of a induced good k-cycle can be extended to a DP-4-coloring of G, where k = 3, 4.

Proof of Theorem 1.4 via Theorem 2.2. By Lemma 2.1, we may assume that G contains a k-cycle C, where k = 3, 4. By Theorem 2.2, every precoloring of C can be extended to G, so G is also DP-4-colorable.

Let (G, C_0) be a minimal counterexample to Theorem 2.2 with |V(G)| + |E(G)|minimized, where C_0 is a precolored k-cycle in G, where k = 3, 4. We claim that C_0 has no chord. Suppose otherwise that C_0 has a chord e_0 and two vertices of e_0 have colored different colors. Let $G' = G - e_0$. By the minimality of G, any DP-4-coloring of C_0 can be extended to a DP-4-coloring of G'. Thus, G has a DP-4coloring, a contradiction. If C_0 is a separating cycle, then any precoloring of C_0 can be extended to $int(C_0)$ and $ext(C_0)$, respectively. Then we get a DP-4-coloring of G, a contradiction. So we may assume that C_0 is the boundary of the outer face of Gin the rest of this paper. A vertex v is an *internal vertex* if $v \notin C_0$. For an internal 4^+ -vertex v is in a cluster H, where $H \in \{H_1, H_2, H_3, H_4\}$, v is called *i-type* to H if v is incident with exactly i edges in H.

Lemma 2.3 Each internal vertex is a 4⁺-vertex.

Proof. Suppose to the contrary that x is an internal 3⁻-vertex. By the minimality of G, G' = G - x admits an $\mathcal{M}_{L'}$ -coloring where L' is a restriction of L in G'. Thus $G_{L'}$ has an independent set I' of size |I'| = |V(G')|. Consider a list assignment L^* on x. Since |L(x)| = 4 and $d(x) \leq 3$, we obtain $|L_x^*| \geq 1$. Clearly, $(x, c) \in L_x^*$ is an independent set in $G[\{x\}]$. Then $I' \cup \{(x, c)\}$ is an independent set of G_L and hence G has an \mathcal{M}_L -coloring, a contradiction. \Box

By Lemma 2.3, since G has no 5-cycles adjacent to 6-cycles, G has four clusters depicted in Figure 1.

Lemma 2.4 G contains no separating good k-cycle, where k = 3, 4.

Proof. Let C be a separating good k-cycle in G. By the minimality of (G, C_0) , any precoloring of C_0 can be extended to G - int(C). After that, C is precolored, then again the coloring of C can be extended to int(C). Thus, G has a DP-4-coloring, a contradiction.

- **Lemma 2.5** (a) Assume that g is a 4-cycle which is not bad and f is a 3-face which is not C_0 . If a 4-face g is adjacent to f, then f cannot be adjacent to any 3-face and g cannot be adjacent to any 3- or 4-face h, where $h \neq f$.
 - (b) If v is a 5⁺-vertex incident with three consecutive 3-faces, then none of the 3-faces can be adjacent to any other 3-faces.
 - (c) A 3-face f is not adjacent to a 5-face g.
 - (d) For $k \ge 5$, a k-vertex is incident to at most k 2 triangles.

Proof. (a) Let f = [uvw] and g = [uwxy]. Since f is not C_0 , x and y are outside f and v is outside g by Lemma 2.4.

We first show that f cannot be adjacent to a 3-face. Suppose to the contrary that f is adjacent to a 3-face h = [vzw] by symmetry. Since x and y are outside f, by Lemma 2.4, z is outside of both f and g. Let $S = \{u, v, w, x, y\}$. If $z \notin S$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uvzwxyu, a contradiction. Thus, assume that $z \in S$. Then z = x or z = y. If z = x, then u and y are either inside or outside vwxw. In the former case, vuyxv is a 4-cycle. By Lemma 2.4, such a 4-cycle is a 4-face and hence d(y) = 2, contrary to Lemma 2.3. In the latter case, vwxv is a 3-face by assumption and hence d(w) = 3, contrary to Lemma 2.3. If z = y, then u and x are either inside or outside vwyv of G. In each case, uwyu is a separating 3-cycle, contrary to Lemma 2.4.

Next we show that g cannot be adjacent to any other 3-face. Suppose to the contrary that g is adjacent to a 3-face $h \neq f$. By symmetry h shares exactly one edge xw or xy with g.

We first assume that h = [xwz]. If $z \notin S$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uvwzxyu, a contradiction. Thus, assume that $z \in S$. Since G is a simple graph, z = v or z = y. Since x and y are outside of f, by Lemma 2.4, z is outside g. If z = v, this is the case that x = z in above proof and we are done. If z = y, then wuyw is a separating 3-cycle, contrary to Lemma 2.4.

Now let h = [zyx]. If $z \notin S$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uvwxzyu, a contradiction. Thus, assume that $z \in S$. In this case, assume that z = v or z = u by symmetry. Since x and y are outside of f, by Lemma 2.4, z is outside g. If z = u, then uwxu is a separating 3-cycle, contrary to Lemma 2.4. If v = z, then u and w are either inside or outside xyzx. In the former case, vuy is a 3-cycle, by Lemma 2.4, d(u) = 3, contrary to Lemma 2.3. In the later case, either vuyv or vwxv is a 3-cycle, by Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 3 (or d(w) = 3), contrary to Lemma 2.3.

Finally, we show that g cannot be adjacent to a 4-face. Suppose to the contrary that g is adjacent to a 4-face h. By symmetry h shares exactly one edge xw or xy with g. Assume first that h = [xwzt]. If $\{z,t\} \cap S = \emptyset$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uwztxyu, a contradiction. Thus, $\{z,t\} \cap S \neq \emptyset$. Since x and

y are outside f, by Lemma 2.4, z, t are outside g. Assume first that $z \in S$ and $t \notin S$. Since G is planar, $z \neq u$. Then z = v or z = y. If z = v, then vwxtv is a 4-cycle. By Lemma 2.4, such a 4-cycle is a 4-face and hence d(w) = 3, contrary to Lemma 2.3. If z = y, then G has a separating 3-cycle uywu, contrary to Lemma 2.4. Then assume that $z \notin S$ and $t \in S$. If t = y, then wzyuw is a separating 4-cycle, contrary to Lemma 2.4. If t = u, then xwux is a separating 3-cycle, contrary to Lemma 2.4. If t = v, then G has a separating 3-cycle vwxv, contrary to Lemma 2.4. Thus, $\{z,t\} \subset S$. Since G is planar, z = v and t = u. Then uyxu is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(y) = 2, contrary to Lemma 2.3.

Thus, assume that h = [yxzt]. If $\{z,t\} \cap S = \emptyset$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uwxztyu, a contradiction. Thus, assume that $\{s,t\} \cap S \neq \emptyset$. Since x and y are both outside of f, by Lemma 2.4, z and t are outside of g. Assume first that one of s and t is in S. By symmetry, assume that $t \notin S$ and $z \in S$. If z = v, then G has a separating 4-cycle vuyxv, contrary to Lemma 2.4. If z = w, then G has a separating 4-cycle wuytw, contrary to Lemma 2.4. If z = u, then G has a separating 3-cycle uwxu, contrary to Lemma 2.4. Thus, assume that z and t are both in S. Since G is simple, $\{z,t\} \cap \{x,y\} = \emptyset$ and $\{z,t\} \cap \{u,w\} = \emptyset$. By symmetry, assume that z = v. Since G is planar, t = u. In this case, xwvx is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(w) = 3, contrary to Lemma 2.3.

(b) Assume that v is a 5⁺-vertex incident with three consecutive 3-faces $f_1 = [uvw]$, $f_2 = [wvx]$ and $f_3 = [xvy]$. Let $S = \{u, v, w, x, y\}$. Suppose to the contrary that at least one of the three 3-faces is adjacent to another 3-face f_4 . By Lemma 2.4, f_4 shares exactly one edge with one of f_1 , f_2 and f_3 . By symmetry we may assume that $f_4 = [uzw]$ or [uvz] or [wzx]. If $z \notin S$, then there exists a 5-cycle adjacent to a 6-cycle, a contradiction. So, assume that $z \in S$. If $f_4 = [wxv]$, then $v \neq z$ since $f_4 \neq f_2$. Thus, let z = u by symmetry. In this case, xwux is a 3-cycle. By Lemma 2.4, d(w) = 3, contrary to Lemma 2.3. By symmetry, assume that $f_4 = [uwz]$. If z = x, then xwux is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(w) = 3, contrary to Lemma 2.3. Thus, $f_4 = [uzw]$ and z = y. In this case, vwyv is a separating 3-cycle, contrary to Lemma 2.4.

(c) Suppose to the contrary that f = [xyz] and g = [uvwxy]. If $z \notin S$, then uvwxyu is a 5-cycle adjacent to a 6-cycle uvwxzyu, a contradiction. If $z \in S$, then we assume z = u or z = v by symmetry. In the former case, xyux is a 3-cycle, by Lemma 2.4, d(y) = 2 (or d(w) = 2), contrary to Lemma 2.3. In the later case, uvyu (or xwvx) is a 3-cycle. By Lemma 2.4, such a 3-cycle is a 3-face and hence d(u) = 2 (or d(w) = 2), contrary to Lemma 2.3.

(d) It follows that G has no 5-cycles adjacent to 6-cycles.

Lemma 2.6 Two (4, 4, 4)-faces in $int(C_0)$ cannot share exactly one common edge in G.

Proof. Suppose to the contrary that $T_1 = [uvx]$ and $T_2 = [uvy]$ share a common edge uv. Let $S = \{u, v, x, y\}$ and G' = G - S. By the minimality of G, $G_{L'}$ admits an \mathcal{M}_L -coloring where L' (and $G_{L'}$) is a restriction of L (and G_L , respectively). Thus $G_{L'}$ has an independent set I' of size |V(G')| = |V(G)| - 4.

We claim that $xy \notin E(G)$. Suppose otherwise. Then G has either a 3-cycle $D_1 = xvyx$ such that u is in $int(D_1)$ or a 3-cycle $D_2 = xuyx$ such that v is in $int(D_2)$. In the former case, since both x and y are 4-vertices, D_1 is a separating 3-cycle, contrary to Lemma 2.4. In the latter case, similarly, D_2 is a separating 3-cycle, contrary to Lemma 2.4. Consider a list assignment L^* on S. Since $|L(v)| \ge 4$ for all $v \in V(G)$, we have

$$|L_u^*| \ge 3, \ |L_v^*| \ge 3, \ |L_x^*| \ge 2, \ |L_y^*| \ge 2.$$

Since $|L_v^*| > |L_x^*|$, we can choose a vertex (v, c) in

$$L_v^* - \{ (v, c') : (x, c'') \in L_x^*, (v, c')(x, c'') \in M_{vx} \}.$$

Then L_x^* has at least two available colors. We color y, u, x in order, we can find an independent set I^* with $|I^*| = 4$. So $I' \cup I^*$ is an independent set of G_L with $|I' \cup I^*| = |V(G)|$. Then G has an \mathcal{M}_L -coloring, a contradiction.

We are now ready to present a discharging procedure that will complete the proof of the Theorem 1.4. For each $x \in V \cup F$, we define the initial charge ch(x) = d(x) - 4if $x \in V \cup (F \setminus \{C_0\})$ and $ch(C_0) = |C_0| + 4$. By Euler's Formula,

$$\sum_{x \in V} ch(x) + \sum_{x \in F \setminus \{C_0\}} ch(x) + ch(C_0) = \sum_{x \in V} (d(x) - 4) + \sum_{x \in F} (d(x) - 4) + 8 = 0.$$

We define suitable discharging rules such that, for every $x \in V \cup (F \setminus \{C_0\})$, the final charge of x, denoted ch'(x), is non-negative and $ch'(C_0) > 0$. So, we get $0 < \sum_{x \in V \cup F} ch'(x) = \sum_{x \in V \cup F} ch(x) = 0$. This contradiction proves our result.

A 5-vertex v is special if v is 3-type to H_4 and 2-type to one of H_2 and H_3 . Denote by $w(v \to f)$ to transfer the charge from a vertex v to a face f. We define the discharging rules as follows.

(R1) Let v be an internal vertex in a 3-face f.

(a) If v is a 4-vertex, then

$$w(v \to f) = \begin{cases} \frac{1}{6}, & \text{if } v \text{ is } 3\text{-type to } H_2; \\ \frac{1}{7}, & \text{if } v \text{ is } 3\text{-type to } H_3 \text{ and } f \text{ is a semi-poor face}; \\ \frac{2}{7}, & \text{if } v \text{ is } 3\text{-type to } H_4 \text{ and } f \text{ is a poor face}; \\ \frac{1}{7}, & \text{if } v \text{ is } 3\text{-type to } H_4 \text{ and } f \text{ is a } (4, 4, 5^+)\text{-face}; \\ \frac{2}{7}, & \text{if } v \text{ is } 3\text{-type to } H_4 \text{ and } f \text{ is a } (4, 4, 4)\text{-face}. \end{cases}$$

(b) If v is a 5-vertex, then

$$w(v \to f) = \begin{cases} \frac{3}{7}, & \text{if } v \text{ is } 3\text{-type to } H_4; \\ \frac{1}{7}, & \text{if } v \text{ is } 2\text{-type to } H_2 \text{ or } H_3 \text{ and } v \text{ is special}; \\ \frac{1}{3}, & \text{otherwise.} \end{cases}$$

(c) If v is a 6⁺-vertex, then

$$w(v \to f) = \begin{cases} \frac{3}{7}, & \text{if } v \text{ is } 3\text{-type to } H_4; \\ \frac{1}{3}, & \text{otherwise.} \end{cases}$$

- (R2) Every 4-face sends $\frac{2}{5}$ to each adjacent 3-face; every k-face sends $\frac{k-4}{k}$ to each adjacent 3-face, where $k \ge 6$.
- (R3) Every 5-face sends $\frac{1}{5}$ to each adjacent 4-face.
- (R4) Let v be an internal 4-vertex. If v is incident with two adjacent 6⁺-faces, then each such a 6-face gives $\frac{1}{6}$ to v and each such a 7⁺-face gives $\frac{3}{14}$ to v.
- (R5) The outercycle C_0 gets ch(v) from each incident vertex and sends 1 to any 3-face sharing at least one vertex with C_0 .

It suffices to check that each $x \in V(G) \cup F(G)$ has nonnegative final charge and C_0 has positive final charge. By (R4), we have ch'(v) = 0 for each $v \in V(C_0)$. Thus, we need to check $ch'(v) \ge 0$ for each internal 4⁺-vertex v by Lemma 2.3.

- (1) Let v be a 4-vertex. If v is incident with at most one 3-face, then v is 2-type to one of H_1 , H_2 and H_3 . By (R1)(a), ch'(v) = ch(v) = 0. If v is incident with two nonadjacent 3-faces, then v is 2-type to one of H_1, H_2 and H_3 and also 2-type to the other of H_1, H_2 and H_3 . By (R1)(a), ch'(v) = ch(v) = 0. If v is incident with three 3-faces, then v is 4-type to H_3 . Similarly by (R1)(a), ch'(v) = ch(v) = 0. If v is incident with four 3-faces, then v is 4-type to H_4 . Thus, ch'(v) = ch(v) = 0 by (R1) (a). Thus, assume that v is incident with two adjacent 3-faces. Then v is 3-type to one of H_2, H_3 and H_4 . If v is 3-type to H_2 , by Lemma 2.5(a) and (c), v is incident with two 6⁺-faces. By (R1)(a) and (R4), $ch'(v) = ch(v) + \frac{1}{6} \times 2 - \frac{1}{6} \times 2 = 0$. If v is 3-type to H_3 , by Lemma 2.5(a) and (c), v is incident with two 7⁺-faces since G has no 5-cycles adjacent to 6-cycles. By (R1)(a) and (R4), $ch'(v) = ch(v) + \frac{3}{14} \times 2 - (\frac{1}{7} + \frac{2}{7}) = 0$. If v is 3-type to H_4 , by Lemma 2.5(b), v is incident with two 7⁺-faces since G has no 5-cycles adjacent to 6-cycles. By Lemma 2.6, v is incident with at least one $(4, 4, 5^+)$ -face in H_4 . By (R1)(a) and (R4), $ch'(v) = ch(v) + \frac{3}{14} \times 2 - (\frac{1}{7} + \frac{2}{7}) = 0$.
- (2) Let v be a 5-vertex. By Lemma 2.5(b), v is incident with at most three consecutive 3-faces. If v is not incident with any 3-face, then $ch'(v) = ch(v) = 1 \ge 0$ by (R1)(b). If v is incident with exactly one 3-face, then v is 2-type to one of H_1, H_2 and H_3 . Thus, $ch'(v) = ch(v) \frac{1}{3} = \frac{2}{3} > 0$ by (R1)(b). If v is incident with two nonadjacent 3-faces, then v is 2-type to one of H_1, H_2 and H_3 and also 2-type to the other one of H_1, H_2 and H_3 . By (R1)(b), $ch'(v) = ch(v) 2 \times \frac{1}{3} = \frac{1}{3} > 0$. If v is incident with two adjacent 3-faces, then v is 3-type to one of H_2, H_3 and H_4 . If v is 3-type to H_2 or H_3 , then v sends $\frac{1}{3}$ to each 3-face. By (R1)(b), $ch'(v) = ch(v) 2 \times \frac{1}{3} = \frac{1}{3} > 0$. If v is 3 type to H_4 , then $ch'(v) = ch(v) 2 \times \frac{3}{7} = \frac{1}{7} > 0$ by (R1)(b). We now assume that v is incident with three 3-faces. If v is incident with consecutive three 3-faces, then v is 4-type to H_3 . By (R1)(b), $ch'(v) = ch(v) 3 \times \frac{1}{3} = 0$. Thus, v is incident two adjacent 3-faces and the other 3-face. Then v is 3-type to one of H_2, H_3 and H_4 and 2-type to one of H_1, H_2 and H_3 . If v is 3-type to one of H_2 and H_3 and 2-type of H_1, H_2 and H_3 . Thus $ch'(v) = ch(v) \frac{1}{3} \times 3 = 0$ by (R1)(b). If v is 3-type of H_4 and 2-type to one of H_1, H_2 and H_3 .

 H_2 and H_3 , then v sends $\frac{3}{7}$ to each 3-face in the H_4 and $\frac{1}{7}$ to the other 3-face. Thus, $ch'(v) = ch(v) - (\frac{3}{7} \times 2 + \frac{1}{7}) \ge 0$ by (R1)(b).

(3) Let v be 6⁺-vertex. If v is not incident with 3-faces, then $ch'(v) = ch(v) = d(v) - 4 \ge 2 > 0$. By Lemma 2.5(d), v is incident with at most (d(v) - 2) 3-faces. Then $ch'(v) \ge (d(v) - 4) - \frac{3}{7} \times (d(v) - 2) = \frac{4}{7}d(v) - \frac{22}{7} \ge \frac{24}{7} - \frac{22}{7} = \frac{2}{7} > 0$ by (R1)(c).

We now check that $ch'(f) \ge 0$ for each $f \in F$. For simplicity, we also use f to denote the set of vertices of f for a face f. Let f_1, f_2, \ldots, f_l be 3-faces of a l-cluster H_l . Define $ch(H_l) = ch(f_1) + \cdots + ch(f_l)$ and $ch'(H_l) = ch'(f_1) + \cdots + ch'(f_l)$.

We first check that $f \cap C_0 \neq \emptyset$.

(1) Let f be a 3-face in G. If f is not adjacent with any other 3-face, then by (R5) f gets 1 from C_0 . So $ch'(f) \ge 3 - 4 + 1 = 0$.

Assume that f is in H_2 . Let g be the 3-face in H_2 adjacent to f. If $C_0 \cap g \neq \emptyset$, then C_0 sends 1 to both f and g. Thus, $ch'(H_2) = -2 + 1 + 1 = 0$ by (R5). Thus, assume that $C_0 \cap g = \emptyset$. In this case, C_0 sends charge 1 to f. By Lemma 2.5, there are four 6⁺-faces adjacent to this H_2 . By (R2) and (R5), $ch'(H_2) \geq -2 + 1 + \frac{1}{3} \times 4 > 0$.

Assume that f is in H_3 . Assume that the H_3 is induced by three 3-faces f, g and h. If $g \cap C_0 \neq \emptyset$ and $h \cap C_0 \neq \emptyset$, then $ch'(H_3) = -3 + 1 + 1 + 1 = 0$ by (R5). Thus, assume that one of $g \cap C_0$ and $h \cap C_0$ is not empty. By Lemma 2.5, there are five 7⁺-faces adjacent to this H_3 . Thus, $ch'(H_3) \geq -3 + 1 + \frac{3}{7} \times 5 > 0$ by (R2) and (R5).

Assume that f is in H_4 . Let $V(H_4) = \{u, v, w, x, y\}$, where x, y, u, v are 3-type vertices to H_4 . Assume that $x \in V(H_4) \cap C_0$ and $x \in f$. If $|V(H_4) \cap C_0| \ge 2$, then G has a 5-cycle adjacent to a 6-cycle, a contradiction. Thus, $V(H_4) \cap C_0 = \{x\}$. By Lemma 2.5, there are four 7⁺-faces adjacent to this H_4 , and the C_0 is incident with two 3-faces in H_4 . Applying Lemma 2.6 to the subgraph induced by $\{y, u, v, w\}$, there are at least one 5⁺-vertex in $int(C_0)$ in H_4 . Thus, $ch'(H_4) \ge -4 + 1 + 1 + \frac{3}{7} \times 4 + \frac{3}{7} \times 2 > 0$ by (R1)(b), (R2) and (R5).

- (2) Let d(f) = 4. If $|f \cap C_0| = 2$, by Lemma 2.4, then f cannot be adjacent to any 3-face rather than C_0 (if C_0 is a 3-face) since G has no 5-cycle adjacent to 6-cycle. Thus, ch'(f) = ch(f) = 0. Thus, assume that $|f \cap C_0| = 1$. By Lemma 2.5(a), f is adjacent to at most one 3-face. If f is not adjacent to any 3-face, then ch'(f) = ch(f) = 0. If f is adjacent to one 3-face, then f is not adjacent to any 4-face by Lemma 2.5(a). Thus, f is adjacent to three 5⁺-faces. By (R2) and (R3), $ch'(f) \ge ch(f) + \frac{1}{5} \times 3 - \frac{2}{5} = \frac{1}{5} > 0$.
- (3) Let $d(f) \ge 5$. If f is a 5-face, then f is not adjacent to any 3-face and adjacent to at most five 4-faces. Thus, $ch'(f) \ge ch(f) \frac{1}{5} \times 5 = 0$ by (R3). Thus, f is a 6⁺-face. By (R2), $ch'(f) \ge (k-4) k \times \frac{k-4}{k} = 0$.

From now on we may assume that $f \cap C_0 = \emptyset$.

(1) Let f be a 3-face. If f is H_1 , then f is adjacent to at most one 4-face. If f is adjacent to one 4-face, by Lemma 2.5, the other faces incident with f are 6^+ -faces. By (R1), $ch'(f) \ge d(f) - 4 + \frac{2}{5} + 2 \times \frac{k-4}{k} \ge -1 + \frac{2}{5} + 2 \times \frac{1}{3} > 0$. Thus, assume that f is not adjacent to any 4-face. Since G had no 5-cycle adjacent to any 6-cycle, f cannot adjacent to any 5-face. Thus, f is adjacent to three 6^+ -faces. By (R1)(c), $ch'(f) \ge d(f) - 4 + \frac{1}{3} \times 3 = 0$.

Assume first that f is in H_2 . Then $ch(H_2) = -2$ and let f_1 and f_2 be two 3-faces in H_2 . Let $V(H_2) = \{u, v, x, y\}$, where x, y are 2-type to H_2 and u, vare 3-type to H_2 . Since G has no separating 3-cycle, x is not adjacent to y. Since G has no 5-cycles adjacent to 6-cycles, each face adjacent to an internal face of H_2 is a 6⁺-face by Lemma 2.5. In this case, there are four 6⁺-faces adjacent to this H_2 . By (R1), each such face sends $\frac{1}{3}$ to f_1 or f_2 in H_2 . If one of u and v is a 5⁺-vertex, then it sends $\frac{1}{3}$ to each of the two adjacent 3-face by (R1)(b), (R1)(c) and (R1)(e). Thus, $ch'(H_2) \ge -2 + \frac{1}{3} \times 4 + \frac{1}{3} \times 2 = 0$. We now assume that each of u and v is a 4-vertex. By Lemma 2.6, at least one of x and y is a 5⁺-vertex. Assume that x is a 5⁺-vertex. If x is a 6⁺-vertex or a non-special 5-vertex, then x sends $\frac{1}{3}$ to the 3-face in H_3 by (R1)(c). By (R1)(a), (R1)(b) and (R2), each of u and v sends $\frac{1}{6}$ to each adjacent 3-faces. Thus, $ch'(H_2) \ge -2 + \frac{1}{3} \times 4 + \frac{1}{3} + \frac{1}{6} \times 4 > 0$. Thus, assume that x is a special 5-vertex. In this case, x is incident with two 7⁺-faces. So, there are two 6⁺-faces and two 7⁺-faces adjacent to this H_2 . In this case x sends $\frac{1}{7}$ to the 3-face in H_2 . By (R1)(a), (R1)(b) and (R2), $ch'(H_2) \ge -2 + \frac{1}{3} \times 2 + \frac{3}{7} \times 2 + \frac{1}{7} + \frac{1}{6} \times 4 > 0$. Next, assume that f is in H_3 . Then $ch(H_3) = -3$ where f_1 , f_2 , and f_3 are 3-faces in H_3 . Let $V(H_3) = \{u, v, w, x, y\}$, where v is 4-type to H_3 , u, w are 3-type to

 H_3 , and x and y are 2-type to H_3 . By Lemma 2.4, x is not adjacent to w and y is not adjacent to u. Since G has no 5-cycles adjacent to 6-cycles, each face adjacent to an internal face of H_3 is a 7⁺-face by Lemma 2.5. By (R2), each such 7⁺-face sends at least $\frac{3}{7}$ to the H_3 . If v is a 5⁺-vertex, then v sends $\frac{1}{3}$ to each of three 3-faces in the H_3 by (R1)(b). Thus, $ch'(H_3) \ge -3 + \frac{3}{7} \times 5 + \frac{1}{3} \times 3 > 0$. If one of u and w, say u, is a 5⁺-vertex, then w is a 4⁺-vertex by Lemma 2.4. In this case, u sends $\frac{1}{3}$ to two 3-faces incident with u in the H_3 by (R1)(b), w sends $\frac{1}{7}$ and $\frac{2}{7}$ to two 3-faces incident with w in the H_3 by (R1)(a). So, $ch'(H_3) \ge -3 + \frac{3}{7} \times 5 + \frac{1}{3} \times 2 + \frac{2}{7} + \frac{1}{7} > 0$. Now we assume that each of u, v, w is a 4-vertex. By Lemma 2.6, x and y are 5⁺-vertices. If x and y are 5-vertices, then they may be special 5-vertices. By (R1)(b) and by (R1)(c), each of x and y sends at least $\frac{1}{7}$ to the 3-face in the H_3 . Each of u and w sends $\frac{2}{7}$ and $\frac{1}{7}$ to the two 3-faces in the H_3 by (R1)(a). Thus, $ch'(H_3) = -3 + (\frac{3}{7} \times 5) + (\frac{1}{7} \times 2) + (\frac{2}{7} \times 2) + (\frac{1}{7} \times 2) > 0.$ Finally, assume that f is in H_4 . Let x be a hub and u, v, w, y be 3-type to H_4 . Similarly, $ch(H_4) = -4$. where $f_1 = [xuv], f_2 = [xvw], f_3 = [xwy]$ and $f_4 = [xyu]$ are 3-faces in H_4 . By Lemma 2.4, u is not adjacent to w, and v is not adjacent to y. By Lemma 2.5, each 3-face in H_4 is adjacent to a 7⁺-face. By (R2), each such 7⁺-face sends at least $\frac{3}{7}$ to the adjacent 3-face in the H_4 .

By Lemma 2.6, at least two 3-type vertices to H_4 are 5⁺-vertices. By (R1)(a), (R1)(b) and (R1)(c), each 3-type 5⁺-vertex sends $\frac{3}{7}$ to each incident 3-face in H_4 and the other 3-type vertices to H_4 are 4-vertices, each of which sends at least $\frac{1}{7}$ to each incident 3-faces in H_4 . If H_4 contains exactly two 3-type 5⁺-vertices, then $ch'(H_4) \geq -4 + \frac{3}{7} \times 4 + \frac{3}{7} \times 4 + \frac{3}{7} \times 4 + \frac{3}{7} \times 6 + \frac{1}{7} \times 2 > 0$.

- (2) Let f be a 4-face. Let $f = [v_1v_2v_3v_4]$. By Lemma 2.5(a), f is adjacent to at most one 3-face. If f is adjacent to a 3-face, then the other faces adjacent to f are 5⁺faces by Lemma 2.5(a). By (R1)(d) and (R2), $ch(f) \ge d(f) - 4 + \frac{1}{5} \times 3 - \frac{2}{5} > 0$. If f is not adjacent to any 3-face, then f is adjacent to at most four 4-faces. Thus, $ch(f) \ge d(f) - 4 = 0$.
- (3) Let f be a 5⁺-face. If f is a 5-face, then f is adjacent at most five 4-faces. Since G has no 5-cycles adjacent to 6-cycles, f is not adjacent to any 3-face. By (R2), f sends $\frac{1}{5}$ to each adjacent 4-face. Thus, $ch'(f) \ge d(f) 4 5 \times \frac{1}{5} = 0$. Assume that f is a k-face where $k \ge 6$. Then f sends at most $\frac{k-4}{k}$ to 3-faces or 4-faces by (R2). This yields $ch'(f) \ge (k-4) k \times \frac{k-4}{k} = 0$.

We now consider the final charge of the outer face C_0 .

Let $F'_3 = \{f : f \text{ is a 3-face and } |b(f) \cap C_0| = 1\}$ and $F''_3 = \{f : f \text{ is a } k\text{-face and } |b(f) \cap C_0| = 2\}$, and $f'_3 = |F'_3|, f''_3 = |F''_3|$. Let $E(C_0, V(G) - C_0)$ be the set of edges between C_0 and $V(G) - C_0$ and let $e(C_0, V(G) - C_0)$ be its size. Then by (R4),

$$ch'(C_0) = |C_0| + 4 + \sum_{v \in C_0} (d(v) - 4) - f'_3 - f''_3$$

= $|C_0| + 4 + \sum_{v \in C_0} (d(v) - 2) - 2|C_0| - f'_3 - f''_3$
= $-|C_0| + 4 + (e(C_0, V(G) - C_0) - f'_3 - f''_3).$

So we may think that each edge $e \in E(C_0, V(G) - C_0)$ contributes 1 to $e(C_0, V(G) - C_0)$. Note that each 3-face contains two edges in $E(C_0, V(G) - C_0)$. Since C_0 is not a bad 4-cycle, any vertex $v \in int(C_0)$ is adjacent at most three vertices on C_0 . Thus, if $F''_3 \neq \emptyset$, then all the 3-faces in F''_3 contributes at least $f''_3 + 1$ to $e(C_0, V(G) - C_0)$ while get at most f''_3 from C_0 . Similarly, if $F'_3 \neq \emptyset$, then all the 3-faces in F''_3 contribute at least $f''_3 + 1$ to $e(C_0, V(G) - C_0)$ while get at most f''_3 from C_0 . Similarly, if $F'_3 \neq \emptyset$, then all the 3-faces in F'_3 contribute at least $f'_3 + 1$ to $e(C_0, V(G) - C_0)$ while get at most f'_3 from C_0 . Thus, if $f'_3 \neq 0$ or $f''_3 \neq 0$, then $e(C_0, V(G) - C_0) - f'_3 - f''_3 > 0$ and so $ch'(C_0) > 0$. Thus, $f'_3 = f''_3 = 0$ and $e(C_0, V(G) - C_0) - f'_3 - f''_3 \geq 0$. If $|C_0| = 3$, then $ch'(C_0) > 0$. Let $|C_0| = 4$. If $e(C_0, V(G) - C_0) = 0$, then G is a 4-cycle, a contradiction. If $e(C_0, V(G) - C_0) \neq 0$, then $ch'(C_0) > 0$.

This completes the proof.

Acknowledgements

We would like to thank G. Yu and R. Liu for their help when we prepared this paper.

References

- N. Alon, Degrees and choice numbers, Random Structures & Algorithms 16 (2000), 364–368.
- [2] A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, *Discrete Math.* **339** (2016), 2680–2692.
- [3] A. Bernshteyn, A. Kostochka and S. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58 (2017), 28–36.
- [4] A. Bernshteyn, The Johansson-Molloy Theorem for DP-coloring, Random Structures & Algorithms 54 (2019), 653–664.
- [5] A. Bernshteyn, A. Kostochka and X. Zhu, DP-colorings of graphs with high chromatic number, *European J. Combin.* **65** (2017), 122–129.
- [6] L. Chen, R. Liu, G. Yu, R. Zhao and X, Zhou, DP-4-colorability of two classes of planar graphs, *Discrete Math.* 342 (2019), 2984–2993.
- [7] Z. Dvořák and L. Postle, Correspondence coloring and its application to listcoloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018), 38–54.
- [8] S. J. Kim and K. Ozeki, A sufficient condition for DP-4-colorability, *Discrete Math.* 341 (2018), 1983–1986.
- [9] S. J. Kim and X. Yu, Planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, *Graphs Combin.* 35 (2019), 707–718.
- [10] R. Li and T. Wang, DP-4-coloring of planar graphs with some restrictions on cycles, *Discrete Math.* 344 (2021), 112568.
- [11] X. Li, J.-B. Lv and M. Zhang, DP-4-colorability of planar graphs without intersecting 5-cycles, *Discrete Math.* 345 (2022), 112790.
- [12] R. Liu and X. Li, Every planar graph without 4-cycles adjacent to two triangles is DP-4-colorable, *Discrete Math.* 342 (2019), 623–627.
- [13] R. Liu, X. Li, K. Nakprasit, P. Sittitrai and G. Yu, DP-4-colorability of planar graphs without two adjacent cycles of given length, *Discrete Appl. Math.* 277 (2020), 245–251.
- [14] R. Liu, S. Loeb, M. Rolek, Y. Yin and G. Yu, DP-3-coloring of planar graphs without 4-, 9-cycles and cycles of two lengths from {6,7,8}, *Graphs Combin.* 35 (2019), 695–705.
- [15] R. Liu, S. Loeb, Y. Yin and G. Yu, DP-3-coloring of some planar graphs, *Discrete Math.* 342 (2019), 178–189.

(Received 10 Aug 2022; revised 16 May 2023)