Every planar graph without 5-cycles adjacent to 6-cycles is DP-4-colorable

Xiangwen Li* Mao Zhang
School of Mathematics and Statistics
Central China Normal University
Wuhan 430079, China

Abstract

DP-coloring of a graph was introduced by Dvorák and Postle [J. Combin. Theory Ser. B 129 (2018), 38-54] as a generalization of a list coloring. Kim and Ozeki [Discrete Math. 341 (2018), 1983-1986] proved that planar graphs without k-cycles where $k \in\{3,4,5,6\}$ are DP-4-colorable. Kim and Yu [Graphs Combin. 35 (2019), 707-718] proved that every planar graph without 3 -cycles adjacent to 4 -cycles is DP-4-colorable. So it was natural to ask whether every planar graph without i-cycles adjacent to j-cycles is DP-4-colorable for $i, j \in\{3,4,5,6\}$ and $i \neq j$. For each $k \in\{5,6\}$, Liu, Li, Nakprast, Sittitrai and Yu [Discrete Appl. Math. 277 (2020), 245-251] proved that every planar graph without 3-cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou [Discrete Math. 341 (2019), 2984-2993] proved that every planar graph without 4 -cycles adjacent to k-cycles is DP-4-colorable. In this paper, we answer the last case of this question and prove that every planar graph G without 5 -cycles adjacent to 6 -cycles is DP-4-colorable. This result also improves a result of Kim and Ozeki in the 2018 paper mentioned above.

1 Introduction

Coloring is one of the most popular topics in graph theory. Let G be a simple graph. A proper coloring of G is a function $c: V(G) \rightarrow[k]=\{1,2, \ldots, k\}$ such that $c(u) \neq c(v)$ for any edge $u v \in E(G)$. A graph G is k-colorable if it has a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G is k-colorable. A list assignment L of a graph G is a mapping that assigns a set of colors to each vertex. An L-coloring of G is a function $f: V(G) \rightarrow \cup_{v \in V(G)} L(v)$ such that $f(v) \in L(v)$ for any $v \in V(G)$ and $f(u) \neq f(v)$ for any edge $u v \in E$. A graph G is k-choosable if G has an L-coloring for every assignment L with $|L(v)| \geq k$ for

[^0]each $v \in V(G)$. The choice number of G, denoted by $\chi_{l}(G)$, is the smallest integer k such that G is k-choosable.

As a generalization of list coloring, DP-coloring (or corresponding-coloring) was first introduced by Dvořák and Postle [7]. The following equivalent definition is given by Bernsheteyn, Kostochka and Pron [3].

Definition 1.1 Let G be a simple graph, and L be a list assignment of G. Definite $L_{v}=\{u\} \times L(v)$ for any vertex $v \in V(G)$, and let $M_{u v}$ be a matching (may be empty) between sets of L_{v} and L_{u}. Let $\mathcal{M}_{L}=\left\{M_{u v}: u v \in E(G)\right\}$, which is called the matching assignment over L. Let G_{L} be a graph, called an \mathcal{M}_{L}-cover of G, which satisfies the following conditions.

- The vertex set of G_{L} is $\cup_{v \in V(G)} L_{v}$.
- $G_{L}\left[L_{v}\right]$ is a clique for any vertex $v \in V(G)$.
- If $u v \in E(G)$, then the edges between L_{u} and L_{v} form a matching in $M_{u v}$.
- If $u v \notin E(G)$, then there is no any edge between L_{u} and L_{v}.

Definition 1.2 If G_{L} contains an independent set of size $|V(G)|$, then we say that G has an \mathcal{M}_{L}-coloring. If G has an \mathcal{M}_{L}-coloring for any k-list assignment L, and any matching assignment \mathcal{M}_{L} over L, then G is $D P$-k-colorable. The DP-chromatic number, denoted by $\chi_{D P}(G)$, is the minimum positive integer k such that G is $D P$ -k-colorable.

If for each $u v \in E(G)$, we define edges on G_{L} to match exactly the same colors between $L(u)$ and $L(v)$, then this \mathcal{M}_{L}-coloring is the ordinary list coloring. So list coloring is a special case of DP-coloring and $\chi_{D P}(G) \geq \chi_{l}(G)$ for each graph G.

DP-coloring has proved attractive recently. Dvořák and Postle [7] proved that $\chi_{D P}(G) \leq 5$ if G is a planar graph, and $\chi_{D P}(G) \leq 3$ if G is a planar graph with girth at least 5. Meanwhile, DP-coloring and list coloring are quite different. Bernshteyn [2] showed that the DP-chromatic number of every graph with average degree d is $\Omega(d / \log d)$, while Alon [1] proved that $\chi_{l}(G)=\Omega(\log d)$ and the gap is large. More results about DP-coloring can be found in $[2,3,4,5,8,11,10,12,14,15]$ and others.

A k-cycle is a cycle of length k. Kim and Ozeki [8] proved that planar graphs without k-cycles where $k \in\{3,4,5,6\}$ are DP-4-colorable. Kim and Yu [9] proved that every planar graph without 3-cycles adjacent to 4 -cycles is DP-4-colorable. One naturally asked the following question.

Question 1.3 Is every planar graph without i-cycles adjacent to j-cycles DP-4colorable for $i, j \in\{3,4,5,6\}$ and $i \neq j$?

For each $k \in\{5,6\}$, Liu, Li, Nakprast, Sittitrai, Yu [13] proved that every planar graph without 3 -cycles adjacent to k-cycles is DP-4-colorable; Chen, Liu, Yu, Zhao and Zhou [6] proved that every planar graph without 4-cycles adjacent to k-cycles is DP-4-colorable. In this paper, we answer the last case of Question 1.3 and prove the following result.

Theorem 1.4 Every planar graph G without 5-cycles adjacent to 6-cycles is DP-4colorable.

A cluster in a plane graph G is a subgraph of G that consists of a minimal set of 3 -faces such that no other 3 -face is adjacent to any 3 -face in this set. It is called a k-cluster if it contains $k 3$-faces. We present four clusters here (see Figure 1).

Figure 1: Four clusters
A face f in H_{3} is semi-poor, poor face if it is adjacent to exactly one or two 3 -faces, respectively. So, there are two semi-poor faces and exactly one poor face in any H_{3}. A 4 -vertex in H_{4} is called a $h u b$.

Finally we introduce some notation and terminology used in this paper. Let G be a simple plane graph. We use F or $F(G)$ to denote the face set of G. For $f \in F(G)$, we write $f=\left[u_{1} u_{2} \ldots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the boundary vertices of f in a cyclic order. A face of G is said to be incident with all edges and vertices in its boundary. The degree of a face f, denoted by $d_{G}(f)$, is the number of edges incident with it, where a cut edge is counted twice. A k-vertex (k^{+}-vertex, k^{-}-vertex) is a vertex of degree k (at least k, at most k). A k-face (k^{-}-face or k^{+}-face) is defined similarly. For convenience, a k-face $f=\left[v_{1} v_{2} \ldots v_{k}\right]$ is often said to be a $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right)$ face. Let C be a cycle of a plane graph G. We use $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ to denote the sets of vertices located inside and outside C, respectively. The cycle C is called a separating cycle if $\operatorname{int}(C) \neq \emptyset \neq \operatorname{ext}(C)$.

2 Proof of Theorem 1.4

This section is devoted to proof of Theorem 1.4.
Let G_{L} be a cover of a graph G with a list assignment L. Let $G^{\prime}=G-H$ where H is an induced subgraph of G. A list assignment L^{\prime} is a restriction of L on G^{\prime} if $L^{\prime}(u)=L(u)$ for each vertex u in G^{\prime}. A graph $G_{L^{\prime}}$ is a restriction of G_{L} on G^{\prime} if $G_{L^{\prime}}=G_{L}\left[v \times L(v): v \in V\left(G^{\prime}\right)\right]$. Assume that $G_{L^{\prime}}$ has an $\mathcal{M}_{L^{\prime-}}$ coloring. Then $G_{L^{\prime}}$ has an independent set I^{\prime} of size $\left|I^{\prime}\right|=|V(G)|-|V(H)|$. Define $L_{x}^{*}=L_{x}-\cup_{u x \in E(G)}\left\{\left(x, c^{\prime}\right) \in L_{x}:(u, c)\left(x, c^{\prime}\right) \in E\left(G_{L}\right), c^{\prime} \in L(x),(u, c) \in I^{\prime}\right\}$ for each $x \in V(H)$, and define $G_{L^{*}}=G_{L}\left[x \times L^{*}(x): x \in V(H)\right]$. If H has an $\mathcal{M}_{L^{*} \text {-coloring, }}$ then $G_{L^{*}}$ has an independent set I^{*} of size $\left|I^{*}\right|=|V(H)|$. Since there are no edges between I^{\prime} and $I^{*}, I^{\prime} \cup I^{*}$ is an independent set in G_{L} of size $\left|I^{\prime}\right|+\left|I^{*}\right|=|V(G)|$. Thus, G_{L} has an \mathcal{M}_{L}-coloring.

Lemma 2.1 ([8]) For each $k \in\{3,4,5,6\}$, every planar graph without k-cycles is DP-4-colorable.

We now introduce extendability. Let G be a graph and C be a subgraph of G. Then (G, C) is DP-4-colorable if every DP-4-coloring of C can be extended to G.

Figure 2. A bad 4-cycle
A 4-cycle is bad if it is the outer 4-cycle in the subgraph isomorphic to the graph in Figure 2 and good otherwise. For convenience, we say that every 3 -cycle is a good cycle. In order to prove Theorem 1.4, we prove a stronger result as follows.

Theorem 2.2 If G is a planar graph without 5-cycles adjacent to 6-cycles, then every precoloring of a induced good k-cycle can be extended to a DP-4-coloring of G, where $k=3,4$.

Proof of Theorem 1.4 via Theorem 2.2. By Lemma 2.1, we may assume that G contains a k-cycle C, where $k=3,4$. By Theorem 2.2, every precoloring of C can be extended to G, so G is also DP-4-colorable.

Let $\left(G, C_{0}\right)$ be a minimal counterexample to Theorem 2.2 with $|V(G)|+|E(G)|$ minimized, where C_{0} is a precolored k-cycle in G, where $k=3,4$. We claim that C_{0} has no chord. Suppose otherwise that C_{0} has a chord e_{0} and two vertices of e_{0} have colored different colors. Let $G^{\prime}=G-e_{0}$. By the minimality of G, any DP-4-coloring of C_{0} can be extended to a DP-4-coloring of G^{\prime}. Thus, G has a DP-4coloring, a contradiction. If C_{0} is a separating cycle, then any precoloring of C_{0} can be extended to $\operatorname{int}\left(C_{0}\right)$ and $\operatorname{ext}\left(C_{0}\right)$, respectively. Then we get a DP-4-coloring of G, a contradiction. So we may assume that C_{0} is the boundary of the outer face of G in the rest of this paper. A vertex v is an internal vertex if $v \notin C_{0}$. For an internal 4^{+}-vertex v is in a cluster H, where $H \in\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}, v$ is called i-type to H if v is incident with exactly i edges in H.

Lemma 2.3 Each internal vertex is a 4^{+}-vertex.
Proof. Suppose to the contrary that x is an internal 3^{-}-vertex. By the minimality of $G, G^{\prime}=G-x$ admits an $\mathcal{M}_{L^{\prime}}$-coloring where L^{\prime} is a restriction of L in G^{\prime}. Thus $G_{L^{\prime}}$ has an independent set I^{\prime} of size $\left|I^{\prime}\right|=\left|V\left(G^{\prime}\right)\right|$. Consider a list assignment L^{*} on x. Since $|L(x)|=4$ and $d(x) \leq 3$, we obtain $\left|L_{x}^{*}\right| \geq 1$. Clearly, $(x, c) \in L_{x}^{*}$ is an independent set in $G[\{x\}]$. Then $I^{\prime} \cup\{(x, c)\}$ is an independent set of G_{L} and hence G has an \mathcal{M}_{L}-coloring, a contradiction.

By Lemma 2.3, since G has no 5 -cycles adjacent to 6 -cycles, G has four clusters depicted in Figure 1.

Lemma 2.4 G contains no separating good k-cycle, where $k=3,4$.

Proof. Let C be a separating good k-cycle in G. By the minimality of (G, C_{0}), any precoloring of C_{0} can be extended to $G-\operatorname{int}(C)$. After that, C is precolored, then again the coloring of C can be extended to $\operatorname{int}(C)$. Thus, G has a DP-4-coloring, a contradiction.

Lemma 2.5 (a) Assume that g is a 4-cycle which is not bad and f is a 3-face which is not C_{0}. If a 4 -face g is adjacent to f, then f cannot be adjacent to any 3-face and g cannot be adjacent to any 3- or 4-face h, where $h \neq f$.
(b) If v is a 5^{+}-vertex incident with three consecutive 3-faces, then none of the 3-faces can be adjacent to any other 3-faces.
(c) A 3-face f is not adjacent to a 5-face g.
(d) For $k \geq 5$, a k-vertex is incident to at most $k-2$ triangles.

Proof. (a) Let $f=[u v w]$ and $g=[u w x y]$. Since f is not C_{0}, x and y are outside f and v is outside g by Lemma 2.4.

We first show that f cannot be adjacent to a 3 -face. Suppose to the contrary that f is adjacent to a 3 -face $h=[v z w]$ by symmetry. Since x and y are outside f, by Lemma 2.4, z is outside of both f and g. Let $S=\{u, v, w, x, y\}$. If $z \notin S$, then uvwxyu is a 5 -cycle adjacent to a 6 -cycle uvzwxyu, a contradiction. Thus, assume that $z \in S$. Then $z=x$ or $z=y$. If $z=x$, then u and y are either inside or outside $v w x w$. In the former case, vuyxv is a 4 -cycle. By Lemma 2.4, such a 4 -cycle is a 4 -face and hence $d(y)=2$, contrary to Lemma 2.3. In the latter case, $v w x v$ is a 3 -face by assumption and hence $d(w)=3$, contrary to Lemma 2.3. If $z=y$, then u and x are either inside or outside vwyv of G. In each case, uwyu is a separating 3 -cycle, contrary to Lemma 2.4.

Next we show that g cannot be adjacent to any other 3 -face. Suppose to the contrary that g is adjacent to a 3 -face $h \neq f$. By symmetry h shares exactly one edge $x w$ or $x y$ with g.

We first assume that $h=[x w z]$. If $z \notin S$, then uvwxyu is a 5 -cycle adjacent to a 6 -cycle uvwzxyu, a contradiction. Thus, assume that $z \in S$. Since G is a simple graph, $z=v$ or $z=y$. Since x and y are outside of f, by Lemma 2.4, z is outside g. If $z=v$, this is the case that $x=z$ in above proof and we are done. If $z=y$, then wuyw is a separating 3 -cycle, contrary to Lemma 2.4.

Now let $h=[z y x]$. If $z \notin S$, then uvwxyu is a 5 -cycle adjacent to a 6 -cycle uvwxzyu, a contradiction. Thus, assume that $z \in S$. In this case, assume that $z=v$ or $z=u$ by symmetry. Since x and y are outside of f, by Lemma $2.4, z$ is outside g. If $z=u$, then $u w x u$ is a separating 3 -cycle, contrary to Lemma 2.4. If $v=z$, then u and w are either inside or outside $x y z x$. In the former case, vuy is a 3 -cycle, by Lemma 2.4, $d(u)=3$, contrary to Lemma 2.3. In the later case, either vuyv or $v w x v$ is a 3 -cycle, by Lemma 2.4, such a 3 -cycle is a 3 -face and hence $d(u)=3$ (or $d(w)=3$), contrary to Lemma 2.3.

Finally, we show that g cannot be adjacent to a 4 -face. Suppose to the contrary that g is adjacent to a 4 -face h. By symmetry h shares exactly one edge $x w$ or $x y$ with g. Assume first that $h=[x w z t]$. If $\{z, t\} \cap S=\emptyset$, then uvwxyu is a 5 -cycle adjacent to a 6 -cycle uwztxyu, a contradiction. Thus, $\{z, t\} \cap S \neq \emptyset$. Since x and
y are outside f, by Lemma 2.4, z, t are outside g. Assume first that $z \in S$ and $t \notin S$. Since G is planar, $z \neq u$. Then $z=v$ or $z=y$. If $z=v$, then $v w x t v$ is a 4 -cycle. By Lemma 2.4, such a 4-cycle is a 4 -face and hence $d(w)=3$, contrary to Lemma 2.3. If $z=y$, then G has a separating 3-cycle uywu, contrary to Lemma 2.4. Then assume that $z \notin S$ and $t \in S$. If $t=y$, then $w z y u w$ is a separating 4 -cycle, contrary to Lemma 2.4. If $t=u$, then xwux is a separating 3 -cycle, contrary to Lemma 2.4. If $t=v$, then G has a separating 3-cycle $v w x v$, contrary to Lemma 2.4. Thus, $\{z, t\} \subset S$. Since G is planar, $z=v$ and $t=u$. Then uyxu is a 3 -cycle. By Lemma 2.4, such a 3 -cycle is a 3 -face and hence $d(y)=2$, contrary to Lemma 2.3.

Thus, assume that $h=[y x z t]$. If $\{z, t\} \cap S=\emptyset$, then uvwxyu is a 5 -cycle adjacent to a 6-cycle $u w x z t y u$, a contradiction. Thus, assume that $\{s, t\} \cap S \neq \emptyset$. Since x and y are both outside of f, by Lemma 2.4, z and t are outside of g. Assume first that one of s and t is in S. By symmetry, assume that $t \notin S$ and $z \in S$. If $z=v$, then G has a separating 4 -cycle vuyxv, contrary to Lemma 2.4. If $z=w$, then G has a separating 4 -cycle wuytw, contrary to Lemma 2.4. If $z=u$, then G has a separating 3 -cycle uwxu, contrary to Lemma 2.4. Thus, assume that z and t are both in S. Since G is simple, $\{z, t\} \cap\{x, y\}=\emptyset$ and $\{z, t\} \cap\{u, w\}=\emptyset$. By symmetry, assume that $z=v$. Since G is planar, $t=u$. In this case, $x w v x$ is a 3 -cycle. By Lemma 2.4, such a 3 -cycle is a 3 -face and hence $d(w)=3$, contrary to Lemma 2.3.
(b) Assume that v is a 5^{+}-vertex incident with three consecutive 3 -faces $f_{1}=$ [uvw], $f_{2}=[w v x]$ and $f_{3}=[x v y]$. Let $S=\{u, v, w, x, y\}$. Suppose to the contrary that at least one of the three 3 -faces is adjacent to another 3 -face f_{4}. By Lemma 2.4, f_{4} shares exactly one edge with one of f_{1}, f_{2} and f_{3}. By symmetry we may assume that $f_{4}=[u z w]$ or $[u v z]$ or $[w z x]$. If $z \notin S$, then there exists a 5 -cycle adjacent to a 6 -cycle, a contradiction. So, assume that $z \in S$. If $f_{4}=[w x v]$, then $v \neq z$ since $f_{4} \neq f_{2}$. Thus, let $z=u$ by symmetry. In this case, xwux is a 3 -cycle. By Lemma 2.4, $d(w)=3$, contrary to Lemma 2.3. By symmetry, assume that $f_{4}=[u w z]$. If $z=x$, then xwux is a 3 -cycle. By Lemma 2.4, such a 3 -cycle is a 3 -face and hence $d(w)=3$, contrary to Lemma 2.3. Thus, $f_{4}=[u z w]$ and $z=y$. In this case, vwyv is a separating 3 -cycle, contrary to Lemma 2.4.
(c) Suppose to the contrary that $f=[x y z]$ and $g=[u v w x y]$. If $z \notin S$, then uvwxyu is a 5 -cycle adjacent to a 6 -cycle uvwxzyu, a contradiction. If $z \in S$, then we assume $z=u$ or $z=v$ by symmetry. In the former case, xyux is a 3 -cycle, by Lemma 2.4, $d(y)=2$ (or $d(w)=2$), contrary to Lemma 2.3. In the later case, uvyu (or $x w v x$) is a 3 -cycle. By Lemma 2.4, such a 3 -cycle is a 3 -face and hence $d(u)=2$ (or $d(w)=2$), contrary to Lemma 2.3.
(d) It follows that G has no 5 -cycles adjacent to 6 -cycles.

Lemma 2.6 Two (4,4,4)-faces in int $\left(C_{0}\right)$ cannot share exactly one common edge in G.

Proof. Suppose to the contrary that $T_{1}=[u v x]$ and $T_{2}=[u v y]$ share a common edge $u v$. Let $S=\{u, v, x, y\}$ and $G^{\prime}=G-S$. By the minimality of $G, G_{L^{\prime}}$ admits an $\mathcal{M}_{L^{-}}$-coloring where L^{\prime} (and $G_{L^{\prime}}$) is a restriction of L (and G_{L}, respectively). Thus $G_{L^{\prime}}$ has an independent set I^{\prime} of size $\left|V\left(G^{\prime}\right)\right|=|V(G)|-4$.

We claim that $x y \notin E(G)$. Suppose otherwise. Then G has either a 3-cycle $D_{1}=x v y x$ such that u is in $\operatorname{int}\left(D_{1}\right)$ or a 3-cycle $D_{2}=x u y x$ such that v is in $\operatorname{int}\left(D_{2}\right)$. In the former case, since both x and y are 4 -vertices, D_{1} is a separating 3 -cycle, contrary to Lemma 2.4. In the latter case, similarly, D_{2} is a separating 3cycle, contrary to Lemma 2.4. Consider a list assignment L^{*} on S. Since $|L(v)| \geq 4$ for all $v \in V(G)$, we have

$$
\left|L_{u}^{*}\right| \geq 3,\left|L_{v}^{*}\right| \geq 3,\left|L_{x}^{*}\right| \geq 2,\left|L_{y}^{*}\right| \geq 2
$$

Since $\left|L_{v}^{*}\right|>\left|L_{x}^{*}\right|$, we can choose a vertex (v, c) in

$$
L_{v}^{*}-\left\{\left(v, c^{\prime}\right):\left(x, c^{\prime \prime}\right) \in L_{x}^{*},\left(v, c^{\prime}\right)\left(x, c^{\prime \prime}\right) \in M_{v x}\right\}
$$

Then L_{x}^{*} has at least two available colors. We color y, u, x in order, we can find an independent set I^{*} with $\left|I^{*}\right|=4$. So $I^{\prime} \cup I^{*}$ is an independent set of G_{L} with $\left|I^{\prime} \cup I^{*}\right|=|V(G)|$. Then G has an $\mathcal{M}_{L^{-} \text {-coloring, a contradiction. }}^{\text {. }}$

We are now ready to present a discharging procedure that will complete the proof of the Theorem 1.4. For each $x \in V \cup F$, we define the initial charge $\operatorname{ch}(x)=d(x)-4$ if $x \in V \cup\left(F \backslash\left\{C_{0}\right\}\right)$ and $\operatorname{ch}\left(C_{0}\right)=\left|C_{0}\right|+4$. By Euler's Formula,

$$
\sum_{x \in V} \operatorname{ch}(x)+\sum_{x \in F \backslash\left\{C_{0}\right\}} \operatorname{ch}(x)+\operatorname{ch}\left(C_{0}\right)=\sum_{x \in V}(d(x)-4)+\sum_{x \in F}(d(x)-4)+8=0 .
$$

We define suitable discharging rules such that, for every $x \in V \cup\left(F \backslash\left\{C_{0}\right\}\right)$, the final charge of x, denoted $\operatorname{ch}^{\prime}(x)$, is non-negative and $\operatorname{ch}^{\prime}\left(C_{0}\right)>0$. So, we get $0<\sum_{x \in V \cup F} c h^{\prime}(x)=\sum_{x \in V \cup F} c h(x)=0$. This contradiction proves our result.

A 5-vertex v is special if v is 3-type to H_{4} and 2-type to one of H_{2} and H_{3}. Denote by $w(v \rightarrow f)$ to transfer the charge from a vertex v to a face f. We define the discharging rules as follows.
(R1) Let v be an internal vertex in a 3 -face f.
(a) If v is a 4 -vertex, then $w(v \rightarrow f)= \begin{cases}\frac{1}{6}, & \text { if } v \text { is } 3 \text {-type to } H_{2} ; \\ \frac{1}{7}, & \text { if } v \text { is } 3 \text {-type to } H_{3} \text { and } f \text { is a semi-poor face; } \\ \frac{2}{7}, & \text { if } v \text { is } 3 \text {-type to } H_{3} \text { and } f \text { is a poor face; } \\ \frac{1}{7}, & \text { if } v \text { is } 3 \text {-type to } H_{4} \text { and } f \text { is a }\left(4,4,5^{+}\right) \text {-face; } \\ \frac{2}{7}, & \text { if } v \text { is } 3 \text {-type to } H_{4} \text { and } f \text { is a }(4,4,4) \text {-face. }\end{cases}$
(b) If v is a 5 -vertex, then

$$
w(v \rightarrow f)= \begin{cases}\frac{3}{7}, & \text { if } v \text { is 3-type to } H_{4} \\ \frac{1}{7}, & \text { if } v \text { is 2-type to } H_{2} \text { or } H_{3} \text { and } v \text { is special; } \\ \frac{1}{3}, & \text { otherwise }\end{cases}
$$

(c) If v is a 6^{+}-vertex, then

$$
w(v \rightarrow f)= \begin{cases}\frac{3}{7}, & \text { if } v \text { is } 3 \text {-type to } H_{4} \\ \frac{1}{3}, & \text { otherwise }\end{cases}
$$

(R2) Every 4-face sends $\frac{2}{5}$ to each adjacent 3 -face; every k-face sends $\frac{k-4}{k}$ to each adjacent 3 -face, where $k \geq 6$.
(R3) Every 5-face sends $\frac{1}{5}$ to each adjacent 4-face.
(R4) Let v be an internal 4 -vertex. If v is incident with two adjacent 6^{+}-faces, then each such a 6 -face gives $\frac{1}{6}$ to v and each such a 7^{+}-face gives $\frac{3}{14}$ to v.
(R5) The outercycle C_{0} gets $c h(v)$ from each incident vertex and sends 1 to any 3 -face sharing at least one vertex with C_{0}.

It suffices to check that each $x \in V(G) \cup F(G)$ has nonnegative final charge and C_{0} has positive final charge. By (R4), we have $c h^{\prime}(v)=0$ for each $v \in V\left(C_{0}\right)$. Thus, we need to check $c h^{\prime}(v) \geq 0$ for each internal 4^{+}-vertex v by Lemma 2.3.
(1) Let v be a 4-vertex. If v is incident with at most one 3 -face, then v is 2-type to one of H_{1}, H_{2} and H_{3}. By (R1)(a), $c h^{\prime}(v)=c h(v)=0$. If v is incident with two nonadjacent 3 -faces, then v is 2-type to one of H_{1}, H_{2} and H_{3} and also 2-type to the other of H_{1}, H_{2} and H_{3}. By $(\mathrm{R} 1)(\mathrm{a}), c h^{\prime}(v)=c h(v)=0$. If v is incident with three 3-faces, then v is 4 -type to H_{3}. Similarly by (R1)(a), $c h^{\prime}(v)=c h(v)=0$. If v is incident with four 3-faces, then v is 4-type to H_{4}. Thus, $c^{\prime}(v)=c h(v)=0$ by (R1) (a). Thus, assume that v is incident with two adjacent 3 -faces. Then v is 3 -type to one of H_{2}, H_{3} and H_{4}. If v is 3 -type to H_{2}, by Lemma $2.5(\mathrm{a})$ and (c), v is incident with two 6^{+}-faces. By (R1)(a) and (R4), $c h^{\prime}(v)=c h(v)+\frac{1}{6} \times 2-\frac{1}{6} \times 2=0$. If v is 3 -type to H_{3}, by Lemma 2.5 (a) and (c), v is incident with two 7^{+}-faces since G has no 5 -cycles adjacent to 6 -cycles. By (R1)(a) and $(\mathrm{R} 4), \operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)+\frac{3}{14} \times 2-\left(\frac{1}{7}+\frac{2}{7}\right)=0$. If v is 3-type to H_{4}, by Lemma $2.5(\mathrm{~b}), v$ is incident with two 7^{+}-faces since G has no 5 -cycles adjacent to 6 -cycles. By Lemma 2.6, v is incident with at least one $\left(4,4,5^{+}\right)$-face in H_{4}. By (R1)(a) and (R4), $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)+\frac{3}{14} \times 2-\left(\frac{1}{7}+\frac{2}{7}\right)=0$.
(2) Let v be a 5 -vertex. By Lemma $2.5(\mathrm{~b}), v$ is incident with at most three consecutive 3 -faces. If v is not incident with any 3 -face, then $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)=1 \geq 0$ by $(\mathrm{R} 1)(\mathrm{b})$. If v is incident with exactly one 3 -face, then v is 2 -type to one of H_{1}, H_{2} and H_{3}. Thus, $c h^{\prime}(v)=c h(v)-\frac{1}{3}=\frac{2}{3}>0$ by (R1)(b). If v is incident with two nonadjacent 3 -faces, then v is 2-type to one of H_{1}, H_{2} and H_{3} and also 2-type to the other one of H_{1}, H_{2} and H_{3}. By $(\mathrm{R} 1)(\mathrm{b}), \operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)-2 \times \frac{1}{3}=\frac{1}{3}>0$. If v is incident with two adjacent 3 -faces, then v is 3 -type to one of H_{2}, H_{3} and H_{4}. If v is 3 -type to H_{2} or H_{3}, then v sends $\frac{1}{3}$ to each 3 -face. By (R1)(b), $c h^{\prime}(v)=\operatorname{ch}(v)-2 \times \frac{1}{3}=\frac{1}{3}>0$. If v is 3 type to H_{4}, then $c h^{\prime}(v)=\operatorname{ch}(v)-2 \times \frac{3}{7}=$ $\frac{1}{7}>0$ by $(\mathrm{R} 1)(\mathrm{b})$. We now assume that v is incident with three 3 -faces. If v is incident with consecutive three 3 -faces, then v is 4 -type to H_{3}. By (R1)(b), $c h^{\prime}(v)=c h(v)-3 \times \frac{1}{3}=0$. Thus, v is incident two adjacent 3 -faces and the other 3-face. Then v is 3-type to one of H_{2}, H_{3} and H_{4} and 2-type to one of H_{1}, H_{2} and H_{3}. If v is 3-type to one of H_{2} and H_{3} and 2-type of H_{1}, H_{2} and H_{3}. Then $c h^{\prime}(v)=c h(v)-\frac{1}{3} \times 3=0$ by $(\mathrm{R} 1)(\mathrm{b})$. If v is 3-type of H_{4} and 2-type to one of
H_{2} and H_{3}, then v sends $\frac{3}{7}$ to each 3-face in the H_{4} and $\frac{1}{7}$ to the other 3-face. Thus, $c h^{\prime}(v)=\operatorname{ch}(v)-\left(\frac{3}{7} \times 2+\frac{1}{7}\right) \geq 0$ by (R1)(b).
(3) Let v be 6^{+}-vertex. If v is not incident with 3-faces, then $\operatorname{ch}^{\prime}(v)=\operatorname{ch}(v)=$ $d(v)-4 \geq 2>0$. By Lemma $2.5(\mathrm{~d}), v$ is incident with at most $(d(v)-2)$ 3 -faces. Then $c h^{\prime}(v) \geq(d(v)-4)-\frac{3}{7} \times(d(v)-2)=\frac{4}{7} d(v)-\frac{22}{7} \geq \frac{24}{7}-\frac{22}{7}=\frac{2}{7}>0$ by (R1)(c).

We now check that $c h^{\prime}(f) \geq 0$ for each $f \in F$. For simplicity, we also use f to denote the set of vertices of f for a face f. Let $f_{1}, f_{2}, \ldots, f_{l}$ be 3 -faces of a l-cluster H_{l}. Define $c h\left(H_{l}\right)=\operatorname{ch}\left(f_{1}\right)+\cdots+c h\left(f_{l}\right)$ and $c h^{\prime}\left(H_{l}\right)=c h^{\prime}\left(f_{1}\right)+\cdots+c h^{\prime}\left(f_{l}\right)$.

We first check that $f \cap C_{0} \neq \emptyset$.
(1) Let f be a 3 -face in G. If f is not adjacent with any other 3 -face, then by (R5) f gets 1 from C_{0}. So $c h^{\prime}(f) \geq 3-4+1=0$.
Assume that f is in H_{2}. Let g be the 3-face in H_{2} adjacent to f. If $C_{0} \cap g \neq \emptyset$, then C_{0} sends 1 to both f and g. Thus, $c h^{\prime}\left(H_{2}\right)=-2+1+1=0$ by (R5). Thus, assume that $C_{0} \cap g=\emptyset$. In this case, C_{0} sends charge 1 to f. By Lemma 2.5, there are four 6^{+}-faces adjacent to this H_{2}. By (R2) and (R5), $c h^{\prime}\left(H_{2}\right) \geq-2+1+\frac{1}{3} \times 4>0$.
Assume that f is in H_{3}. Assume that the H_{3} is induced by three 3-faces f, g and h. If $g \cap C_{0} \neq \emptyset$ and $h \cap C_{0} \neq \emptyset$, then $c h^{\prime}\left(H_{3}\right)=-3+1+1+1=0$ by (R5). Thus, assume that one of $g \cap C_{0}$ and $h \cap C_{0}$ is not empty. By Lemma 2.5, there are five 7^{+}-faces adjacent to this H_{3}. Thus, $\operatorname{ch}^{\prime}\left(H_{3}\right) \geq-3+1+\frac{3}{7} \times 5>0$ by (R2) and (R5).
Assume that f is in H_{4}. Let $V\left(H_{4}\right)=\{u, v, w, x, y\}$, where x, y, u, v are 3-type vertices to H_{4}. Assume that $x \in V\left(H_{4}\right) \cap C_{0}$ and $x \in f$. If $\left|V\left(H_{4}\right) \cap C_{0}\right| \geq 2$, then G has a 5 -cycle adjacent to a 6 -cycle, a contradiction. Thus, $V\left(H_{4}\right) \cap$ $C_{0}=\{x\}$. By Lemma 2.5, there are four 7^{+}-faces adjacent to this H_{4}, and the C_{0} is incident with two 3 -faces in H_{4}. Applying Lemma 2.6 to the subgraph induced by $\{y, u, v, w\}$, there are at least one 5^{+}-vertex in $\operatorname{int}\left(C_{0}\right)$ in H_{4}. Thus, $c^{\prime}\left(H_{4}\right) \geq-4+1+1+\frac{3}{7} \times 4+\frac{3}{7} \times 2>0$ by (R1)(b), (R2) and (R5).
(2) Let $d(f)=4$. If $\left|f \cap C_{0}\right|=2$, by Lemma 2.4, then f cannot be adjacent to any 3 -face rather than C_{0} (if C_{0} is a 3 -face) since G has no 5 -cycle adjacent to 6 -cycle. Thus, $\operatorname{ch}^{\prime}(f)=\operatorname{ch}(f)=0$. Thus, assume that $\left|f \cap C_{0}\right|=1$. By Lemma 2.5 (a) , f is adjacent to at most one 3 -face. If f is not adjacent to any 3 -face, then $c h^{\prime}(f)=c h(f)=0$. If f is adjacent to one 3-face, then f is not adjacent to any 4 -face by Lemma $2.5(\mathrm{a})$. Thus, f is adjacent to three 5^{+}-faces. By (R2) and (R3), $\operatorname{ch}^{\prime}(f) \geq \operatorname{ch}(f)+\frac{1}{5} \times 3-\frac{2}{5}=\frac{1}{5}>0$.
(3) Let $d(f) \geq 5$. If f is a 5 -face, then f is not adjacent to any 3 -face and adjacent to at most five 4 -faces. Thus, $c h^{\prime}(f) \geq c h(f)-\frac{1}{5} \times 5=0$ by (R3). Thus, f is a 6^{+}-face. By (R2), $c h^{\prime}(f) \geq(k-4)-k \times \frac{k-4}{k}=0$.

From now on we may assume that $f \cap C_{0}=\emptyset$.
(1) Let f be a 3 -face. If f is H_{1}, then f is adjacent to at most one 4 -face. If f is adjacent to one 4 -face, by Lemma 2.5, the other faces incident with f are 6^{+}-faces. By (R1), $c h^{\prime}(f) \geq d(f)-4+\frac{2}{5}+2 \times \frac{k-4}{k} \geq-1+\frac{2}{5}+2 \times \frac{1}{3}>0$. Thus, assume that f is not adjacent to any 4 -face. Since G had no 5 -cycle adjacent to any 6 -cycle, f cannot adjacent to any 5 -face. Thus, f is adjacent to three 6^{+}-faces. By (R1)(c), ch' $(f) \geq d(f)-4+\frac{1}{3} \times 3=0$.
Assume first that f is in H_{2}. Then $\operatorname{ch}\left(H_{2}\right)=-2$ and let f_{1} and f_{2} be two 3 -faces in H_{2}. Let $V\left(H_{2}\right)=\{u, v, x, y\}$, where x, y are 2-type to H_{2} and u, v are 3 -type to H_{2}. Since G has no separating 3 -cycle, x is not adjacent to y. Since G has no 5 -cycles adjacent to 6 -cycles, each face adjacent to an internal face of H_{2} is a 6^{+}-face by Lemma 2.5. In this case, there are four 6^{+}-faces adjacent to this H_{2}. By (R1), each such face sends $\frac{1}{3}$ to f_{1} or f_{2} in H_{2}. If one of u and v is a 5^{+}-vertex, then it sends $\frac{1}{3}$ to each of the two adjacent 3 -face by (R1)(b), (R1)(c) and (R1)(e). Thus, ch $h^{\prime}\left(H_{2}\right) \geq-2+\frac{1}{3} \times 4+\frac{1}{3} \times 2=0$. We now assume that each of u and v is a 4 -vertex. By Lemma 2.6, at least one of x and y is a 5^{+}-vertex. Assume that x is a 5^{+}-vertex. If x is a 6^{+}-vertex or a non-special 5 -vertex, then x sends $\frac{1}{3}$ to the 3 -face in H_{3} by (R1)(c). By (R1)(a), (R1)(b) and (R2), each of u and v sends $\frac{1}{6}$ to each adjacent 3 -faces. Thus, $\operatorname{ch}^{\prime}\left(H_{2}\right) \geq-2+\frac{1}{3} \times 4+\frac{1}{3}+\frac{1}{6} \times 4>0$. Thus, assume that x is a special 5 -vertex. In this case, x is incident with two 7^{+}-faces. So, there are two 6^{+}-faces and two 7^{+}-faces adjacent to this H_{2}. In this case x sends $\frac{1}{7}$ to the 3 -face in H_{2}. By (R1)(a), (R1)(b) and (R2), $c h^{\prime}\left(H_{2}\right) \geq-2+\frac{1}{3} \times 2+\frac{3}{7} \times 2+\frac{1}{7}+\frac{1}{6} \times 4>0$.
Next, assume that f is in H_{3}. Then $\operatorname{ch}\left(H_{3}\right)=-3$ where f_{1}, f_{2}, and f_{3} are 3 -faces in H_{3}. Let $V\left(H_{3}\right)=\{u, v, w, x, y\}$, where v is 4 -type to H_{3}, u, w are 3-type to H_{3}, and x and y are 2-type to H_{3}. By Lemma 2.4, x is not adjacent to w and y is not adjacent to u. Since G has no 5 -cycles adjacent to 6 -cycles, each face adjacent to an internal face of H_{3} is a 7^{+}-face by Lemma 2.5. By (R2), each such 7^{+}-face sends at least $\frac{3}{7}$ to the H_{3}. If v is a 5^{+}-vertex, then v sends $\frac{1}{3}$ to each of three 3 -faces in the H_{3} by (R1)(b). Thus, $c h^{\prime}\left(H_{3}\right) \geq-3+\frac{3}{7} \times 5+\frac{1}{3} \times 3>0$. If one of u and w, say u, is a 5^{+}-vertex, then w is a 4^{+}-vertex by Lemma 2.4. In this case, u sends $\frac{1}{3}$ to two 3 -faces incident with u in the H_{3} by (R1)(b), w sends $\frac{1}{7}$ and $\frac{2}{7}$ to two 3 -faces incident with w in the H_{3} by (R1)(a). So, $c h^{\prime}\left(H_{3}\right) \geq-3+\frac{3}{7} \times 5+\frac{1}{3} \times 2+\frac{2}{7}+\frac{1}{7}>0$. Now we assume that each of u, v, w is a 4 -vertex. By Lemma 2.6, x and y are 5^{+}-vertices. If x and y are 5 -vertices, then they may be special 5 -vertices. By (R1)(b) and by (R1)(c), each of x and y sends at least $\frac{1}{7}$ to the 3 -face in the H_{3}. Each of u and w sends $\frac{2}{7}$ and $\frac{1}{7}$ to the two 3-faces in the H_{3} by (R1)(a). Thus, $c h^{\prime}\left(H_{3}\right)=-3+\left(\frac{3}{7} \times 5\right)+\left(\frac{1}{7} \times 2\right)+\left(\frac{2}{7} \times 2\right)+\left(\frac{1}{7} \times 2\right)>0$.
Finally, assume that f is in H_{4}. Let x be a hub and u, v, w, y be 3 -type to H_{4}. Similarly, $\operatorname{ch}\left(H_{4}\right)=-4$. where $f_{1}=[x u v], f_{2}=[x v w], f_{3}=[x w y]$ and $f_{4}=[x y u]$ are 3 -faces in H_{4}. By Lemma 2.4, u is not adjacent to w, and v is not adjacent to y. By Lemma 2.5, each 3 -face in H_{4} is adjacent to a 7^{+}-face. By (R2), each such 7^{+}-face sends at least $\frac{3}{7}$ to the adjacent 3 -face in the H_{4}.

By Lemma 2.6, at least two 3-type vertices to H_{4} are 5^{+}-vertices. By (R1)(a), (R1)(b) and (R1)(c), each 3-type 5^{+}-vertex sends $\frac{3}{7}$ to each incident 3 -face in H_{4} and the other 3 -type vertices to H_{4} are 4 -vertices, each of which sends at least $\frac{1}{7}$ to each incident 3 -faces in H_{4}. If H_{4} contains exactly two 3 -type 5^{+}-vertices, then $c h^{\prime}\left(H_{4}\right) \geq-4+\frac{3}{7} \times 4+\frac{3}{7} \times 4+\frac{1}{7} \times 4=0$. If H_{4} contains at least three 3 -type 5^{+}-vertices, then $\operatorname{ch}^{\prime}\left(H_{4}\right) \geq-4+\frac{3}{7} \times 4+\frac{3}{7} \times 6+\frac{1}{7} \times 2>0$.
(2) Let f be a 4 -face. Let $f=\left[v_{1} v_{2} v_{3} v_{4}\right]$. By Lemma 2.5(a), f is adjacent to at most one 3 -face. If f is adjacent to a 3 -face, then the other faces adjacent to f are 5^{+}faces by Lemma 2.5(a). By (R1)(d) and (R2), $\operatorname{ch}(f) \geq d(f)-4+\frac{1}{5} \times 3-\frac{2}{5}>0$. If f is not adjacent to any 3 -face, then f is adjacent to at most four 4 -faces. Thus, $\operatorname{ch}(f) \geq d(f)-4=0$.
(3) Let f be a 5^{+}-face. If f is a 5 -face, then f is adjacent at most five 4 -faces. Since G has no 5 -cycles adjacent to 6 -cycles, f is not adjacent to any 3 -face. By (R2), f sends $\frac{1}{5}$ to each adjacent 4 -face. Thus, $c h^{\prime}(f) \geq d(f)-4-5 \times \frac{1}{5}=0$. Assume that f is a k-face where $k \geq 6$. Then f sends at most $\frac{k-4}{k}$ to 3 -faces or 4 -faces by (R2). This yields $c h^{\prime}(f) \geq(k-4)-k \times \frac{k-4}{k}=0$.

We now consider the final charge of the outer face C_{0}.
Let $F_{3}^{\prime}=\left\{f: f\right.$ is a 3 -face and $\left.\left|b(f) \cap C_{0}\right|=1\right\}$ and $F_{3}^{\prime \prime}=\{f: f$ is a k-face and $\left.\left|b(f) \cap C_{0}\right|=2\right\}$, and $f_{3}^{\prime}=\left|F_{3}^{\prime}\right|, f_{3}^{\prime \prime}=\left|F_{3}^{\prime \prime}\right|$. Let $E\left(C_{0}, V(G)-C_{0}\right)$ be the set of edges between C_{0} and $V(G)-C_{0}$ and let $e\left(C_{0}, V(G)-C_{0}\right)$ be its size. Then by (R4),

$$
\begin{aligned}
c h^{\prime}\left(C_{0}\right) & =\left|C_{0}\right|+4+\sum_{v \in C_{0}}(d(v)-4)-f_{3}^{\prime}-f_{3}^{\prime \prime} \\
& =\left|C_{0}\right|+4+\sum_{v \in C_{0}}(d(v)-2)-2\left|C_{0}\right|-f_{3}^{\prime}-f_{3}^{\prime \prime} \\
& =-\left|C_{0}\right|+4+\left(e\left(C_{0}, V(G)-C_{0}\right)-f_{3}^{\prime}-f_{3}^{\prime \prime}\right) .
\end{aligned}
$$

So we may think that each edge $e \in E\left(C_{0}, V(G)-C_{0}\right)$ contributes 1 to $e\left(C_{0}\right.$, $\left.V(G)-C_{0}\right)$. Note that each 3-face contains two edges in $E\left(C_{0}, V(G)-C_{0}\right)$. Since C_{0} is not a bad 4-cycle, any vertex $v \in \operatorname{int}\left(C_{0}\right)$ is adjacent at most three vertices on C_{0}. Thus, if $F_{3}^{\prime \prime} \neq \emptyset$, then all the 3 -faces in $F_{3}^{\prime \prime}$ contributes at least $f_{3}^{\prime \prime}+1$ to $e\left(C_{0}, V(G)-C_{0}\right)$ while get at most $f_{3}^{\prime \prime}$ from C_{0}. Similarly, if $F_{3}^{\prime} \neq \emptyset$, then all the 3 -faces in F_{3}^{\prime} contribute at least $f_{3}^{\prime}+1$ to $e\left(C_{0}, V(G)-C_{0}\right)$ while get at most f_{3}^{\prime} from C_{0}. Thus, if $f_{3}^{\prime} \neq 0$ or $f_{3}^{\prime \prime} \neq 0$, then $e\left(C_{0}, V(G)-C_{0}\right)-f_{3}^{\prime}-f_{3}^{\prime \prime}>0$ and so $c h^{\prime}\left(C_{0}\right)>0$. Thus, $f_{3}^{\prime}=f_{3}^{\prime \prime}=0$ and $e\left(C_{0}, V(G)-C_{0}\right)-f_{3}^{\prime}-f_{3}^{\prime \prime} \geq 0$. If $\left|C_{0}\right|=3$, then $c h^{\prime}\left(C_{0}\right)>0$. Let $\left|C_{0}\right|=4$. If $e\left(C_{0}, V(G)-C_{0}\right)=0$, then G is a 4 -cycle, a contradiction. If $e\left(C_{0}, V(G)-C_{0}\right) \neq 0$, then $c h^{\prime}\left(C_{0}\right)>0$.

This completes the proof.

Acknowledgements

We would like to thank G. Yu and R. Liu for their help when we prepared this paper.

References

[1] N. Alon, Degrees and choice numbers, Random Structures 83 Algorithms 16 (2000), 364-368.
[2] A. Bernshteyn, The asymptotic behavior of the correspondence chromatic number, Discrete Math. 339 (2016), 2680-2692.
[3] A. Bernshteyn, A. Kostochka and S. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58 (2017), 28-36.
[4] A. Bernshteyn, The Johansson-Molloy Theorem for DP-coloring, Random Structures ξ^{3} Algorithms 54 (2019), 653-664.
[5] A. Bernshteyn, A. Kostochka and X. Zhu, DP-colorings of graphs with high chromatic number, European J. Combin. 65 (2017), 122-129.
[6] L. Chen, R. Liu, G. Yu, R. Zhao and X, Zhou, DP-4-colorability of two classes of planar graphs, Discrete Math. 342 (2019), 2984-2993.
[7] Z. Dvořák and L. Postle, Correspondence coloring and its application to listcoloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018), 38-54.
[8] S. J. Kim and K. Ozeki, A sufficient condition for DP-4-colorability, Discrete Math. 341 (2018), 1983-1986.
[9] S. J. Kim and X. Yu, Planar graphs without 4-cycles adjacent to triangles are DP-4-colorable, Graphs Combin. 35 (2019), 707-718.
[10] R. Li and T. Wang, DP-4-coloring of planar graphs with some restrictions on cycles, Discrete Math. 344 (2021), 112568.
[11] X. Li, J.-B. Lv and M. Zhang, DP-4-colorability of planar graphs without intersecting 5-cycles, Discrete Math. 345 (2022), 112790.
[12] R. Liu and X. Li, Every planar graph without 4-cycles adjacent to two triangles is DP-4-colorable, Discrete Math. 342 (2019), 623-627.
[13] R. Liu, X. Li, K. Nakprasit, P. Sittitrai and G. Yu, DP-4-colorability of planar graphs without two adjacent cycles of given length, Discrete Appl. Math. 277 (2020), 245-251.
[14] R. Liu, S. Loeb, M. Rolek, Y. Yin and G. Yu, DP-3-coloring of planar graphs without 4-, 9 -cycles and cycles of two lengths from $\{6,7,8\}$, Graphs Combin. 35 (2019), 695-705.
[15] R. Liu, S. Loeb, Y. Yin and G. Yu, DP-3-coloring of some planar graphs, Discrete Math. 342 (2019), 178-189.

[^0]: * Supported by the NSFC (12031018)

