Anti-van der Waerden numbers of graph products of cycles

Joe Miller
Department of Mathematics
Iowa State University
Ames, U.S.A.
jmiller0@iastate.edu
Nathan Warnberg
Department of Mathematics and Statistics
University of Wisconsin-La Crosse
La Crosse, U.S.A.
nwarnberg@uwlax.edu

Abstract

A k-term arithmetic progression (k-AP) of a graph G is a list of k distinct vertices such that the distance between consecutive pairs is constant. Given a coloring of the vertices of G, a k-AP is rainbow if each vertex in the AP is colored distinctly. This allows for the definition of the anti-van der Waerden number of a graph G, which is the least positive integer r such that every surjective r-coloring of the vertices of G contains a rainbow k-AP. This paper focuses on 3 -term arithmetic progressions for graph products that involve cycles. Specifically, the anti-van der Waerden numbers of $P_{m} \square C_{n}, C_{m} \square C_{n}$ and $G \square C_{2 n+1}$ are determined precisely.

1 Introduction

The study of van der Waerden numbers started with Bartel van der Waerden showing in 1927 that given a fixed number of colors r, and a fixed integer k there is some N (a van der Waerden number) such that if $n \geq N$, then no matter how you color $[n]=$ $\{1,2, \ldots, n\}$ with r-colors, there will always be a monochromatic k-term arithmetic progression (see [16]). Around this time, in 1917, it is interesting to note that Schur proved that given r colors, you can find an N (a Schur number) such that if $n \geq N$, then no matter how you color $[n]$ there must be a monochromatic solution to $x+y=z$ (see [15). In addition, in 1928, Ramsey showed (here graph theory language is used but was not in Ramsey's original formulation) that given r colors and some constant
k you can find an N (a Ramsey number) such that if $n \geq N$, then no matter how you color the edges of a complete graph K_{n} you can always find a complete subgraph K_{k} that is monochromatic (see [13]).

These types of problems that look for monochromatic structures have been categorized as Ramsey-type problems and each of them has a dual version. For example, an anti-van der Waerden number is when given integers n and k, find the minimum number of colors such that coloring $\{1, \ldots, n\}$ ensures a rainbow k-term arithmetic progression. It was not until 1973 when Erdős, Simonovits and Sós, in [7, started looking at the dual versions of these problems which are now well-studied (see 9$]$ for a survey).

Results on colorings and balanced colorings of $[n]$ that avoid rainbow arithmetic progressions have been studied in [1] and [2]. Rainbow free colorings of $[n]$ and \mathbb{Z}_{n} were studied in [6] and [11]. Although Butler et al., in [6], considered arithmetic progressions of all lengths, many results on 3-APs were produced. In particular, the authors of [6] determined $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)$ (see Theorem 1.1 with additional cycle notation). Further, the authors of [6] determined that $3 \leq \operatorname{aw}\left(\mathbb{Z}_{p}, 3\right) \leq 4$ for every prime number p and that $\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)$ can be determined by the prime factorization of n. This result was then generalized by Young in [17].

Theorem 1.1. [6] Let n be a positive integer with prime decomposition $n=$ $2^{e_{0}} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}}$ for $e_{i} \geq 0, i=0, \ldots, s$, where primes are ordered so that $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=$ 3 for $1 \leq i \leq \ell$ and $\operatorname{aw}\left(\mathbb{Z}_{p_{i}}, 3\right)=4$ for $\ell+1 \leq i \leq s$. Then,

$$
\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right)=\operatorname{aw}\left(C_{n}, 3\right)=\left\{\begin{array}{l}
2+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j} \text { if } n \text { is odd }, \\
3+\sum_{j=1}^{\ell} e_{j}+\sum_{j=\ell+1}^{s} 2 e_{j} \text { if } n \text { is even }
\end{array}\right.
$$

As mentioned, Butler et al. also studied arithmetic progressions on $[n]$ and obtained bounds on $\operatorname{aw}([n], 3)$ and conjectured the exact value that was later proven in [4]. This result on $[n]$ is presented as Theorem 1.2 and includes path notation.

Theorem 1.2. [4] If $n \geq 3$ and $7 \cdot 3^{m-2}+1 \leq n \leq 21 \cdot 3^{m-2}$, then

$$
\operatorname{aw}([n], 3)=\operatorname{aw}\left(P_{n}, 3\right)= \begin{cases}m+2 & \text { if } n=3^{m} \\ m+3 & \text { otherwise } .\end{cases}
$$

It is also interesting to note that 3-APs in $[n]$ or \mathbb{Z}_{n} satisfy the equation $x_{1}+x_{3}=$ $2 x_{2}$. Thus, rainbow numbers for other linear equations have also been considered (see [5], [8], [10] and [12]).

Studying the anti-van der Waerden numbers of graphs is a natural extension of determining the anti-van der Waerden numbers of $[n]=\{1,2, \ldots, n\}$, which behave like paths, and \mathbb{Z}_{n}, which behave like cycles. In particular, the set of arithmetic progressions on $[n]$ is isomorphic to the set of arithmetic progressions on P_{n} and the set of arithmetic progressions on \mathbb{Z}_{n} is isomorphic to the set of arithmetic progressions
on C_{n}. This relationship was first introduced and explored in 3 where the anti-van der Waerden number was bounded by the radius and diameter of a graph, the anti-van der Waerden number of trees and hypercubes were investigated and an upper bound of four was conjectured for the anti-van der Waerden number of graph products. Then, in [14], the authors confirmed the upper bound of four for any graph product (see Theorem 1.3). This paper continues in this vein.

Theorem 1.3. 14| If G and H are connected graphs and $|G|,|H| \geq 2$, then

$$
\operatorname{aw}(G \square H, 3) \leq 4
$$

Something that makes anti-van der Waerden numbers challenging is that they are not subgraph monotone. A particular example,

$$
4=\operatorname{aw}([9], 3)=\operatorname{aw}\left(P_{9}, 3\right)<\operatorname{aw}\left(P_{8}, 3\right)=\operatorname{aw}([8], 3)=5,
$$

even though P_{8} is a subgraph of P_{9}, and a general statement,

$$
\operatorname{aw}\left(C_{n}, 3\right)=\operatorname{aw}\left(\mathbb{Z}_{n}, 3\right) \leq \operatorname{aw}([n], 3)=\operatorname{aw}\left(P_{n}, 3\right),
$$

were both given, without the graph theory interpretation, in [6]. One tool that does allow a kind of monotonicity when studying the anti-van der Waerden numbers of graphs is when a subgraph is isometric, that is, the subgraph preserves distances. This insight was used extensively in [14 to get an upper bound on the anti-van der Waerden number of graph products and will also be leveraged in this paper. First, some definitions and background inspired by [6] and used in [3] and [14] are provided.

Graphs in this paper are undirected so edge $\{u, v\}$ will be shortened to $u v \in E(G)$. If $u v \in E(G)$, then u and v are neighbors of each other. The distance between vertex u and v in graph G is denoted $\mathrm{d}_{G}(u, v)$, or just $\mathrm{d}(u, v)$ when context is clear, and is the smallest length of any $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic.

A k-term arithmetic progression in graph $G(k$-AP $)$ is a set of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ such that $d\left(v_{i}, v_{i+1}\right)=d$ for all $1 \leq i \leq k-1$. A k-term arithmetic progression is degenerate if $v_{i}=v_{j}$ for any $i \neq j$. Note that technically, since a k-AP is a set, the order of the elements does not matter. However, oftentimes k-APs will be presented in the order that provides the most intuition.

An exact r-coloring of a graph G is a surjective function $c: V(G) \rightarrow[r]$. A set of vertices S is rainbow under coloring c if for every $v_{i}, v_{j} \in V(G), c\left(v_{i}\right) \neq c\left(v_{j}\right)$ when $i \neq j$. Given a set $S \subset V(G)$, define $c(S)=\{c(s) \mid s \in S\}$.

The anti-van der Waerden number of graph G with respect to k, denoted aw (G, k), is the least positive number r such that every exact r-coloring of G contains a rainbow k-term arithmetic progression. If $|V(G)|=n$ and no coloring of the vertices yields a rainbow k-AP, then $\operatorname{aw}(G, k)=n+1$.

Graph G^{\prime} is a subgraph of G if $V\left(G^{\prime}\right) \subseteq V(G)$ and for any $u v \in E\left(G^{\prime}\right)$, we have that $u, v \in V\left(G^{\prime}\right)$ and $u v \in E(G)$. A subgraph G^{\prime} of G is an induced subgraph if
whenever u and v are vertices of G^{\prime} and $u v$ is an edge of G, then $u v$ is an edge of G^{\prime}. If S is a nonempty set of vertices of G, then the subgraph of G induced by S is the induced subgraph with vertex set S and is denoted $G[S]$. An isometric subgraph G^{\prime} of G is a subgraph such that $\mathrm{d}_{G^{\prime}}(u, v)=\mathrm{d}_{G}(u, v)$ for all $u, v \in V\left(G^{\prime}\right)$.

If $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ the Cartesian product, written $G \square H$, has vertex set $\left\{(x, y): x \in V\right.$ and $\left.y \in V^{\prime}\right\}$ and (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent in $G \square H$ if either $x=x^{\prime}$ and $y y^{\prime} \in E^{\prime}$ or $y=y^{\prime}$ and $x x^{\prime} \in E$.

This paper will use the convention that if

$$
V(G)=\left\{u_{1}, \ldots, u_{n_{1}}\right\} \quad \text { and } \quad V(H)=\left\{w_{1}, \ldots, w_{n_{2}}\right\},
$$

then $V(G \square H)=\left\{v_{1,1}, \ldots, v_{n_{1}, n_{2}}\right\}$ where $v_{i, j}$ corresponds to the vertices $u_{i} \in V(G)$ and $w_{j} \in V(H)$.

Also, if $1 \leq i \leq n_{2}$, then G_{i} denotes the i th labeled copy of G in $G \square H$. Likewise, if $1 \leq j \leq n_{1}$, then H_{j} denotes the j th labeled copy of H in $G \square H$. In other words, G_{i} is the induced subgraph $G_{i}=G \square H\left[\left\{v_{1, i}, \ldots, v_{n_{1}, i}\right\}\right]$, and H_{j} is the induced subgraph $H_{j}=G \square H\left[\left\{v_{j, 1}, \ldots, v_{j, n_{2}}\right\}\right]$. Notice that the i subscript in G_{i} corresponds to the i th vertex of H and the j in the subscript in H_{j} corresponds to the j th vertex of G. See Example 1.4 below.

Example 1.4. Consider the graph $P_{3} \square C_{5}$ where $V\left(P_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V\left(C_{5}\right)=$ $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{4}\right\}$. Let $G=P_{3}$ and $H=C_{5}$ as in the definition. Now, G_{4} is a subgraph of $P_{3} \square C_{5}$ that is isomorphic to P_{3} and corresponds to vertex w_{4} of C_{5}. Similarly, H_{2} is a subgraph of $P_{3} \square C_{5}$ that is isomorphic to C_{5} and corresponds to vertex u_{2} of P_{3}. See Figure 1 below.

Figure 1: Image for Example 1.4. The subgraph G_{4} is in bold and H_{2} is dashed.

The paper continues with Section 2 recapping and expanding many fundamental results from [14]. Section 3 establishes $\operatorname{aw}\left(P_{m} \square C_{n}, 3\right)$ for all m and n. Section 4 is an investigation of $\operatorname{aw}\left(G \square C_{n}, 3\right)$. In particular, $\operatorname{aw}\left(C_{m} \square C_{n}, 3\right)$ is determined for all m and n. Further, Section 4 determines aw $\left(G \square C_{n}, 3\right)$ for any G when n is odd. Finally, Section 5 provides the reader with some conjectures and open questions.

2 Background and Fundamental Tools

Distance preservation in subgraphs can be leveraged to guarantee the existence of rainbow 3-APs. Thus, this section starts with some basic distance and isometry results.

Proposition 2.1. If $v_{i, j}, v_{h, k} \in V(G \square H)$, then

$$
\mathrm{d}_{G \square H}\left(v_{i, j}, v_{h, k}\right)=\mathrm{d}_{G}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H}\left(w_{j}, w_{k}\right) .
$$

Proof. Note that $\mathrm{d}_{G \square H}\left(v_{i, j}, v_{h, k}\right) \leq \mathrm{d}_{G}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H}\left(w_{j}, w_{k}\right)$ because a path of length $\mathrm{d}_{G}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H}\left(w_{j}, w_{k}\right)$ can be constructed using a $u_{i}-u_{h}$ geodesic in G and combining it with a $w_{j}-w_{k}$ geodesic in H.

To show the other inequality, let P be a $v_{i, j}-v_{h, k}$ geodesic, say

$$
P=\left\{v_{i, j}=x_{1}, x_{2}, \ldots, x_{y}=v_{h, k}\right\} .
$$

Note that for every edge $v_{j_{1}, j_{2}} v_{\beta_{1}, \beta_{2}} \in E(P)$, either $j_{1}=\beta_{1}$ and $w_{j_{2}} w_{\beta_{2}} \in E(H)$, or $j_{2}=\beta_{2}$ and $u_{j_{1}} u_{\beta_{1}} \in E(G)$. Then, $x_{\ell} x_{\ell+1}$ must correspond either to an edge from a $u_{i}-u_{h}$ walk or from a $w_{j}-w_{k}$ walk and P must correspond to a walk in G and also a walk in H. In other words, the length of P is the sum of the length of the corresponding walks in G and H. Thus, the length of P is at least the sum of the lengths of a $u_{i}-u_{h}$ geodesic in G and a $w_{j}-w_{k}$ geodesic in H. So,

$$
\mathrm{d}_{G}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H}\left(w_{j}, w_{k}\right) \leq \mathrm{d}_{G \square H}\left(v_{i, j}, v_{h, k}\right) .
$$

Corollary 2.2. If G^{\prime} is an isometric subgraph of G and H^{\prime} is an isometric subgraph of H, then $G^{\prime} \square H^{\prime}$ is an isometric subgraph of $G \square H$.

Proof. Let $V(G)=\left\{u_{1}, \ldots, u_{n_{1}}\right\}$ and $V(H)=\left\{w_{1}, \ldots, w_{n_{2}}\right\}$. Then let $v_{i, j}, v_{h, k} \in$ $V\left(G^{\prime} \square H^{\prime}\right)$. Observe,

$$
\begin{aligned}
\mathrm{d}_{G^{\prime} \square H^{\prime}}\left(v_{i, j}, v_{h, k}\right) & =\mathrm{d}_{G^{\prime}}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H^{\prime}}\left(w_{j}, w_{k}\right) \\
& =\mathrm{d}_{G}\left(u_{i}, u_{h}\right)+\mathrm{d}_{H}\left(w_{j}, w_{k}\right) \\
& =\mathrm{d}_{G \square H}\left(v_{i, j}, v_{h, k}\right) .
\end{aligned}
$$

Lemma 2.3 is powerful since it guarantees isometric subgraphs. Isometric subgraphs are important when investigating anti-van der Waerden numbers because distance preservation implies k-AP preservation.

Lemma 2.3. 14] If G is a connected graph on at least three vertices with an exact r-coloring c where $r \geq 3$, then there exists a subgraph G^{\prime} in G with at least three colors where G^{\prime} is either an isometric path or $G^{\prime}=C_{3}$.

Theorem 2.4 is used when isometric $P_{m} \square P_{n}$ subgraphs are found within $G \square H$.
Theorem 2.4. 14 For $m, n \geq 2$,

$$
\operatorname{aw}\left(P_{m} \square P_{n}, 3\right)= \begin{cases}3 & \text { if } m=2 \text { and } n \text { is even, or } m=3 \text { and } n \text { is odd, } \\ 4 & \text { otherwise } .\end{cases}
$$

Lemma 2.5 helps restrict the number of colors each copy of G or H can have within $G \square H$.

Lemma 2.5. 14] Assume G and H are connected with $|V(H)| \geq 3$. Suppose c is an exact, rainbow-free r-coloring of $G \square H$, such that $r \geq 3$ and $\left|c\left(V\left(G_{i}\right)\right)\right| \leq 2$ for $1 \leq i \leq n$. If $w_{i} w_{j} \in E(H)$, then $\left|c\left(V\left(G_{i}\right) \cup V\left(G_{j}\right)\right)\right| \leq 2$.

To prove Lemmas 3.1 and 3.4 requires the use of Lemma 2.6 .
Lemma 2.6. If G and H are connected, $|G|,|H| \geq 2$ and c is an exact r-coloring of $G \square H, 3 \leq r$, that avoids rainbow 3-APs, then $\left|c\left(V\left(G_{i}\right)\right)\right| \leq 2$ for $1 \leq i \leq|H|$.

Proof. If $|G|=2$ the result is immediate, so let $3 \leq|G|$. For the sake of contradiction, assume red, blue, green $\in\left|c\left(V\left(G_{i}\right)\right)\right|$ for some $1 \leq i \leq|H|$. By Lemma 2.3, there must exist an isometric path or a C_{3} in G_{i} containing red, blue, and green. If there is such a C_{3}, then there is a rainbow 3 - AP which is a contradiction. So, assume P_{ℓ} is a shortest isometric path in G_{i} containing red, blue, and green, for some positive integer $3 \leq \ell$.

Case 1. ℓ is odd.
Without loss of generality, suppose the two leaves of P_{ℓ} are colored red and blue. Since P_{ℓ} is shortest the rest of the vertices are colored green. Since ℓ is odd there exists a green vertex equidistant from the red and blue vertices which creates a rainbow 3-AP, a contradiction.

Case 2. ℓ is even.
Let $u_{i} \in V(H)$ be the vertex that corresponds to G_{i} and note that u_{i} has a neighbor since H is connected. Let P_{2} be a path on two vertices in H containing u_{i} and ρ be the isometric subgraph in G that corresponds to P_{ℓ}. Thus, the subgraph $P_{2} \square \rho$ of $G \square H$ is isometric and, by Theorem 2.4, contains a rainbow 3 -AP, a contradiction.

All cases give a contradiction, thus $\left|c\left(V\left(G_{i}\right)\right)\right| \leq 2$.
Corollary 2.7 is a strengthening of Lemma 2.5 and follows from Lemmas 2.5 and 2.6. It is used to help analyze aw $\left(P_{m} \square C_{2 k+1}\right)$.

Corollary 2.7. If G and H are connected graphs, $|G| \geq 2,|H| \geq 3$, c is an exact, rainbow-free r-coloring of $G \square H$ with $r \geq 3$, and $v_{i} v_{j} \in E(H)$, then

$$
\left|c\left(V\left(G_{i}\right) \cup V\left(G_{j}\right)\right)\right| \leq 2
$$

Lemma 2.8. [3] Let G be a connected graph on m vertices and H be a connected graph on n vertices. Let c be an exact r-coloring of $G \square H$ with no rainbow 3-APs. If $G_{1}, G_{2}, \ldots, G_{n}$ are the labeled copies of G in $G \square H$, then $\left|c\left(V\left(G_{j}\right)\right) \backslash c\left(V\left(G_{i}\right)\right)\right| \leq 1$ for all $1 \leq i, j \leq n$.
Proposition 2.9. If G and H are connected graphs, $|G| \geq 2,|H| \geq 3$, c is an exact, rainbow-free r-coloring of $G \square H$ with $r \geq 3$, then there is a color in $c(G \square H)$ that appears in every copy of G.

Proof. Suppose $c(G \square H)=\left\{c_{1}, \ldots, c_{r}\right\}$. First, for the sake of contradiction, assume $\left|c\left(V\left(G_{i}\right)\right)\right|=1$ for every $1 \leq i \leq|H|$. Then define a coloring $c^{\prime}: V(H) \rightarrow c(G \square H)$ such that $c^{\prime}\left(w_{i}\right) \in c\left(V\left(G_{i}\right)\right)$. Then Lemma 2.3 implies that there is either an isometric path or C_{3} in H with 3 colors. If there is an isometric C_{3}, say $\left(w_{1}, w_{2}, w_{3}\right)$, then $\left\{v_{1,1}, v_{1,2}, v_{1,3}\right\}$ is a rainbow 3 -AP in $G \square H$ with respect to c, a contradiction. So, there must be an isometric path in H with 3 colors. Suppose $P=\left(w_{1}, \ldots, w_{n}\right)$ is a shortest such path. Without loss of generality, $c^{\prime}\left(w_{1}\right)=c_{2}, c^{\prime}\left(w_{n}\right)=c_{3}$ and $c^{\prime}\left(w_{i}\right)=c_{1}$ for all $1<i<n$. Then there exist $u_{1}, u_{2} \in V(G)$ such that $u_{1} u_{2} \in E(G)$. Thus, $\left\{v_{1,1}, v_{1, n}, v_{2,2}\right\}$ is a rainbow 3-AP in $G \square H$ with respect to c, a contradiction.

Thus, there exists some G_{i} such that $\left|c\left(V\left(G_{i}\right)\right)\right| \geq 2$, without loss of generality, say $c_{1}, c_{2} \in c\left(V\left(G_{i}\right)\right)$. Then Lemma 2.6 implies $c\left(V\left(G_{i}\right)\right)=\left\{c_{1}, c_{2}\right\}$. Note that $c_{3} \in$ $c\left(V\left(G_{j}\right)\right)$ for some $j \neq i$. Lemma 2.8 implies that $c_{1} \in c\left(V\left(G_{j}\right)\right)$ or $c_{2} \in c\left(V\left(G_{j}\right)\right)$. Without loss of generality, suppose $c_{1} \in c\left(V\left(G_{j}\right)\right)$ implying $c\left(V\left(G_{j}\right)\right)=\left\{c_{1}, c_{3}\right\}$ by Lemma 2.6. It will be shown that c_{1} appears in every copy of G.

Now, for $k \notin\{i, j\}$, Lemma 2.8 implies that $\left|c\left(V\left(G_{i}\right)\right) \backslash c\left(V\left(G_{k}\right)\right)\right| \leq 1$ and $\left|c\left(V\left(G_{j}\right)\right) \backslash c\left(V\left(G_{k}\right)\right)\right| \leq 1$. Thus, for all $k \notin\{i, j\}$, either $c_{1} \in c\left(V\left(G_{k}\right)\right)$ or $c_{2}, c_{3} \in$ $c\left(V\left(G_{k}\right)\right)$ implying $c\left(V\left(G_{k}\right)\right)=\left\{c_{2}, c_{3}\right\}$ by Lemma 2.6. Now, define $c^{\prime}: V(H) \rightarrow$ \{red, blue $\}$ by

$$
c^{\prime}\left(w_{k}\right)= \begin{cases}\text { red } & \text { if } c_{1} \in c\left(V\left(G_{k}\right)\right) \\ \text { blue } & \text { if } c\left(V\left(G_{k}\right)\right)=\left\{c_{2}, c_{3}\right\}\end{cases}
$$

For the sake of contradiction, assume blue $\in c^{\prime}(V(H))$. Then there must exist red and blue neighbors in H, call them $w_{\ell_{1}}, w_{\ell_{2}}$. Without loss of generality, say $c^{\prime}\left(w_{\ell_{1}}\right)=$ red and $c^{\prime}\left(w_{\ell_{2}}\right)=$ blue so that $c_{1} \in c\left(V\left(G_{\ell_{1}}\right)\right)$ and $c\left(V\left(G_{\ell_{2}}\right)\right)=\left\{c_{2}, c_{3}\right\}$. Then $c_{1}, c_{2}, c_{3} \in c\left(V\left(G_{\ell_{1}}\right)\right) \cup c\left(V\left(G_{\ell_{2}}\right)\right)$ and $3 \leq\left|c\left(V\left(G_{\ell_{1}}\right)\right) \cup c\left(V\left(G_{\ell_{2}}\right)\right)\right|$, contradicting Corollary 2.7. Thus, $c^{\prime}(V(H))=\{r e d\}$, the desired result.

3 Graph Products of Paths and Cycles

As a reminder, the conventions for $G \square H$ will be used to label the vertices of $P_{m} \square C_{n}$. In particular, letting $G=P_{m}$ and $H=C_{n}$ gives the following:

- $V\left(P_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ with edges $u_{i} u_{i+1}$ for $1 \leq i \leq m-1$,
- $V\left(C_{n}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ with edges $w_{i} w_{i+1}$ for $1 \leq i \leq n-1$ and $w_{n} w_{1}$,
- G_{i} is the i th copy of P_{m} in $P_{m} \square C_{n}$ and has vertex set $\left\{v_{1, i}, v_{2, i}, \ldots, v_{m, i}\right\}$, and
- H_{i} is the i th copy of C_{n} in $P_{m} \square C_{n}$ and has vertex set $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\}$.

A fact about $P_{m} \square C_{n}$ is that

$$
\mathrm{d}_{P_{m} \square C_{n}}\left(v_{i, j}, v_{k, \ell}\right)=|i-k|+\min \{(j-\ell) \bmod n,(\ell-j) \bmod n\} .
$$

Note that the standard representative of the equivalence class of \mathbb{Z}_{n} is chosen, i.e. $(j-\ell) \bmod n,(\ell-j) \bmod n \in\{0,1, \ldots, n-1\}$.

Lemma 3.1. For any positive integer k, $\operatorname{aw}\left(P_{2} \square C_{2 k+1}, 3\right)=3$.
Proof. For the sake of contradiction, let c be an exact, rainbow-free 3 -coloring of $P_{2} \square C_{2 k+1}$. Swapping the roles of G and H in Lemma 2.6 gives

$$
\left|c\left(V\left(H_{1}\right)\right)\right|,\left|c\left(V\left(H_{2}\right)\right)\right| \leq 2
$$

Without loss of generality, suppose $c\left(V\left(H_{1}\right)\right)=\{$ red, blue $\}$, green $\in c\left(V\left(H_{2}\right)\right)$ with $c\left(v_{2,1}\right)=$ green. Note that $c\left(v_{1,1}\right) \in\{$ red, blue $\}$ and define P_{ℓ} to be a shortest path in H_{1} containing $v_{1,1}$ that contains colors red and blue. Without loss of generality, let $P_{\ell}=\left(v_{1,1}, v_{1,2}, v_{1,3}, \ldots, v_{1, \ell}\right)$ and let ρ be the isometric subgraph of $C_{2 k+1}$ that corresponds to P_{ℓ}. Note that $P_{2} \square \rho$ is an isometric subgraph in $P_{2} \square C_{2 k+1}$ that contains three colors and $\ell \leq k+1$.

If ℓ is even, then $P_{2} \square \rho$ has a rainbow 3-AP by Theorem 2.4 so $P_{2} \square C_{2 k+1}$ has a rainbow $3-\mathrm{AP}$, a contradiction.

If ℓ is odd and $\ell \leq k$, extending P_{ℓ} by one additional vertex (and likewise extending ρ to be ρ^{\prime}) maintains isometry. That is, there is an isometric path $P_{\ell+1}$ in H_{1} that contains $v_{1,1}$ and has colors red and blue. Thus, $P_{2} \square \rho^{\prime}$ is an isometric subgraph of $P_{2} \square C_{2 k+1}$ that contains three colors and it contains a rainbow 3-AP by Theorem 2.4, another contradiction.

Finally, consider the case when ℓ is odd and $\ell=k+1$. Note that $c\left(v_{1, i}\right)=r e d$ for $k+3 \leq i \leq 2 k+1$, else the minimality of P_{ℓ} would be contradicted. Also, $j=\frac{3 k+4}{2}$ is an integer and $k+3 \leq j \leq 2 k+1$ when $k \geq 2$. Thus, $\left\{v_{2,1}, v_{1, j}, v_{1, \ell}\right\}$ is a rainbow 3 -AP, a contradiction.

Therefore, no such c exists and $\operatorname{aw}\left(P_{2} \square C_{2 k+1}, 3\right)=3$.
Lemma 3.2. For integers m and k with $2 \leq m$ and $1 \leq k$,

$$
\operatorname{aw}\left(P_{m} \square C_{2 k+1}, 3\right)=3
$$

Proof. For a base case, note that Lemma 3.1 implies $\operatorname{aw}\left(P_{2} \square C_{2 k+1}, 3\right)=3$ for all $1 \leq k$. As the inductive hypothesis, suppose that $\operatorname{aw}\left(P_{\ell} \square C_{2 k+1}, 3\right)=3$ for some $2 \leq \ell$. Let c be a rainbow-free, exact 3 -coloring of $P_{\ell+1} \square C_{2 k+1}$ and let H_{i} denote the i th copy of $C_{2 k+1}$. By hypothesis and the fact that c is rainbow-free,

$$
\left|c\left(\bigcup_{i=1}^{\ell} V\left(H_{i}\right)\right)\right| \leq 2 \text { and }\left|c\left(\bigcup_{i=2}^{\ell+1} V\left(H_{i}\right)\right)\right| \leq 2
$$

Thus, the inclusion-exclusion principle gives $\left|c\left(\bigcup_{i=2}^{\ell} V\left(H_{i}\right)\right)\right|=1$. Without loss of generality, assume

$$
c\left(\bigcup_{i=2}^{\ell} V\left(H_{i}\right)\right)=\{\text { red }\}, \quad \text { blue } \in c\left(V\left(H_{1}\right)\right), \quad \text { and } \quad \text { green } \in c\left(V\left(H_{\ell+1}\right)\right)
$$

In particular, assume $c\left(v_{1,1}\right)=$ blue and $c\left(v_{\ell+1, j}\right)=$ green for some $j \leq k+1$.
Suppose ℓ is even. Then $\left\{v_{1,1}, v_{\frac{\ell+2}{2}, i}, v_{\ell+1, j}\right\}$ is a rainbow 3 -AP for $i=\frac{j+1}{2}$ if j is odd, and $i=\frac{2 k+j+2}{2}$ if j is even. On the other hand, suppose ℓ is odd. Then, $\left\{v_{1,1}, v_{\frac{\ell+1}{2}, i}, v_{\ell+1, j}\right\}$ is a rainbow 3 -AP for $i=\frac{j+2}{2}$ if j is even, and $i=\frac{2 k+j+1}{2}$ if j is odd.

In any case, there is a rainbow 3 -AP, a contradiction, so $\operatorname{aw}\left(P_{\ell+1} \square C_{2 k+1}, 3\right)=3$. Thus, by induction, $\operatorname{aw}\left(P_{m} \square C_{2 k+1}, 3\right)=3$ for any $2 \leq m$.

Determination of $\operatorname{aw}\left(P_{2} \square C_{2 k}\right)$ requires two strategies since there are k values for which $\operatorname{aw}\left(P_{2} \square C_{2 k}\right)=3$ and k values for which $\operatorname{aw}\left(P_{2} \square C_{2 k}\right)=4$. Essentially, $\operatorname{aw}\left(P_{2} \square C_{n}\right)=4$ when $n=4 \ell$ and is determined by providing a coloring where one pair of vertices that are diametrically opposed are colored distinctly and everything else is a third color. This avoids rainbow 3-APs since the diameter of $P_{2} \square C_{4 \ell}$ is odd and because each vertex $v \in V\left(C_{4 \ell}\right)$ has exactly one vertex whose distance from v realizes the diameter of $C_{4 \ell}$. Note that this is different than what happens in $P_{2} \square C_{2 k+1}$ since each vertex $v \in V\left(C_{2 k+1}\right)$ has two vertices whose distance from v realizes the diameter of $C_{2 k+1}$. When the diameter of $P_{2} \square C_{2 k}$ is even, this coloring, and every other coloring, ends up creating an isometric $P_{2} \square P_{2 j}$ with 3-colors. Then, it is only a matter of applying Theorem 2.4 to find the rainbow 3-AP.

Lemma 3.3. For integers m and k with $2 \leq m, k$, aw $\left(P_{m} \square C_{2 k}, 3\right)=4$ if $\operatorname{diam}\left(P_{m} \square C_{2 k}\right)$ is odd.

Proof. Define $c: V\left(P_{m} \square C_{2 k}\right) \rightarrow\{$ red, blue, green $\}$ by

$$
c\left(v_{i, j}\right)= \begin{cases}\text { blue } & \text { if } i=j=1 \\ \text { green } & \text { if } i=m \text { and } j=k+1 \\ \text { red } & \text { otherwise }\end{cases}
$$

Note that any rainbow 3 -AP must contain $v_{1,1}$ and $v_{m, k+1}$ since they are the only blue and green vertices, respectively. This will be shown by proving $v_{1,1}$ and $v_{m, k+1}$ are not part of any nondegenerate 3 -AP. For the sake of contradiction, assume there exists $v_{i, j} \in V\left(P_{m} \square C_{n}\right)$ such that $\left\{v_{1,1}, v_{i, j}, v_{m, k+1}\right\}$ is a nondegenerate 3-AP.

One way this can happen is if $\mathrm{d}\left(v_{1,1}, v_{i, j}\right)=\mathrm{d}\left(v_{i, j}, v_{m, k+1}\right)$. Without loss of generality, suppose $1 \leq j \leq k+1$. Then

$$
\mathrm{d}\left(v_{1,1}, v_{i, j}\right)=(i-1)+(j-1)=i+j-2
$$

and

$$
\mathrm{d}\left(v_{i, j}, v_{m, k+1}\right)=(m-i)+(k+1-j)=m+k+1-i-j .
$$

By assumption, $i+j-2=m+k+1-i-j$ which implies that $m+k+1=2 i+2 j-2$. However, $\operatorname{diam}\left(P_{m} \square C_{2 k}\right)=m+k-1$ is odd, a contradiction.

The only other possible way that $\left\{v_{1,1}, v_{i, j}, v_{m, k+1}\right\}$ is a 3 -AP is if $\mathrm{d}\left(v_{i, j}, v_{1,1}\right)=$ $\operatorname{diam}\left(P_{m} \square C_{2 k}\right)$ or $\mathrm{d}\left(v_{i, j}, v_{m, k+1}\right)=\operatorname{diam}\left(P_{m} \square C_{2 k}\right)$. However, this implies $v_{i, j} \in$ $\left\{v_{1,1}, v_{m, k+1}\right\}$ which gives a degenerate 3-AP.

Thus, the exact 3 -coloring c of $P_{m} \square C_{2 k}$ is rainbow free so $4 \leq \operatorname{aw}\left(P_{m} \square C_{2 k}, 3\right)$. Theorem 1.3 gives an upper bound of 4 which implies aw $\left(P_{m} \square C_{2 k}, 3\right)=4$.

Lemma 3.4. For any integer k with $2 \leq k$,

$$
\operatorname{aw}\left(P_{2} \square C_{2 k}, 3\right)= \begin{cases}3 & \text { if } k \text { is odd }, \\ 4 & \text { if } k \text { is even } .\end{cases}
$$

Proof. If k is even, then $\operatorname{diam}\left(P_{2} \square C_{2 k}\right)=1+k$ is odd, and x so by i Lemma 3.3 $\operatorname{aw}\left(P_{2} \square C_{2 k}\right)=4$.

Now assume k is odd and let c be an exact 3 -coloring of $P_{2} \square C_{2 k}$. For the sake of contradiction, assume c is rainbow-free. By Lemma 2.6, $\left|c\left(V\left(H_{1}\right)\right)\right|,\left|c\left(V\left(H_{2}\right)\right)\right| \leq 2$. Without loss of generality, suppose $c\left(V\left(H_{1}\right)\right)=\{$ red,blue $\}$, and green $\in c\left(V\left(H_{2}\right)\right)$ with $c\left(v_{2,1}\right)=$ green. Now, define P_{ℓ} as a shortest path in H_{1} containing $v_{1,1}$ that contains colors red and blue, and let ρ be the isometric subgraph of $C_{2 k}$ that corresponds to P_{ℓ}. Note that $P_{2} \square \rho$ is an isometric subgraph in $P_{2} \square C_{2 k}$ that contains three colors. If ℓ is even, then Theorem 2.4 gives a rainbow 3-AP, a contradiction.

Suppose ℓ is odd. Since $\operatorname{diam}\left(H_{1}\right)=\operatorname{diam}\left(C_{2 k}\right)=k$ is odd, the length of P_{ℓ} is even and P_{ℓ} is isometric, it follows that P_{ℓ} can be extended by one vertex in either direction while maintaining isometry. In other words, there is an isometric path $P_{\ell+1}$ in H_{1} that contains $v_{1, j}$ and the colors red and blue. Thus, $P_{2} \square P_{\ell+1}$ is an isometric subgraph of $P_{2} \square C_{2 k}$ that contains three colors which means it has a rainbow 3-AP by Theorem 2.4, a contradiction.

Therefore, when k is odd, every exact 3-coloring of $P_{2} \square C_{2 k}$ has a rainbow 3-AP and $\operatorname{aw}\left(P_{2} \square C_{2 k}, 3\right)=3$.

Before getting to more general results an analysis of aw $\left(P_{3} \square C_{n}\right)$ needs to happen. Similar to the aw $\left(P_{2} \square C_{n}\right)$ situation, there are very subtle and important differences when n is odd versus when n is even.

Lemma 3.5. For any integer k with $2 \leq k$,

$$
\operatorname{aw}\left(P_{3} \square C_{2 k}, 3\right)= \begin{cases}3 & \text { if } k \text { is even }, \\ 4 & \text { if } k \text { is odd. } .\end{cases}
$$

Proof. If k is odd, then $\operatorname{diam}\left(P_{3} \square C_{2 k}\right)=2+k$ is odd, and so by Lemma 3.3 $\operatorname{aw}\left(P_{2} \square C_{2 k}\right)=4$.

Suppose k is even and c is an exact, rainbow-free 3-coloring of $P_{3} \square C_{2 k}$. Then an argument similar to the argument in the proof of Lemma 3.2 can be used to
establish, without loss of generality, that $c\left(V\left(H_{1}\right)\right)=\{$ red, blue $\}, c\left(V\left(H_{2}\right)\right)=\{$ red $\}$, $c\left(V\left(H_{3}\right)\right)=\{$ red, green $\}, c\left(v_{1,1}\right)=$ blue and $c\left(v_{3, j}\right)=$ green for some $1 \leq j \leq k+1$.

If j is odd, then $\left\{v_{1,1}, v_{2, \frac{j+1}{2}}, v_{3, j}\right\}$ is a rainbow 3-AP, contradicting that $P_{3} \square C_{2 k}$ is rainbow free. So, suppose j is even. Then $j+1 \leq k+1$ implying that the path $P_{j+1}=\left(w_{1}, \ldots, w_{j+1}\right)$ is an isometric subgraph of $C_{2 k}$. So, $P_{3} \square P_{j+1}$ is an isometric subgraph of $P_{3} \square C_{2 k}$. Since $c\left(P_{3} \square P_{j+1}\right)=\{$ red, blue, green $\}$, Theorem 2.4 implies that $P_{3} \square C_{2 k}$ contains a rainbow 3-AP.

Lemma 3.6. If $m \geq 2$ is even and $k \geq 1$, then

$$
\operatorname{aw}\left(P_{m} \square C_{4 k+2}, 3\right)=3
$$

Proof. Lemma 3.4 implies aw $\left(P_{2} \square C_{4 k+2}, 3\right)=3$. Suppose aw $\left(P_{\ell} \square C_{4 k+2}, 3\right)=3$ for some even $\ell \geq 2$. Then, let c be an exact 3 -coloring of $P_{\ell+2} \square C_{4 k+2}$ that avoids rainbow 3-APs, and let H_{i} denote the i th copy of $C_{4 k+2}$. By hypothesis,

$$
\left|c\left(\bigcup_{i=1}^{\ell} V\left(H_{i}\right)\right)\right| \leq 2 \quad \text { and } \quad\left|c\left(\bigcup_{i=3}^{\ell+2} V\left(H_{i}\right)\right)\right| \leq 2 .
$$

By the inclusion-exclusion principle, $\left|c\left(\bigcup_{i=3}^{\ell} V\left(H_{i}\right)\right)\right|=1$. Without loss of generality, suppose $c\left(\bigcup_{i=3}^{\ell} V\left(H_{i}\right)\right)=\{r e d\}$, so that Proposition 2.9 implies red $\in c\left(H_{i}\right)$ for $1 \leq i \leq \ell+2$. Further, without loss of generality, suppose blue $\in c\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right)$ and green $\in c\left(V\left(H_{\ell+1}\right) \cup V\left(H_{\ell+2}\right)\right)$. Say, $c\left(v_{i, 1}\right)=$ blue and $c\left(v_{h, j}\right)=$ green for $i \in\{1,2\}, h \in\{\ell+1, \ell+2\}$ and $1 \leq j \leq 2 k+1$ such that i is maximal and h is minimal. If $i=2$ and $h=3$, then $\left|c\left(H_{2}\right) \cup c\left(H_{3}\right)\right| \geq 3$ which contradicts Corollary 2.7. So assume $h-i \geq 2$. Thus, $c\left(V\left(H_{i+1}\right)\right)=\{r e d\}$ and $c\left(V\left(H_{h-1}\right)\right)=\{r e d\}$.

Case 1. Suppose $\mathrm{d}\left(v_{i, 1}, v_{h, j}\right)$ is even.
Then either $\mathrm{d}_{P_{\ell+2}}\left(u_{i}, u_{h}\right)=h-i$ and $\mathrm{d}_{C_{4 k+2}}\left(w_{1}, w_{j}\right)=j-1$ are both odd or both even. If they are both even, then $\left\{v_{i, 1}, v_{\frac{i+h}{2}, \frac{j+1}{2}}, v_{h, j}\right\}$ is a rainbow 3-AP. If they are both odd, then $\left\{v_{i, 1}, v_{\frac{i+h+1}{2}, \frac{j}{2}}, v_{h, j}\right\}$ is a rainbow 3-AP.
Case 2. Suppose $\mathrm{d}\left(v_{i, 1}, v_{h, j}\right)$ is odd.
If $j<2 k+2$, then $\left\{v_{h, j}, v_{i, 1}, v_{h-1, j+1}\right\}$ is a rainbow 3-AP. So, suppose $j=2 k+2$. Then $\mathrm{d}_{C_{4 k+2}}\left(w_{1}, w_{j}\right)=2 k+1$ is odd implying that $\mathrm{d}_{P_{\ell+2}}\left(u_{i}, u_{h}\right)$ is even. Thus, either $i=1$ and $h=\ell+1$, or $i=2$ and $h=\ell+2$. First, suppose $i=1$ and $h=\ell+1$. Then the 3-AP $\left\{v_{\ell+1, j}, v_{1,1}, v_{\ell+2, j+1}\right\}$ implies $c\left(v_{\ell+2, j+1}\right)=$ green . Since i is maximal, $c\left(V\left(H_{2}\right)\right)=\{r e d\}$. Thus, $\left\{v_{1,1}, v_{\ell+2, j+1}, v_{2,2}\right\}$ is a rainbow 3 -AP since $j+1=2 k+3$. For $i=2$ and $j=\ell+2$, the 3 -APs $\left\{v_{2,1}, v_{\ell+2, j}, v_{1,2}\right\}$ and $\left\{v_{\ell+2, j}, v_{1,2}, v_{\ell+1, j+1}\right\}$ yield a rainbow 3-AP.

Thus, aw $\left(P_{\ell+2} \square C_{4 k+2}, 3\right)=3$ and by induction, aw $\left(P_{m} \square C_{4 k+2}, 3\right)=3$ for any even $m \geq 2$.

Replacing $4 k+2$ with $4 k$ and $2 k+2$ with $2 k+1$ gives the proof of Lemma 3.7, thus the proof has been omitted.

Lemma 3.7. If $m \geq 3$ is odd and $k \geq 1$, then

$$
\operatorname{aw}\left(P_{m} \square C_{4 k}, 3\right)=3
$$

Lemmas 3.2, 3.3, 3.6, and 3.7 yield the following theorem.
Theorem 3.8. If $m \geq 2, n \geq 3$ then

$$
\operatorname{aw}\left(P_{m} \square C_{n}, 3\right)=\left\{\begin{array}{l}
4 \quad \text { if } n \text { is even and } \operatorname{diam}\left(P_{m} \square C_{n}\right) \text { is odd, } \\
3 \quad \text { otherwise } .
\end{array}\right.
$$

4 Graph Products of Cycles with Other Graphs

This section starts with a general result, Theorem 4.1, and then uses the general result to establish aw $\left(C_{m} \square C_{n}, 3\right)$.

Theorem 4.1. For any integer k with $1 \leq k$, $\operatorname{aw}\left(G \square C_{2 k+1}, 3\right)=3$ for any connected graph G with $|G| \geq 2$.

Proof. Let $V(G)=\left\{u_{1}, \ldots, u_{n}\right\}$ and H_{i} denote the i th labeled copy of $C_{2 k+1}$. Lemma 3.1 implies that $\operatorname{aw}\left(P_{2} \square C_{2 k+1}, 3\right)=3$, so suppose $|G| \geq 3$. Let $c: V\left(G \square C_{2 k+1}\right) \rightarrow$ \{red, blue, green\} be an exact 3-coloring, and, for the sake of contradiction, assume c is rainbow-free. Since $|G| \geq 3$, Proposition 2.9 implies that, without loss of generality, red is in every copy of $C_{2 k+1}$. So, define $c^{\prime}: V(G) \rightarrow\{$ red, blue, green $\}$ by

$$
c^{\prime}\left(u_{i}\right)= \begin{cases}\text { red } & \text { if } c\left(V\left(H_{i}\right)\right)=\{\text { red }\} \\ \mathcal{C} & \text { if } \mathcal{C} \in c\left(V\left(H_{i}\right)\right) \backslash\{\text { red }\}\end{cases}
$$

Since Lemma 2.6 implies that $\left|c\left(V\left(H_{i}\right)\right)\right| \leq 2$ for all $1 \leq i \leq n$, it follows that c^{\prime} is well-defined. By Lemma 2.3, there either exists a C_{3} in G containing red, blue, and green or an isometric path in G containing red, blue, and green.

First, suppose $C_{3} \cong G\left[\left\{u_{i_{1}}, u_{i_{2}}, u_{i_{3}}\right\}\right]$ contains red, blue, and green. Then, without loss of generality, there exists neighboring copies $H_{i_{1}}$ and $H_{i_{2}}$ of H, in $G \square C_{2 k+1}$, such that $c\left(V\left(H_{i_{1}}\right)\right)=\{$ red,blue $\}$ and $c\left(V\left(H_{i_{2}}\right)\right)=\{$ red, green $\}$, contradicting Corollary 2.7 .

Finally, suppose there exists an isometric path P in G such that $c^{\prime}(V(P))=$ $\{r e d$, blue, green $\}$. Now, by Lemma 3.2, there exists a rainbow 3-AP in the isometric subgraph $P \square C_{2 k+1}$, a contradiction.

Just as Lemma 3.2 was generalized into Theorem 4.1 which showed that

$$
\operatorname{aw}\left(G \square C_{2 k+1}, 3\right)=3
$$

for all connected G with at least 2 vertices, significant time was spent on the conjecture that a similar generalization would help show $\operatorname{aw}\left(G \square C_{4 k+2}, 3\right)=3$ when $\operatorname{diam}(G)$ is odd and $\operatorname{aw}\left(G \square C_{4 k}, 3\right)=3$ when $\operatorname{diam}(G)$ is even. However, these conjectures do not hold because it cannot be guaranteed that an isometric $P_{2 j} \square C_{4 k+2}$ subgraph of $G \square C_{4 k+2}$ or $P_{2 j+1} \square C_{4 k}$ subgraph of $G \square C_{4 k}$ exists that contains three colors. The following example provides such a G.

Example 4.2. Consider the graph in Figure 2 which is $G \square C_{4}$, where G is a C_{10} with a leaf. That is $V(G)=\left\{w_{1}, \ldots, w_{11}\right\}$ with edges $w_{i} w_{i+1}$ for $1 \leq i \leq 9$ and the additional edges $w_{1} w_{10}$ and $w_{10} w_{11}$. Define $c: V\left(G \square C_{4}\right) \rightarrow\{$ red, blue, green $\}$ by $c\left(v_{2,1}\right)=$ blue, $c\left(v_{7,3}\right)=$ green, and $c(v)=$ red for all $v \in V\left(G \square C_{4}\right) \backslash\left\{v_{2,1}, v_{7,3}\right\}$. In order for $G \square C_{4}$ to contain a rainbow 3-AP, there must exist a red $v \in V\left(G \square C_{4}\right)$ such that

$$
\mathrm{d}\left(v_{2,1}, v\right)=\mathrm{d}\left(v, v_{7,3}\right), \quad \mathrm{d}\left(v, v_{2,1}\right)=\mathrm{d}\left(v_{2,1}, v_{7,3}\right), \quad \text { or } \quad \mathrm{d}\left(v, v_{7,3}\right)=\mathrm{d}\left(v_{7,3}, v_{2,1}\right) .
$$

By construction, every vertex v of $G \square C_{4}$ is such that $\mathrm{d}\left(v, v_{2,1}\right)$ and $\mathrm{d}\left(v, v_{7,3}\right)$ have different parity, thus $\mathrm{d}\left(v_{2,1}, v\right) \neq \mathrm{d}\left(v, v_{7,3}\right)$ for all $v \in V(G)$. To show that there are no vertices v of G distinct from $v_{2,1}, v_{7,3}$ such that $\mathrm{d}\left(v, v_{2,1}\right)=\mathrm{d}\left(v_{2,1}, v_{7,3}\right)$ or $\mathrm{d}\left(v, v_{7,3}\right)=\mathrm{d}\left(v_{7,3}, v_{2,1}\right)$, a discussion about eccentricity is needed. For a vertex v of a graph G, the eccentricity of v, denoted $\epsilon(v)$, is the distance between v and a vertex furthest from v in G. In other words,

$$
\epsilon(v)=\max _{u \in V(G)} \mathrm{d}(u, v) .
$$

In this example, $\epsilon\left(v_{2,1}\right)=\epsilon\left(v_{7,3}\right)=\mathrm{d}\left(v_{2,1}, v_{7,3}\right)=7$ and both eccentricities are uniquely realized. So, there are no non-degenerate 3-APs in $G \square C_{4}$ containing $v_{2,1}$ and $v_{7,3}$. Thus, $\operatorname{aw}\left(G \square C_{4}, 3\right)=4$.

Note that the graph in Figure 2 is the only example presented in this paper of a graph product with even diameter and anti-van der Waerden number (with respect to 3) equal to 4 . This is discussed more in Section 5 .

Theorem 4.1 gives the following result.
Corollary 4.3. If m or n is odd with $m, n \geq 3$, then $\operatorname{aw}\left(C_{m} \square C_{n}, 3\right)=3$.
Lemmas 3.6 and 3.7 are used to prove Lemma 4.4 .
Lemma 4.4. If m and n are even with $m \equiv n(\bmod 4)$, then $\operatorname{aw}\left(C_{m} \square C_{n}, 3\right)=3$.
Proof. Let c be an exact 3 -coloring of $C_{m} \square C_{n}$. Lemma 2.3 implies that $C_{m} \square C_{n}$ either contains an isometric path or a C_{3} with three colors. Since there are no C_{3} subgraphs in $C_{m} \square C_{n}$, it follows that $C_{m} \square C_{n}$ must contain an isometric path with three colors. Call a shortest such path P. Suppose P intersects k copies of C_{n}, and, without loss of generality, suppose these copies are H_{1}, \ldots, H_{k}.

Notice that there are vertices v and v^{\prime} of P in $V\left(H_{1}\right)$ and $V\left(H_{k}\right)$, respectively. If $k>\frac{m}{2}+1$, then any shortest path from v to v^{\prime} would be contained in the subgraph

Figure 2: Image for Example 4.2. Graph $G \square C_{4}$, counterexample of generalizing Lemma 3.7.
induced by the vertices of $H_{k}, H_{k+1}, \ldots, H_{n}, H_{1}$. So, no shortest path between v and v^{\prime} would be contained in P, implying that P is not isometric, a contradiction.

Thus, $k \leq \frac{m}{2}+1$, and P is a subgraph of $P_{\frac{m}{2}+1} \square C_{n}$ where $P_{\frac{m}{2}+1}$ is the subgraph of C_{m} induced by $\left\{u_{1}, \ldots, u_{\frac{m}{2}+1}\right\}$. Thus, P is an isometric subgraph of $C_{m} \square C_{n}$ because $P_{\frac{m}{2}+1}$ is isometric in C_{m}. Since there are three colors in P, there are three colors in $P_{\frac{m}{2}+1} \square C_{n}$. Furthermore, since $m \equiv n(\bmod 4), \frac{m}{2}$ and $\frac{n}{2}+1$ have different parity. So, Lemma 3.6 or Lemma 3.7 implies that $P_{\frac{m}{2}+1} \square C_{n}$ contains a rainbow 3-AP. Thus, $C_{m} \square C_{n}$ contains a rainbow 3-AP.

In the proof of Lemma 4.5, the fact that each vertex in an even cycle realizes the diameter with exactly one other vertex will be used.
Lemma 4.5. If m and n are even with $m \not \equiv n(\bmod 4)$, then $\operatorname{aw}\left(C_{m} \square C_{n}, 3\right)=4$.
Proof. Define $k=\frac{m}{2}+1$ and $\ell=\frac{n}{2}+1$ and the coloring $c: V\left(C_{m} \square C_{n}\right) \rightarrow$ \{red,blue, green $\}$ by

$$
c\left(v_{i, j}\right)= \begin{cases}\text { blue } & \text { if } i=j=1 \\ \text { green } & \text { if } i=k, j=\ell \\ \text { red } & \text { otherwise }\end{cases}
$$

Since $v_{1,1}$ and $v_{k, \ell}$ are the only blue and green vertices, any rainbow 3-AP must contain them. This result will be proved by showing $v_{1,1}$ and $v_{k, \ell}$ are not part of any nondegenerate 3-AP. For the sake of contradiction, assume there exists $v_{i, j} \in$ $V\left(C_{m} \square C_{n}\right)$ such that $\left\{v_{1,1}, v_{i, j}, v_{k, \ell}\right\}$ is a nondegenerate 3-AP.

One way this can happen is if $\mathrm{d}\left(v_{1,1}, v_{i, j}\right)=\mathrm{d}\left(v_{i, j}, v_{k, \ell}\right)$. Without loss of generality, up to a relabelling of the vertices, suppose $1 \leq i \leq k$ and $1 \leq j \leq \ell$. Then

$$
\mathrm{d}\left(v_{1,1}, v_{i, j}\right)=(i-1)+(j-1)=i+j-2,
$$

and

$$
\mathrm{d}\left(v_{i, j}, v_{k, \ell}\right)=(k-i)+(\ell-j)=k+\ell-i-j .
$$

By assumption, $i+j-2=k+\ell-i-j$, which implies that

$$
\begin{equation*}
2 i+2 j-2=k+\ell=\frac{m}{2}+\frac{n}{2}+2 . \tag{1}
\end{equation*}
$$

However, $m \not \equiv n(\bmod 4)$ implies $\frac{m}{2}+\frac{n}{2}$ is odd, which contradicts equation (1).
The only other possible way that $\left\{v_{1,1}, v_{i, j}, v_{k, \ell}\right\}$ is a 3 -AP is if $\mathrm{d}\left(v_{i, j}, v_{1,1}\right)=$ $\mathrm{d}\left(v_{1,1}, v_{k, \ell}\right)$ or $\mathrm{d}\left(v_{i, j}, v_{k, \ell}\right)=\mathrm{d}\left(v_{k, \ell}, v_{1,1}\right)$. However,

$$
\epsilon\left(v_{1,1}\right)=\epsilon\left(v_{k, \ell}\right)=\operatorname{diam}\left(C_{m} \square C_{n}\right)
$$

is uniquely realized. This implies $v_{i, j} \in\left\{v_{1,1}, v_{k, \ell}\right\}$ yielding a degenerate 3 -AP.
Thus, the exact 3 -coloring c of $C_{m} \square C_{n}$ is rainbow free so $4 \leq \operatorname{aw}\left(C_{m} \square C_{n}, 3\right)$. Theorem 1.3 gives an upper bound of 4 which implies aw $\left(C_{m} \square C_{n}, 3\right)=4$.

Conglomerating Corollary 4.3, Lemma 4.4 and Lemma 4.5 yields Theorem 4.6 ,
Theorem 4.6. If $m, n \geq 3$, then

$$
\operatorname{aw}\left(C_{m} \square C_{n}, 3\right)= \begin{cases}4 \quad \text { if } m \text { and } n \text { are even and } \operatorname{diam}\left(C_{m} \square C_{n}\right) \text { is odd, } \\ 3 \quad \text { otherwise. }\end{cases}
$$

5 Future Work

Recall that Example 4.2 was the only example presented in this paper of a graph product with even diameter and anti-van der Waerden number (with respect to 3) equal to 4 . One of the key factors in allowing this to happen was a pair of vertices u and v such that $\epsilon(u)=\epsilon(v)=\mathrm{d}(u, v)<\operatorname{diam}(u, v)$. Such vertices will be called almost peripheral vertices whose name comes from peripheral vertices which are vertices that realize the diameter.

Conjecture 5.1. If $G \square H$ has no almost peripheral vertices and $\operatorname{diam}(G \square H)$ is even, then $\operatorname{aw}(G \square H, 3)=3$.

In particular, the authors believe that trees do not contain any almost peripheral vertices. For this reason, it is believed that Conjecture 5.2 holds if Conjecture 5.1 holds.

Conjecture 5.2. If T is a tree, n is even, and $\operatorname{diam}\left(T \square C_{n}\right)$ is even, then $\operatorname{aw}\left(T \square C_{n}, 3\right)=3$.

This result would provide a more specific case of when the even cycle analog of Theorem 4.1 holds.

Another way to extend Theorem 4.1 would be considering $\operatorname{aw}\left(G \square C_{n}, k\right)$ for some $k>3$. For $k=3$, Theorem 4.1 showed that when n is $\operatorname{odd}, \operatorname{aw}\left(G \square C_{n}, k\right)=k$ for
any connected G of order at least 2. However, there may be other properties of n that guarantee $\operatorname{aw}\left(G \square C_{n}, k\right)=k$ for $k>3$. Some preliminary work analyzing $\operatorname{aw}\left(P_{m} \square C_{n}, 4\right)$ suggests that for any n, there exists an m such that aw $\left(P_{m} \square C_{n}, 4\right)$ ≥ 5.

Acknowledgements

Thanks to the referees for their thorough review of the paper. The paper was certainly improved by your comments. Thank you to the University of Wisconsin-La Crosse's (UWL's) Dean's Distinguished Fellowship program that supported both authors. Also, thanks to the UWL's Undergraduate Research and Creativity grant and the UWL Department of Mathematics and Statistics Bange/Wine Undergraduate Research Endowment that supported the first author. Finally, thanks to Ethan Manhart, Hunter Rehm and Laura Zinnel for providing feedback and offering ideas during this project.

References

[1] M. Axenovich and D. Fon-Der-Flaass, On rainbow arithmetic progressions, Electron. J. Combin. 11 (1) (2004), \#R1, 7pp. https://doi.org/10.37236/1754
[2] M. Axenovich and R. R. Martin, Sub-Ramsey numbers for arithmetic progressions, Graphs Combin. $22(1)$ (2006), 297-309. https://doi.org/10.1007/ s00373-006-0663-2
[3] Z. Berikkyzy, A. Schulte, E. Sprangel, S. Walker, N. Warnberg and M. Young, Antivan der Waerden numbers on Graphs, Graphs Combin. 38(124) (2022). https:// doi.org/10.1007/s00373-022-02516-9
[4] Z. Berikkyzy, A. Schulte and M. Young, Anti-van der Waerden numbers of 3-term arithmetic progressions, Electron. J. Combin. 24 (2) (2017), \#P2.39, 9 pp. https: //doi.org/10.37236/6101
[5] E. Bevilacqua, A. King, J. Kritschgau, M. Tait, S. Tebon and M. Young, Rainbow numbers for $x_{1}+x_{2}=k x_{3}$ in \mathbb{Z}_{n}, Integers 20 (2020), A50. http://math.colgate. edu/~integers/vol20.html
[6] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. L. Kramer, J. Lin, R. R. Martin, D. Stolee, N. Warnberg and M. Young, Rainbow Arithmetic Progressions, J. Comb. 7 (4) (2016), 595-626. https://dx.doi.org/10.4310/JOC.2016.v7.n4.a3
[7] P. Erdős, M. Simonovits and V. Sós, Anti-Ramsey theorems, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday) II (1973), 633643. https://catalog.lib.uchicago.edu/vufind/Record/56681
[8] K. Fallon, C. Giles, H. Rehm, S. Wagner and N. Warnberg, Rainbow numbers of $[n]$ for $\sum_{i=1}^{k-1} x_{i}=x_{k}$, Australas. J. Combin. $\mathbf{7 7}$ (1) (2020), 1-8. https://ajc.maths.uq. edu.au/pdf/77/ajc_v77_p001.pdf
[9] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A dynamic survey, Theory Appl. Graphs $\mathbf{0}$ (2014), no. 1, Art.1. https://digitalcommons. georgiasouthern.edu/cgi/viewcontent.cgi?article=1001\&context=tag
[10] M. Huicochea and A. Montejano, The Structure of Rainbow-Free Colorings For Linear Equations on Three Variables in \mathbb{Z}_{p}, Integers 15A (2015), A8. http://math.colgate. edu/~integers/vol15a.html
[11] V. Jungić, J. Licht (Fox), M. Mahdian, J. Nes̆etril and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results, Combin. Probab. Comput. 12 (5-6) (2003), 599-620. https://doi.org/10.1017/S096354830300587X
[12] B. Llano and A. Montejano, Rainbow-free Colorings of $x+y=c z$ in \mathbb{Z}_{p}, Discrete Math. 312 (2012), 2566-2573. https://doi.org/10.1016/j.disc.2011.09.005
[13] F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. 30 (1928), 264-286. https://doi.org/10.1112/plms/s2-30.1.264
[14] H. Rehm, A. Schulte and N. Warnberg, Anti-van der Waerden numbers on Graph Products, Australas. J. Combin. 73 (3) (2019), 486-500. https://ajc.maths.uq. edu.au/?page=get_volumes\&volume=73
[15] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math (1917), 205-232.
[16] B. van der Waerden, Beweis einer baudetschen vermutung, Nieuw Arch. Wisk. 19 (1927), 212-216.
[17] M. Young. Rainbow Arithmetic Progressions in Finite Abelian Groups, J. Comb. 9 (4) (2018), 619-629. https://dx.doi.org/10.4310/JOC.2018.v9.n4.a3
(Received 23 June 2022; revised 2 June 2023)

