
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 87(1) (2023), Pages 24–40

Anti-van der Waerden numbers of
graph products of cycles

Joe Miller

Department of Mathematics
Iowa State University

Ames, U.S.A.
jmiller0@iastate.edu

Nathan Warnberg

Department of Mathematics and Statistics
University of Wisconsin-La Crosse

La Crosse, U.S.A.
nwarnberg@uwlax.edu

Abstract

A k-term arithmetic progression (k-AP) of a graph G is a list of k distinct
vertices such that the distance between consecutive pairs is constant.
Given a coloring of the vertices of G, a k-AP is rainbow if each vertex in
the AP is colored distinctly. This allows for the definition of the anti-van
der Waerden number of a graph G, which is the least positive integer
r such that every surjective r-coloring of the vertices of G contains a
rainbow k-AP. This paper focuses on 3-term arithmetic progressions for
graph products that involve cycles. Specifically, the anti-van der Waerden
numbers of Pm�Cn, Cm�Cn and G�C2n+1 are determined precisely.

1 Introduction

The study of van der Waerden numbers started with Bartel van der Waerden showing
in 1927 that given a fixed number of colors r, and a fixed integer k there is some N
(a van der Waerden number) such that if n ≥ N , then no matter how you color [n] =
{1, 2, . . . , n} with r-colors, there will always be a monochromatic k-term arithmetic
progression (see [16]). Around this time, in 1917, it is interesting to note that Schur
proved that given r colors, you can find an N (a Schur number) such that if n ≥ N ,
then no matter how you color [n] there must be a monochromatic solution to x+y = z
(see [15]). In addition, in 1928, Ramsey showed (here graph theory language is used
but was not in Ramsey’s original formulation) that given r colors and some constant
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k you can find an N (a Ramsey number) such that if n ≥ N , then no matter how
you color the edges of a complete graph Kn you can always find a complete subgraph
Kk that is monochromatic (see [13]).

These types of problems that look for monochromatic structures have been cate-
gorized as Ramsey-type problems and each of them has a dual version. For example,
an anti-van der Waerden number is when given integers n and k, find the minimum
number of colors such that coloring {1, . . . , n} ensures a rainbow k-term arithmetic
progression. It was not until 1973 when Erdős, Simonovits and Sós, in [7], started
looking at the dual versions of these problems which are now well-studied (see [9] for
a survey).

Results on colorings and balanced colorings of [n] that avoid rainbow arithmetic
progressions have been studied in [1] and [2]. Rainbow free colorings of [n] and Zn
were studied in [6] and [11]. Although Butler et al., in [6], considered arithmetic
progressions of all lengths, many results on 3-APs were produced. In particular, the
authors of [6] determined aw(Zn, 3) (see Theorem 1.1 with additional cycle notation).
Further, the authors of [6] determined that 3 ≤ aw(Zp, 3) ≤ 4 for every prime number
p and that aw(Zn, 3) can be determined by the prime factorization of n. This result
was then generalized by Young in [17].

Theorem 1.1. [6] Let n be a positive integer with prime decomposition n =
2e0pe11 p

e2
2 · · · pess for ei ≥ 0, i = 0, . . . , s, where primes are ordered so that aw(Zpi , 3) =

3 for 1 ≤ i ≤ ` and aw(Zpi , 3) = 4 for `+ 1 ≤ i ≤ s. Then,

aw(Zn, 3) = aw(Cn, 3) =


2 +

∑̀
j=1

ej +
s∑

j=`+1

2ej if n is odd,

3 +
∑̀
j=1

ej +
s∑

j=`+1

2ej if n is even.

As mentioned, Butler et al. also studied arithmetic progressions on [n] and ob-
tained bounds on aw([n], 3) and conjectured the exact value that was later proven
in [4]. This result on [n] is presented as Theorem 1.2 and includes path notation.

Theorem 1.2. [4] If n ≥ 3 and 7 · 3m−2 + 1 ≤ n ≤ 21 · 3m−2, then

aw([n], 3) = aw(Pn, 3) =

{
m+ 2 if n = 3m,
m+ 3 otherwise.

It is also interesting to note that 3-APs in [n] or Zn satisfy the equation x1 +x3 =
2x2. Thus, rainbow numbers for other linear equations have also been considered
(see [5], [8], [10] and [12]).

Studying the anti-van der Waerden numbers of graphs is a natural extension of
determining the anti-van der Waerden numbers of [n] = {1, 2, . . . , n}, which behave
like paths, and Zn, which behave like cycles. In particular, the set of arithmetic
progressions on [n] is isomorphic to the set of arithmetic progressions on Pn and the
set of arithmetic progressions on Zn is isomorphic to the set of arithmetic progressions
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on Cn. This relationship was first introduced and explored in [3] where the anti-van
der Waerden number was bounded by the radius and diameter of a graph, the anti-van
der Waerden number of trees and hypercubes were investigated and an upper bound
of four was conjectured for the anti-van der Waerden number of graph products.
Then, in [14], the authors confirmed the upper bound of four for any graph product
(see Theorem 1.3). This paper continues in this vein.

Theorem 1.3. [14] If G and H are connected graphs and |G|, |H| ≥ 2, then

aw(G�H, 3) ≤ 4.

Something that makes anti-van der Waerden numbers challenging is that they
are not subgraph monotone. A particular example,

4 = aw([9], 3) = aw(P9, 3) < aw(P8, 3) = aw([8], 3) = 5,

even though P8 is a subgraph of P9, and a general statement,

aw(Cn, 3) = aw(Zn, 3) ≤ aw([n], 3) = aw(Pn, 3),

were both given, without the graph theory interpretation, in [6]. One tool that does
allow a kind of monotonicity when studying the anti-van der Waerden numbers of
graphs is when a subgraph is isometric, that is, the subgraph preserves distances.
This insight was used extensively in [14] to get an upper bound on the anti-van der
Waerden number of graph products and will also be leveraged in this paper. First,
some definitions and background inspired by [6] and used in [3] and [14] are provided.

Graphs in this paper are undirected so edge {u, v} will be shortened to uv ∈ E(G).
If uv ∈ E(G), then u and v are neighbors of each other. The distance between vertex
u and v in graph G is denoted dG(u, v), or just d(u, v) when context is clear, and is
the smallest length of any u− v path in G. A u− v path of length d(u, v) is called
a u− v geodesic.

A k-term arithmetic progression in graph G (k-AP) is a set of vertices {v1, . . . , vk}
such that d(vi, vi+1) = d for all 1 ≤ i ≤ k − 1. A k-term arithmetic progression is
degenerate if vi = vj for any i 6= j. Note that technically, since a k-AP is a set, the
order of the elements does not matter. However, oftentimes k-APs will be presented
in the order that provides the most intuition.

An exact r-coloring of a graph G is a surjective function c : V (G)→ [r]. A set of
vertices S is rainbow under coloring c if for every vi, vj ∈ V (G), c(vi) 6= c(vj) when
i 6= j. Given a set S ⊂ V (G), define c(S) = {c(s) | s ∈ S}.

The anti-van der Waerden number of graph G with respect to k, denoted aw(G, k),
is the least positive number r such that every exact r-coloring of G contains a rainbow
k-term arithmetic progression. If |V (G)| = n and no coloring of the vertices yields a
rainbow k-AP, then aw(G, k) = n+ 1.

Graph G′ is a subgraph of G if V (G′) ⊆ V (G) and for any uv ∈ E(G′), we have
that u, v ∈ V (G′) and uv ∈ E(G). A subgraph G′ of G is an induced subgraph if
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whenever u and v are vertices of G′ and uv is an edge of G, then uv is an edge of G′.
If S is a nonempty set of vertices of G, then the subgraph of G induced by S is the
induced subgraph with vertex set S and is denoted G[S]. An isometric subgraph G′

of G is a subgraph such that dG′(u, v) = dG(u, v) for all u, v ∈ V (G′).

If G = (V,E) and H = (V ′, E ′) the Cartesian product, written G�H, has vertex
set {(x, y) : x ∈ V and y ∈ V ′} and (x, y) and (x′, y′) are adjacent in G�H if either
x = x′ and yy′ ∈ E ′ or y = y′ and xx′ ∈ E.

This paper will use the convention that if

V (G) = {u1, . . . , un1} and V (H) = {w1, . . . , wn2},

then V (G�H) = {v1,1, . . . , vn1,n2} where vi,j corresponds to the vertices ui ∈ V (G)
and wj ∈ V (H).

Also, if 1 ≤ i ≤ n2, then Gi denotes the ith labeled copy of G in G�H. Likewise,
if 1 ≤ j ≤ n1, then Hj denotes the jth labeled copy of H in G�H. In other words, Gi

is the induced subgraph Gi = G�H[{v1,i, . . . , vn1,i}], and Hj is the induced subgraph
Hj = G�H[{vj,1, . . . , vj,n2}]. Notice that the i subscript in Gi corresponds to the ith
vertex of H and the j in the subscript in Hj corresponds to the jth vertex of G. See
Example 1.4 below.

Example 1.4. Consider the graph P3�C5 where V (P3) = {u1, u2, u3} and V (C5) =
{w1, w2, w3, w4, w4}. Let G = P3 and H = C5 as in the definition. Now, G4 is a
subgraph of P3�C5 that is isomorphic to P3 and corresponds to vertex w4 of C5.
Similarly, H2 is a subgraph of P3�C5 that is isomorphic to C5 and corresponds to
vertex u2 of P3. See Figure 1 below.
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v1,3

v1,4

v1,5

v2,1 v2,2

v2,3

v2,4

v2,5
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v1,5

v2,1 v2,2

v2,3

v2,4
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Figure 1: Image for Example 1.4. The subgraph G4 is in bold and H2 is dashed.

The paper continues with Section 2 recapping and expanding many fundamental
results from [14]. Section 3 establishes aw(Pm�Cn, 3) for all m and n. Section 4
is an investigation of aw(G�Cn, 3). In particular, aw(Cm�Cn, 3) is determined for
all m and n. Further, Section 4 determines aw(G�Cn, 3) for any G when n is odd.
Finally, Section 5 provides the reader with some conjectures and open questions.
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2 Background and Fundamental Tools

Distance preservation in subgraphs can be leveraged to guarantee the existence of
rainbow 3-APs. Thus, this section starts with some basic distance and isometry
results.

Proposition 2.1. If vi,j, vh,k ∈ V (G�H), then

dG�H(vi,j, vh,k) = dG(ui, uh) + dH(wj, wk).

Proof. Note that dG�H(vi,j, vh,k) ≤ dG(ui, uh) + dH(wj, wk) because a path of length
dG(ui, uh)+dH(wj, wk) can be constructed using a ui−uh geodesic inG and combining
it with a wj − wk geodesic in H.

To show the other inequality, let P be a vi,j − vh,k geodesic, say

P = {vi,j = x1, x2, . . . , xy = vh,k}.

Note that for every edge vj1,j2vβ1,β2 ∈ E(P ), either j1 = β1 and wj2wβ2 ∈ E(H), or
j2 = β2 and uj1uβ1 ∈ E(G). Then, x`x`+1 must correspond either to an edge from
a ui − uh walk or from a wj − wk walk and P must correspond to a walk in G and
also a walk in H. In other words, the length of P is the sum of the length of the
corresponding walks in G and H. Thus, the length of P is at least the sum of the
lengths of a ui − uh geodesic in G and a wj − wk geodesic in H. So,

dG(ui, uh) + dH(wj, wk) ≤ dG�H(vi,j, vh,k).

Corollary 2.2. If G′ is an isometric subgraph of G and H ′ is an isometric subgraph
of H, then G′�H ′ is an isometric subgraph of G�H.

Proof. Let V (G) = {u1, . . . , un1} and V (H) = {w1, . . . , wn2}. Then let vi,j, vh,k ∈
V (G′�H ′). Observe,

dG′�H′(vi,j, vh,k) = dG′(ui, uh) + dH′(wj, wk)

= dG(ui, uh) + dH(wj, wk)

= dG�H(vi,j, vh,k).

Lemma 2.3 is powerful since it guarantees isometric subgraphs. Isometric sub-
graphs are important when investigating anti-van der Waerden numbers because
distance preservation implies k-AP preservation.

Lemma 2.3. [14] If G is a connected graph on at least three vertices with an exact
r-coloring c where r ≥ 3, then there exists a subgraph G′ in G with at least three
colors where G′ is either an isometric path or G′ = C3.
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Theorem 2.4 is used when isometric Pm�Pn subgraphs are found within G�H.

Theorem 2.4. [14] For m,n ≥ 2,

aw(Pm�Pn, 3) =

{
3 if m = 2 and n is even, or m = 3 and n is odd,

4 otherwise.

Lemma 2.5 helps restrict the number of colors each copy of G or H can have
within G�H.

Lemma 2.5. [14] Assume G and H are connected with |V (H)| ≥ 3. Suppose c is
an exact, rainbow-free r-coloring of G�H, such that r ≥ 3 and |c(V (Gi))| ≤ 2 for
1 ≤ i ≤ n. If wiwj ∈ E(H), then |c(V (Gi) ∪ V (Gj))| ≤ 2.

To prove Lemmas 3.1 and 3.4 requires the use of Lemma 2.6.

Lemma 2.6. If G and H are connected, |G|, |H| ≥ 2 and c is an exact r-coloring of
G�H, 3 ≤ r, that avoids rainbow 3-APs, then |c(V (Gi))| ≤ 2 for 1 ≤ i ≤ |H|.

Proof. If |G| = 2 the result is immediate, so let 3 ≤ |G|. For the sake of contradiction,
assume red, blue, green ∈ |c(V (Gi))| for some 1 ≤ i ≤ |H|. By Lemma 2.3, there
must exist an isometric path or a C3 in Gi containing red, blue, and green. If there
is such a C3, then there is a rainbow 3-AP which is a contradiction. So, assume P`
is a shortest isometric path in Gi containing red, blue, and green, for some positive
integer 3 ≤ `.

Case 1. ` is odd.
Without loss of generality, suppose the two leaves of P` are colored red and
blue. Since P` is shortest the rest of the vertices are colored green. Since `
is odd there exists a green vertex equidistant from the red and blue vertices
which creates a rainbow 3-AP, a contradiction.

Case 2. ` is even.
Let ui ∈ V (H) be the vertex that corresponds to Gi and note that ui has a
neighbor since H is connected. Let P2 be a path on two vertices in H containing
ui and ρ be the isometric subgraph in G that corresponds to P`. Thus, the
subgraph P2�ρ of G�H is isometric and, by Theorem 2.4, contains a rainbow
3-AP, a contradiction.

All cases give a contradiction, thus |c(V (Gi))| ≤ 2.

Corollary 2.7 is a strengthening of Lemma 2.5 and follows from Lemmas 2.5 and
2.6. It is used to help analyze aw(Pm�C2k+1).

Corollary 2.7. If G and H are connected graphs, |G| ≥ 2, |H| ≥ 3, c is an exact,
rainbow-free r-coloring of G�H with r ≥ 3, and vivj ∈ E(H), then

|c(V (Gi) ∪ V (Gj))| ≤ 2.
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Lemma 2.8. [3] Let G be a connected graph on m vertices and H be a connected
graph on n vertices. Let c be an exact r-coloring of G�H with no rainbow 3-APs. If
G1, G2, . . . , Gn are the labeled copies of G in G�H, then |c(V (Gj)) \ c(V (Gi))| ≤ 1
for all 1 ≤ i, j ≤ n.

Proposition 2.9. If G and H are connected graphs, |G| ≥ 2, |H| ≥ 3, c is an exact,
rainbow-free r-coloring of G�H with r ≥ 3, then there is a color in c(G�H) that
appears in every copy of G.

Proof. Suppose c(G�H) = {c1, . . . , cr}. First, for the sake of contradiction, assume
|c(V (Gi))| = 1 for every 1 ≤ i ≤ |H|. Then define a coloring c′ : V (H) → c(G�H)
such that c′(wi) ∈ c(V (Gi)). Then Lemma 2.3 implies that there is either an isometric
path or C3 in H with 3 colors. If there is an isometric C3, say (w1, w2, w3), then
{v1,1, v1,2, v1,3} is a rainbow 3-AP in G�H with respect to c, a contradiction. So,
there must be an isometric path in H with 3 colors. Suppose P = (w1, . . . , wn)
is a shortest such path. Without loss of generality, c′(w1) = c2, c

′(wn) = c3 and
c′(wi) = c1 for all 1 < i < n. Then there exist u1, u2 ∈ V (G) such that u1u2 ∈ E(G).
Thus, {v1,1, v1,n, v2,2} is a rainbow 3-AP in G�H with respect to c, a contradiction.

Thus, there exists some Gi such that |c(V (Gi))| ≥ 2, without loss of generality,
say c1, c2 ∈ c(V (Gi)). Then Lemma 2.6 implies c(V (Gi)) = {c1, c2}. Note that c3 ∈
c(V (Gj)) for some j 6= i. Lemma 2.8 implies that c1 ∈ c(V (Gj)) or c2 ∈ c(V (Gj)).
Without loss of generality, suppose c1 ∈ c(V (Gj)) implying c(V (Gj)) = {c1, c3} by
Lemma 2.6. It will be shown that c1 appears in every copy of G.

Now, for k /∈ {i, j}, Lemma 2.8 implies that |c(V (Gi)) \ c(V (Gk))| ≤ 1 and
|c(V (Gj)) \ c(V (Gk))| ≤ 1. Thus, for all k /∈ {i, j}, either c1 ∈ c(V (Gk)) or c2, c3 ∈
c(V (Gk)) implying c(V (Gk)) = {c2, c3} by Lemma 2.6. Now, define c′ : V (H) →
{red, blue} by

c′(wk) =

{
red if c1 ∈ c(V (Gk)),

blue if c(V (Gk)) = {c2, c3}.

For the sake of contradiction, assume blue ∈ c′(V (H)). Then there must exist
red and blue neighbors in H, call them w`1 , w`2 . Without loss of generality, say
c′(w`1) = red and c′(w`2) = blue so that c1 ∈ c(V (G`1)) and c(V (G`2)) = {c2, c3}.
Then c1, c2, c3 ∈ c(V (G`1))∪c(V (G`2)) and 3 ≤ |c(V (G`1))∪c(V (G`2))|, contradicting
Corollary 2.7. Thus, c′(V (H)) = {red}, the desired result.

3 Graph Products of Paths and Cycles

As a reminder, the conventions for G�H will be used to label the vertices of Pm�Cn.
In particular, letting G = Pm and H = Cn gives the following:

• V (Pm) = {u1, u2, . . . , um} with edges uiui+1 for 1 ≤ i ≤ m− 1,

• V (Cn) = {w1, w2, . . . , wn} with edges wiwi+1 for 1 ≤ i ≤ n− 1 and wnw1,
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• Gi is the ith copy of Pm in Pm�Cn and has vertex set {v1,i, v2,i, . . . , vm,i}, and

• Hi is the ith copy of Cn in Pm�Cn and has vertex set {vi,1, vi,2, . . . , vi,n}.

A fact about Pm�Cn is that

dPm�Cn(vi,j, vk,`) = |i− k|+ min{(j − `) mod n, (`− j) mod n}.

Note that the standard representative of the equivalence class of Zn is chosen, i.e.
(j − `) mod n, (`− j) mod n ∈ {0, 1, . . . , n− 1}.

Lemma 3.1. For any positive integer k, aw(P2�C2k+1, 3) = 3.

Proof. For the sake of contradiction, let c be an exact, rainbow-free 3-coloring of
P2�C2k+1. Swapping the roles of G and H in Lemma 2.6 gives

|c(V (H1))|, |c(V (H2))| ≤ 2.

Without loss of generality, suppose c(V (H1)) = {red, blue}, green ∈ c(V (H2)) with
c(v2,1) = green. Note that c(v1,1) ∈ {red, blue} and define P` to be a shortest path
in H1 containing v1,1 that contains colors red and blue. Without loss of generality,
let P` = (v1,1, v1,2, v1,3, . . . , v1,`) and let ρ be the isometric subgraph of C2k+1 that
corresponds to P`. Note that P2�ρ is an isometric subgraph in P2�C2k+1 that
contains three colors and ` ≤ k + 1.

If ` is even, then P2�ρ has a rainbow 3-AP by Theorem 2.4 so P2�C2k+1 has a
rainbow 3-AP, a contradiction.

If ` is odd and ` ≤ k, extending P` by one additional vertex (and likewise extend-
ing ρ to be ρ′) maintains isometry. That is, there is an isometric path P`+1 in H1

that contains v1,1 and has colors red and blue. Thus, P2�ρ′ is an isometric subgraph
of P2�C2k+1 that contains three colors and it contains a rainbow 3-AP by Theorem
2.4, another contradiction.

Finally, consider the case when ` is odd and ` = k+1. Note that c(v1,i) = red for
k + 3 ≤ i ≤ 2k + 1, else the minimality of P` would be contradicted. Also, j = 3k+4

2

is an integer and k + 3 ≤ j ≤ 2k + 1 when k ≥ 2. Thus, {v2,1, v1,j, v1,`} is a rainbow
3-AP, a contradiction.

Therefore, no such c exists and aw(P2�C2k+1, 3) = 3.

Lemma 3.2. For integers m and k with 2 ≤ m and 1 ≤ k,

aw(Pm�C2k+1, 3) = 3.

Proof. For a base case, note that Lemma 3.1 implies aw(P2�C2k+1, 3) = 3 for all
1 ≤ k. As the inductive hypothesis, suppose that aw(P`�C2k+1, 3) = 3 for some
2 ≤ `. Let c be a rainbow-free, exact 3-coloring of P`+1�C2k+1 and let Hi denote the
ith copy of C2k+1. By hypothesis and the fact that c is rainbow-free,∣∣∣∣∣c

(⋃̀
i=1

V (Hi)

)∣∣∣∣∣ ≤ 2 and

∣∣∣∣∣c
(
`+1⋃
i=2

V (Hi)

)∣∣∣∣∣ ≤ 2.
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Thus, the inclusion-exclusion principle gives
∣∣∣c(⋃`

i=2 V (Hi)
)∣∣∣ = 1. Without loss

of generality, assume

c

(⋃̀
i=2

V (Hi)

)
= {red}, blue ∈ c(V (H1)), and green ∈ c (V (H`+1)) .

In particular, assume c(v1,1) = blue and c(v`+1,j) = green for some j ≤ k + 1.

Suppose ` is even. Then {v1,1, v `+2
2
,i, v`+1,j} is a rainbow 3-AP for i = j+1

2
if j

is odd, and i = 2k+j+2
2

if j is even. On the other hand, suppose ` is odd. Then,

{v1,1, v `+1
2
,i, v`+1,j} is a rainbow 3-AP for i = j+2

2
if j is even, and i = 2k+j+1

2
if j is

odd.

In any case, there is a rainbow 3-AP, a contradiction, so aw(P`+1�C2k+1, 3) = 3.
Thus, by induction, aw(Pm�C2k+1, 3) = 3 for any 2 ≤ m.

Determination of aw(P2�C2k) requires two strategies since there are k values
for which aw(P2�C2k) = 3 and k values for which aw(P2�C2k) = 4. Essentially,
aw(P2�Cn) = 4 when n = 4` and is determined by providing a coloring where one
pair of vertices that are diametrically opposed are colored distinctly and everything
else is a third color. This avoids rainbow 3-APs since the diameter of P2�C4` is
odd and because each vertex v ∈ V (C4`) has exactly one vertex whose distance from
v realizes the diameter of C4`. Note that this is different than what happens in
P2�C2k+1 since each vertex v ∈ V (C2k+1) has two vertices whose distance from v
realizes the diameter of C2k+1. When the diameter of P2�C2k is even, this coloring,
and every other coloring, ends up creating an isometric P2�P2j with 3-colors. Then,
it is only a matter of applying Theorem 2.4 to find the rainbow 3-AP.

Lemma 3.3. For integers m and k with 2 ≤ m, k, aw(Pm�C2k, 3) = 4 if
diam(Pm�C2k) is odd.

Proof. Define c : V (Pm�C2k)→ {red, blue, green} by

c(vi,j) =


blue if i = j = 1,

green if i = m and j = k + 1,

red otherwise.

Note that any rainbow 3-AP must contain v1,1 and vm,k+1 since they are the only
blue and green vertices, respectively. This will be shown by proving v1,1 and vm,k+1

are not part of any nondegenerate 3-AP. For the sake of contradiction, assume there
exists vi,j ∈ V (Pm�Cn) such that {v1,1, vi,j, vm,k+1} is a nondegenerate 3-AP.

One way this can happen is if d(v1,1, vi,j) = d(vi,j, vm,k+1). Without loss of gen-
erality, suppose 1 ≤ j ≤ k + 1. Then

d(v1,1, vi,j) = (i− 1) + (j − 1) = i+ j − 2,

and
d(vi,j, vm,k+1) = (m− i) + (k + 1− j) = m+ k + 1− i− j.
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By assumption, i+j−2 = m+k+1−i−j which implies that m+k+1 = 2i+2j−2.
However, diam(Pm�C2k) = m+ k − 1 is odd, a contradiction.

The only other possible way that {v1,1, vi,j, vm,k+1} is a 3-AP is if d(vi,j, v1,1) =
diam(Pm�C2k) or d(vi,j, vm,k+1) = diam(Pm�C2k). However, this implies vi,j ∈
{v1,1, vm,k+1} which gives a degenerate 3-AP.

Thus, the exact 3-coloring c of Pm�C2k is rainbow free so 4 ≤ aw(Pm�C2k, 3).
Theorem 1.3 gives an upper bound of 4 which implies aw(Pm�C2k, 3) = 4.

Lemma 3.4. For any integer k with 2 ≤ k,

aw(P2�C2k, 3) =

{
3 if k is odd,

4 if k is even.

Proof. If k is even, then diam(P2�C2k) = 1 + k is odd, and x so by i Lemma 3.3
aw(P2�C2k) = 4.

Now assume k is odd and let c be an exact 3-coloring of P2�C2k. For the sake of
contradiction, assume c is rainbow-free. By Lemma 2.6, |c(V (H1))|, |c(V (H2))| ≤ 2.
Without loss of generality, suppose c(V (H1)) = {red, blue}, and green ∈ c(V (H2))
with c(v2,1) = green. Now, define P` as a shortest path in H1 containing v1,1 that
contains colors red and blue, and let ρ be the isometric subgraph of C2k that cor-
responds to P`. Note that P2�ρ is an isometric subgraph in P2�C2k that contains
three colors. If ` is even, then Theorem 2.4 gives a rainbow 3-AP, a contradiction.

Suppose ` is odd. Since diam(H1) = diam(C2k) = k is odd, the length of P` is
even and P` is isometric, it follows that P` can be extended by one vertex in either
direction while maintaining isometry. In other words, there is an isometric path P`+1

in H1 that contains v1,j and the colors red and blue. Thus, P2�P`+1 is an isometric
subgraph of P2�C2k that contains three colors which means it has a rainbow 3-AP
by Theorem 2.4, a contradiction.

Therefore, when k is odd, every exact 3-coloring of P2�C2k has a rainbow 3-AP
and aw(P2�C2k, 3) = 3.

Before getting to more general results an analysis of aw(P3�Cn) needs to happen.
Similar to the aw(P2�Cn) situation, there are very subtle and important differences
when n is odd versus when n is even.

Lemma 3.5. For any integer k with 2 ≤ k,

aw(P3�C2k, 3) =

{
3 if k is even,

4 if k is odd.

Proof. If k is odd, then diam(P3�C2k) = 2 + k is odd, and so by Lemma 3.3
aw(P2�C2k) = 4.

Suppose k is even and c is an exact, rainbow-free 3-coloring of P3�C2k. Then
an argument similar to the argument in the proof of Lemma 3.2 can be used to
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establish, without loss of generality, that c(V (H1)) = {red, blue}, c(V (H2)) = {red},
c(V (H3)) = {red, green}, c(v1,1) = blue and c(v3,j) = green for some 1 ≤ j ≤ k + 1.

If j is odd, then {v1,1, v2, j+1
2
, v3,j} is a rainbow 3-AP, contradicting that P3�C2k

is rainbow free. So, suppose j is even. Then j + 1 ≤ k + 1 implying that the path
Pj+1 = (w1, . . . , wj+1) is an isometric subgraph of C2k. So, P3�Pj+1 is an isometric
subgraph of P3�C2k. Since c(P3�Pj+1) = {red, blue, green}, Theorem 2.4 implies
that P3�C2k contains a rainbow 3-AP.

Lemma 3.6. If m ≥ 2 is even and k ≥ 1, then

aw(Pm�C4k+2, 3) = 3.

Proof. Lemma 3.4 implies aw(P2�C4k+2, 3) = 3. Suppose aw(P`�C4k+2, 3) = 3 for
some even ` ≥ 2. Then, let c be an exact 3-coloring of P`+2�C4k+2 that avoids
rainbow 3-APs, and let Hi denote the ith copy of C4k+2. By hypothesis,∣∣∣∣∣c

(⋃̀
i=1

V (Hi)

)∣∣∣∣∣ ≤ 2 and

∣∣∣∣∣c
(
`+2⋃
i=3

V (Hi)

)∣∣∣∣∣ ≤ 2.

By the inclusion-exclusion principle,
∣∣∣c(⋃`

i=3 V (Hi)
)∣∣∣ = 1. Without loss of general-

ity, suppose c
(⋃`

i=3 V (Hi)
)

= {red}, so that Proposition 2.9 implies red ∈ c(Hi) for

1 ≤ i ≤ `+ 2. Further, without loss of generality, suppose blue ∈ c(V (H1) ∪ V (H2))
and green ∈ c(V (H`+1) ∪ V (H`+2)). Say, c(vi,1) = blue and c(vh,j) = green for
i ∈ {1, 2}, h ∈ {` + 1, ` + 2} and 1 ≤ j ≤ 2k + 1 such that i is maximal and h is
minimal. If i = 2 and h = 3, then |c(H2) ∪ c(H3)| ≥ 3 which contradicts Corollary
2.7. So assume h− i ≥ 2. Thus, c(V (Hi+1)) = {red} and c(V (Hh−1)) = {red}.

Case 1. Suppose d(vi,1, vh,j) is even.

Then either dP`+2
(ui, uh) = h − i and dC4k+2

(w1, wj) = j − 1 are both odd or
both even. If they are both even, then {vi,1, v i+h

2
, j+1

2
, vh,j} is a rainbow 3-AP.

If they are both odd, then {vi,1, v i+h+1
2

, j
2
, vh,j} is a rainbow 3-AP.

Case 2. Suppose d(vi,1, vh,j) is odd.

If j < 2k+2, then {vh,j, vi,1, vh−1,j+1} is a rainbow 3-AP. So, suppose j = 2k+2.
Then dC4k+2

(w1, wj) = 2k + 1 is odd implying that dP`+2
(ui, uh) is even. Thus,

either i = 1 and h = ` + 1, or i = 2 and h = ` + 2. First, suppose i = 1 and
h = ` + 1. Then the 3-AP {v`+1,j, v1,1, v`+2,j+1} implies c(v`+2,j+1) = green.
Since i is maximal, c(V (H2)) = {red}. Thus, {v1,1, v`+2,j+1, v2,2} is a rainbow
3-AP since j+ 1 = 2k+ 3. For i = 2 and j = `+ 2, the 3-APs {v2,1, v`+2,j, v1,2}
and {v`+2,j, v1,2, v`+1,j+1} yield a rainbow 3-AP.

Thus, aw(P`+2�C4k+2, 3) = 3 and by induction, aw(Pm�C4k+2, 3) = 3 for any even
m ≥ 2.
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Replacing 4k + 2 with 4k and 2k + 2 with 2k + 1 gives the proof of Lemma 3.7,
thus the proof has been omitted.

Lemma 3.7. If m ≥ 3 is odd and k ≥ 1, then

aw(Pm�C4k, 3) = 3.

Lemmas 3.2, 3.3, 3.6, and 3.7 yield the following theorem.

Theorem 3.8. If m ≥ 2, n ≥ 3 then

aw(Pm�Cn, 3) =

{
4 if n is even and diam(Pm�Cn) is odd,

3 otherwise.

4 Graph Products of Cycles with Other Graphs

This section starts with a general result, Theorem 4.1, and then uses the general
result to establish aw(Cm�Cn, 3).

Theorem 4.1. For any integer k with 1 ≤ k, aw(G�C2k+1, 3) = 3 for any connected
graph G with |G| ≥ 2.

Proof. Let V (G) = {u1, . . . , un} and Hi denote the ith labeled copy of C2k+1. Lemma
3.1 implies that aw(P2�C2k+1, 3) = 3, so suppose |G| ≥ 3. Let c : V (G�C2k+1) →
{red, blue, green} be an exact 3-coloring, and, for the sake of contradiction, assume c
is rainbow-free. Since |G| ≥ 3, Proposition 2.9 implies that, without loss of generality,
red is in every copy of C2k+1. So, define c′ : V (G)→ {red, blue, green} by

c′(ui) =

{
red if c(V (Hi)) = {red},
C if C ∈ c(V (Hi)) \ {red}.

Since Lemma 2.6 implies that |c(V (Hi))| ≤ 2 for all 1 ≤ i ≤ n, it follows that c′ is
well-defined. By Lemma 2.3, there either exists a C3 in G containing red, blue, and
green or an isometric path in G containing red, blue, and green.

First, suppose C3
∼= G[{ui1 , ui2 , ui3}] contains red, blue, and green. Then, with-

out loss of generality, there exists neighboring copies Hi1 and Hi2 of H, in G�C2k+1,
such that c(V (Hi1)) = {red, blue} and c(V (Hi2)) = {red, green}, contradicting
Corollary 2.7.

Finally, suppose there exists an isometric path P in G such that c′(V (P )) =
{red, blue, green}. Now, by Lemma 3.2, there exists a rainbow 3-AP in the isometric
subgraph P�C2k+1, a contradiction.

Just as Lemma 3.2 was generalized into Theorem 4.1 which showed that

aw(G�C2k+1, 3) = 3
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for all connected G with at least 2 vertices, significant time was spent on the con-
jecture that a similar generalization would help show aw(G�C4k+2, 3) = 3 when
diam(G) is odd and aw(G�C4k, 3) = 3 when diam(G) is even. However, these con-
jectures do not hold because it cannot be guaranteed that an isometric P2j�C4k+2

subgraph of G�C4k+2 or P2j+1�C4k subgraph of G�C4k exists that contains three
colors. The following example provides such a G.

Example 4.2. Consider the graph in Figure 2 which is G�C4, where G is a C10

with a leaf. That is V (G) = {w1, . . . , w11} with edges wiwi+1 for 1 ≤ i ≤ 9 and
the additional edges w1w10 and w10w11. Define c : V (G�C4) → {red, blue, green}
by c(v2,1) = blue, c(v7,3) = green, and c(v) = red for all v ∈ V (G�C4) \ {v2,1, v7,3}.
In order for G�C4 to contain a rainbow 3-AP, there must exist a red v ∈ V (G�C4)
such that

d(v2,1, v) = d(v, v7,3), d(v, v2,1) = d(v2,1, v7,3), or d(v, v7,3) = d(v7,3, v2,1).

By construction, every vertex v of G�C4 is such that d(v, v2,1) and d(v, v7,3) have
different parity, thus d(v2,1, v) 6= d(v, v7,3) for all v ∈ V (G). To show that there
are no vertices v of G distinct from v2,1, v7,3 such that d(v, v2,1) = d(v2,1, v7,3) or
d(v, v7,3) = d(v7,3, v2,1), a discussion about eccentricity is needed. For a vertex v of a
graph G, the eccentricity of v, denoted ε(v), is the distance between v and a vertex
furthest from v in G. In other words,

ε(v) = max
u∈V (G)

d(u, v).

In this example, ε(v2,1) = ε(v7,3) = d(v2,1, v7,3) = 7 and both eccentricities are
uniquely realized. So, there are no non-degenerate 3-APs in G�C4 containing v2,1
and v7,3. Thus, aw(G�C4, 3) = 4.

Note that the graph in Figure 2 is the only example presented in this paper of a
graph product with even diameter and anti-van der Waerden number (with respect
to 3) equal to 4. This is discussed more in Section 5.

Theorem 4.1 gives the following result.

Corollary 4.3. If m or n is odd with m,n ≥ 3, then aw(Cm�Cn, 3) = 3.

Lemmas 3.6 and 3.7 are used to prove Lemma 4.4.

Lemma 4.4. If m and n are even with m ≡ n (mod 4), then aw(Cm�Cn, 3) = 3.

Proof. Let c be an exact 3-coloring of Cm�Cn. Lemma 2.3 implies that Cm�Cn
either contains an isometric path or a C3 with three colors. Since there are no C3

subgraphs in Cm�Cn, it follows that Cm�Cn must contain an isometric path with
three colors. Call a shortest such path P . Suppose P intersects k copies of Cn, and,
without loss of generality, suppose these copies are H1, . . . , Hk.

Notice that there are vertices v and v′ of P in V (H1) and V (Hk), respectively. If
k > m

2
+ 1, then any shortest path from v to v′ would be contained in the subgraph
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v2,1

v7,3

Figure 2: Image for Example 4.2: Graph G�C4, counterexample of generalizing
Lemma 3.7.

induced by the vertices of Hk, Hk+1, . . . , Hn, H1. So, no shortest path between v and
v′ would be contained in P , implying that P is not isometric, a contradiction.

Thus, k ≤ m
2

+1, and P is a subgraph of Pm
2
+1�Cn where Pm

2
+1 is the subgraph of

Cm induced by {u1, . . . , um
2
+1}. Thus, P is an isometric subgraph of Cm�Cn because

Pm
2
+1 is isometric in Cm. Since there are three colors in P , there are three colors in

Pm
2
+1�Cn. Furthermore, since m ≡ n (mod 4), m

2
and n

2
+ 1 have different parity.

So, Lemma 3.6 or Lemma 3.7 implies that Pm
2
+1�Cn contains a rainbow 3-AP. Thus,

Cm�Cn contains a rainbow 3-AP.

In the proof of Lemma 4.5, the fact that each vertex in an even cycle realizes the
diameter with exactly one other vertex will be used.

Lemma 4.5. If m and n are even with m 6≡ n (mod 4), then aw(Cm�Cn, 3) = 4.

Proof. Define k = m
2

+ 1 and ` = n
2

+ 1 and the coloring c : V (Cm�Cn) →
{red, blue, green} by

c(vi,j) =


blue if i = j = 1,

green if i = k, j = `,

red otherwise.

Since v1,1 and vk,` are the only blue and green vertices, any rainbow 3-AP must
contain them. This result will be proved by showing v1,1 and vk,` are not part of
any nondegenerate 3-AP. For the sake of contradiction, assume there exists vi,j ∈
V (Cm�Cn) such that {v1,1, vi,j, vk,`} is a nondegenerate 3-AP.

One way this can happen is if d(v1,1, vi,j) = d(vi,j, vk,`). Without loss of generality,
up to a relabelling of the vertices, suppose 1 ≤ i ≤ k and 1 ≤ j ≤ `. Then

d(v1,1, vi,j) = (i− 1) + (j − 1) = i+ j − 2,
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and
d(vi,j, vk,`) = (k − i) + (`− j) = k + `− i− j.

By assumption, i+ j − 2 = k + `− i− j, which implies that

2i+ 2j − 2 = k + ` =
m

2
+
n

2
+ 2. (1)

However, m 6≡ n (mod 4) implies m
2

+ n
2

is odd, which contradicts equation (1).

The only other possible way that {v1,1, vi,j, vk,`} is a 3-AP is if d(vi,j, v1,1) =
d(v1,1, vk,`) or d(vi,j, vk,`) = d(vk,`, v1,1). However,

ε(v1,1) = ε(vk,`) = diam(Cm�Cn)

is uniquely realized. This implies vi,j ∈ {v1,1, vk,`} yielding a degenerate 3-AP.

Thus, the exact 3-coloring c of Cm�Cn is rainbow free so 4 ≤ aw(Cm�Cn, 3).
Theorem 1.3 gives an upper bound of 4 which implies aw(Cm�Cn, 3) = 4.

Conglomerating Corollary 4.3, Lemma 4.4 and Lemma 4.5 yields Theorem 4.6.

Theorem 4.6. If m,n ≥ 3, then

aw(Cm�Cn, 3) =

{
4 if m and n are even and diam(Cm�Cn) is odd,

3 otherwise.

5 Future Work

Recall that Example 4.2 was the only example presented in this paper of a graph
product with even diameter and anti-van der Waerden number (with respect to
3) equal to 4. One of the key factors in allowing this to happen was a pair of
vertices u and v such that ε(u) = ε(v) = d(u, v) < diam(u, v). Such vertices will be
called almost peripheral vertices whose name comes from peripheral vertices which
are vertices that realize the diameter.

Conjecture 5.1. If G�H has no almost peripheral vertices and diam(G�H) is even,
then aw(G�H, 3) = 3.

In particular, the authors believe that trees do not contain any almost peripheral
vertices. For this reason, it is believed that Conjecture 5.2 holds if Conjecture 5.1
holds.

Conjecture 5.2. If T is a tree, n is even, and diam(T�Cn) is even, then
aw(T�Cn, 3) = 3.

This result would provide a more specific case of when the even cycle analog of
Theorem 4.1 holds.

Another way to extend Theorem 4.1 would be considering aw(G�Cn, k) for some
k > 3. For k = 3, Theorem 4.1 showed that when n is odd, aw(G�Cn, k) = k for
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any connected G of order at least 2. However, there may be other properties of
n that guarantee aw(G�Cn, k) = k for k > 3. Some preliminary work analyzing
aw(Pm�Cn, 4) suggests that for any n, there exists an m such that aw(Pm�Cn, 4)
≥ 5.
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