$(k+1)$-line graphs of k-trees

Zhongyuan Che

Department of Mathematics
Penn State University, Beaver Campus
Monaca, PA 15061, U.S.A.
zxc10@psu.edu

Abstract

Let G be a k-tree of order larger than $k+1$ and let $\ell_{k+1}(G)$ be its $(k+1)$ line graph. We introduce a new concept called the k-clique graph of G, and denote it by $G /[k]$. We show that $G /[k]$ is a connected block graph and $\ell_{k+1}(G)$ is isomorphic to the block graph of $G /[k]$. This provides an alternative proof for a recent result by Oliveira et al. that $\ell_{k+1}(G)$ is a connected block graph. A relation between the Wiener index of $G /[k]$ and the Wiener index of its block graph $\ell_{k+1}(G)$ is obtained as a natural generalization of the relation between the Wiener index of a tree T and the Wiener index of its line graph $L(T)$. We further show that there is a 1-1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G. Another new concept called the separator- k clique graph of G, denoted by $G /[k]_{S}$, arises naturally with the property that $G /[k]_{S}$ is isomorphic to the block graph of $\ell_{k+1}(G)$. By the SzegedWiener Theorem, the Wiener index and the Szeged index are equal for each of the connected block graphs $G /[k], \ell_{k+1}(G)$ and $G /[k]_{S}$.

1 Introduction

Let k be a positive integer. The concept of k-trees was first introduced by Harary and Palmer [13] as k-dimensional simplicial complexes. Beineke and Pippert [4] provided an inductive definition for k-trees. A k-clique is a k-tree, and a k-tree of order n can be extended to a k-tree of order $n+1$ by adding a new vertex which is adjacent to all vertices of a k-clique. Patil [20] observed that the above inductive definition of a k-tree is equivalent to a perfect elimination ordering of a k-tree. We would like to mention that standard trees are 1-trees in the k-tree notation.

A block of a graph is a maximal connected subgraph with more than one vertex and without cut vertices. A block graph is a graph whose blocks are cliques. Block graphs are a generalization of trees whose blocks are K_{2} 's. The block graph of a graph G, denoted by $B(G)$, is a graph whose vertices are blocks of G and two blocks are adjacent in $B(G)$ if and only if they have a vertex in common. The block graph
of a tree T is just its line graph $L(T)$. It was shown in [11] that a graph is a block graph if and only if it is the block graph $B(G)$ of some graph G. Block graphs are known as chordal and distance-hereditary graphs in which a shortest path between any two vertices is unique (see [12]).

The concept of k-line graphs was first introduced by Lê [16] as a generalization of line graphs. The $(k+1)$-line graph of a k-tree G of order larger than $k+1$, denoted by $\ell_{k+1}(G)$, is the graph whose vertices are $(k+1)$-cliques of G and two $(k+1)$-cliques are adjacent in $\ell_{k+1}(G)$ if and only if they have k vertices in common. Oliveira et al. [19] showed that $\ell_{k+1}(G)$ is a connected block graph. In [17], special types of k-trees called the simple-clique k-trees (briefly, SC k-tree) were characterized as k-trees whose $(k+1)$-line graphs are trees. Some well-known planar graphs such as maximal outerplanar graphs and chordal maximal planar graphs (also called Apollonian networks) are examples of SC k-trees. Sharp bounds on Wiener indices of maximal outerplanar graphs and Apollonian networks and their extremal graphs were given in [2] and [7], respectively.

Assume that G is a k-tree of order n where $n>k+1$. We first introduce a new concept called the k-clique graph of G (denoted by $G /[k])$ to show that $G /[k]$ is a connected block graph and $\ell_{k+1}(G)$ is isomorphic to the block graph of $G /[k]$. This provides an alternative proof for the result in [19] that $\ell_{k+1}(G)$ is a connected block graph. Parallel to the relation $W(T)=W(L(T))+\binom{n}{2}$ (see [1]) between the Wiener index of a tree T of order n and the Wiener index of its line graph $L(T)$, we prove that $W(G /[k])=k^{2} W\left(\ell_{k+1}(G)\right)+\left(\begin{array}{c}1+(n-k) k\end{array}\right)$ as a relation between the Wiener index of $G /[k]$ and the Wiener index of its block graph $\ell_{k+1}(G)$ for a k-tree G of order n. Recursive formulas for the Wiener index of $\ell_{k+1}(G)$ and the Wiener index of $G /[k]$ are obtained based on their inductive constructions. We then show that there is a 1-1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G, that is, the set of k-cliques of G each of which is contained in at least two $(k+1)$-cliques of G. A new concept called the separator- k-clique graph of G (denoted by $G /[k]_{S}$) arises naturally. It turns out that $G /[k]_{S}$ is isomorphic to the block graph of $\ell_{k+1}(G)$. The Szeged-Wiener theorem [9] states that the Wiener index and the Szeged index of a connected graph are equal if and only if the graph is a connected block graph, which holds for each of $G /[k], \ell_{k+1}(G)$ and $G /[k]_{S}$. This further develops our work in $[6]$ because the Wiener index of $G /[k]$ is equivalent to the k-Wiener index of a k-tree G introduced there.

2 Preliminaries

Let G be a finite simple graph with the vertex set $V(G)$ and the edge set $E(G)$. The order of G is the number of its vertices. Assume that H_{1} and H_{2} are two subgraphs of a graph H. Then the graph with the vertex set $V\left(H_{1}\right) \cap V\left(H_{2}\right)$ and the edge set $E\left(H_{1}\right) \cap E\left(H_{2}\right)$ is called the intersection of H_{1} and H_{2} and denoted by $H_{1} \cap H_{2}$. Let S be a subset of $V(G)$. We use $S \cup v$ (respectively, $S \backslash v$) to represent the set obtained by adding one vertex v to S (respectively, removing one vertex v from S). We write $G[S]$ for the induced subgraph of G on the set S, and $G-S$ (respectively, $G-v$)
for the induced subgraph of G obtained by removing all vertices in S (respectively, removing one vertex v). The graph obtained from the disjoint union of a vertex v and a graph H such that v is adjacent to all vertices of H is called the join of v and H, and denoted by $v+H$.

Assume that G is a connected graph. Let $d_{G}(u, v)$ be the distance between two vertices u and v in G. The diameter of G is the maximum distance between two vertices of G. The Wiener index $W(G)$ of G is defined as $W(G)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v)$ [21]. The status $\sigma_{G}(u)$ of a vertex u in G is defined as $\sigma_{G}(u)=\sum_{v \in V(G)} d_{G}(u, v)$. If H is a subgraph of G satisfying $d_{H}(u, v)=d_{G}(u, v)$ for any two vertices u and v of H, then H is called an isometric subgraph of G. A distance-hereditary graph is a graph in which any connected induced subgraph is an isometric subgraph.

Lemma 2.1 [10] Let G be a connected graph. Then
(i) $W(G) \leq W(G-v)+\sigma_{G}(v)$ for any vertex v of G. The equality holds if and only if $G-v$ is an isometric subgraph of G.
(ii) $W(G)=\sum_{i \geq 1} i \cdot D_{i}$, where D_{i} is the number of unordered pairs of vertices of G with distance i in G.

Let $N_{G}(v)$ be the set of all vertices adjacent to a vertex v in G. A vertex v is called a simplicial vertex of G if $N_{G}(v)$ induces a clique. A perfect elimination ordering (briefly, peo) of a graph G is a bijection $\phi:\{1,2, \ldots, n\} \rightarrow V(G)$ such that for each $1 \leq i<n, \phi(i)=v_{i}$ is a simplicial vertex of the induced subgraph $G\left[\left\{v_{n}, v_{n-1}, \ldots, v_{i}\right\}\right]$. By [20], a graph G of order n is a k-tree if and only if it has a peo $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ such that each $v_{i}(1 \leq i \leq n-k)$ is a simplicial vertex of degree k in $G\left[\left\{v_{n}, v_{n-1}, \ldots, v_{i}\right\}\right]$.

During an inductive construction of a k-tree, the first k-clique chosen is called its base k-clique. When a new vertex v is added, the k-clique chosen whose vertices are all adjacent to v, is called the joint k-clique of v and denoted by $\operatorname{JC}(v)$, a corresponding $(k+1)$-clique $v+J C(v)$ is generated and denoted as $\langle v\rangle$. The wellknown inductive definition $[4,20]$ of a k-tree can be stated as follows.

Observation 2.2 Let G be a k-tree of order n where $n>k$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. Then G can be constructed inductively with respect to ϕ as follows. Start from the base k-clique $G\left[\left\{v_{n}, v_{n-1}, \ldots, v_{n-k+1}\right\}\right]$, proceed by adding vertices $v_{n-k}, v_{n-k-1}, \ldots, v_{1}$ in order such that each of them is adjacent to all vertices of its corresponding joint k-clique $J C\left(v_{n-k}\right), J C\left(v_{n-k-1}\right), \ldots, J C\left(v_{1}\right)$. Then a sequence of k-trees $G_{n-k}, G_{n-k-1}, \ldots, G_{1}$ is generated in order. At the end, $G=G_{1}$ is obtained.

It is known $[4,5]$ that for any k-tree of order n where $n>k$, each k-clique is contained in a $(k+1)$-clique, and the number of r-cliques is $n_{r}=\binom{k}{r}+(n-k)\binom{k}{r-1}$ for $r \geq 1$. In particular, $n_{k}=1+(n-k) k, n_{k+1}=n-k$, and $n_{k+2}=0$. Hence, any k-tree is K_{k+2}-free, and the number of $(k+1)$-cliques in a k-tree of order n is $n-k$. By Observation 2.2, an inductive construction can be obtained for the $(k+1)$-line graph $\ell_{k+1}(G)$ of a k-tree G.

Corollary 2.3 Let G be a k-tree of order n where $n>k$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. Then vertices of $\ell_{k+1}(G)$ can be represented by $\left\langle v_{i}\right\rangle=v_{i}+J C\left(v_{i}\right)$, where $J C\left(v_{i}\right)$ is the joint k-clique of v_{i} for $1 \leq i \leq n-k$, and generated in order $\left\langle v_{n-k}\right\rangle,\left\langle v_{n-k-1}\right\rangle, \ldots,\left\langle v_{1}\right\rangle$ during an inductive construction of G in Observation 2.2.

The concept of a k-walk was introduced in [5] as a generalization of a walk in a graph. An alternating sequence $\rho_{0} \tau_{1} \rho_{1} \tau_{2} \rho_{2} \ldots \rho_{t-1} \tau_{t} \rho_{t}$ of k-cliques and $(k+1)$-cliques is called a k-walk if each $(k+1)$-clique τ_{i} contains two distinct k-cliques ρ_{i-1} and ρ_{i} for $1 \leq i \leq t$. A graph of order at least $k+1$ is called k-linked if any two k-cliques are joined by a k-walk, and every r-clique is contained in a k-clique for $1 \leq r<k$. A k-walk is a k-path if all terms of the alternating sequence are distinct. The k distance between two k-cliques of a graph is the minimum number of $(k+1)$-cliques on a k-path between them. The k-diameter of a k-linked graph is the maximum k-distance between two k-cliques. A k-walk is a k-circuit if $t \geq 3$ and $\rho_{t}=\rho_{0}$, and all other terms of the sequence are distinct. A graph is k-acyclic if it has no k-circuits. Every k-tree of order at least $k+1$ is k-linked and k-acyclic [5].

In [6], we introduced the k-status of a k-clique in a k-tree and the k-Wiener index of a k-tree, and characterized the extremal graphs for the k-Wiener index of a k-tree. Let G be a k-tree of order at least $k+1$. The k-status of a k-clique ρ in G, denoted as $\sigma_{G}^{[k]}(\rho)$, is the summation of k-distances between ρ and all other k-cliques of G. The k-Wiener index of G, denoted as $W^{[k]}(G)$, is the summation of k-distances between every two k-cliques in G.

A minimal separator of a graph is an induced subgraph on a minimal set of vertices whose removal results in a graph with more components. A minimal separator on one vertex is called the cut vertex of the graph. A graph is k-connected if it has more than k vertices and the removal of any $k-1$ vertices cannot disconnect the graph. A graph is said to be triangulated or chordal if every cycle of length larger than 3 contains an edge which is not a part of the cycle but connects two vertices of the cycle. In [20], a k-tree of order at least $k+1$ was characterized as a k-connected and k-acyclic triangulated graph. Moreover, any minimal separator of a k-tree is a k-clique. It follows that a k-clique of a k-tree is a minimal separator if and only if it is contained in at least two $(k+1)$-cliques.

For a peo $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of a k-tree G, the position of a vertex v_{i} is $\phi^{-1}\left(v_{i}\right)=i$, and the monotone adjacency set of v_{i} is the set of vertices

$$
X\left(v_{i}\right)=\left\{w \in N_{G}\left(v_{i}\right) \mid \phi^{-1}(w)>\phi^{-1}\left(v_{i}\right)\right\} .
$$

For $1 \leq i \leq n-k,\left|X\left(v_{i}\right)\right|=k$ and $X\left(v_{i}\right)$ is the set of all vertices of the joint k-clique $J C\left(v_{i}\right)$, and so $J C\left(v_{i}\right)=G\left[X\left(v_{i}\right)\right]$. For $n-k+1 \leq i \leq n,\left|X\left(v_{i}\right)\right|=n-i$ and $X\left(v_{i}\right) \subseteq\left\{v_{n}, v_{n-1}, \ldots, v_{n-k+2}\right\}$.

Theorem 2.4 [18] Let G be a k-tree of order n where $n>k$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. Then for each $1 \leq i \leq n-k$, there exists a unique j satisfying $i<j \leq n-k+1, v_{j} \in X\left(v_{i}\right)$ and $X\left(v_{i}\right) \subseteq v_{j} \cup X\left(v_{j}\right)$. Moreover,
(i) $j=\min \left\{\phi^{-1}(w) \mid w \in X\left(v_{i}\right)\right\}$,
(ii) $\left|X\left(v_{j}\right) \backslash X\left(v_{i}\right)\right|=\left\{\begin{array}{lc}1, & \text { if } j \leq n-k \\ 0, & \text { if } j=n-k+1\end{array}\right.$ and $X\left(v_{i}\right) \backslash X\left(v_{j}\right)=v_{j}$.

Hence, if $j \leq n-k$, there is a unique vertex $\beta_{j} \in X\left(v_{j}\right) \backslash X\left(v_{i}\right)$ such that $\beta_{j} \neq v_{j}$ and $X\left(v_{i}\right)=v_{j} \cup X\left(v_{j}\right) \backslash \beta_{j} ;$ if $j=n-k+1$, then $X\left(v_{i}\right)=\left\{v_{n}, v_{n-1}, \ldots, v_{n-k+1}\right\}$.

3 Main Results

A k-tree of order at most $k+1$ is either a k-clique or a $(k+1)$-clique. All k-trees considered in this section have order larger than $k+1$.

Definition 1 Let G be a k-tree of order larger than $k+1$. The k-clique graph of G, denoted by $G /[k]$, is a graph whose vertices are k-cliques of G, and two k-cliques are adjacent in $G /[k]$ if and only if they are contained in a common $(k+1)$-clique of G.

Lemma 3.1 Let G be a k-tree of order larger than $k+1$. Then (i) $G /[k]$ is a connected block graph, (ii) $\ell_{k+1}(G)$ is isomorphic to $B(G /[k])$.

Proof. By [5], any two distinct k-cliques of a k-tree G are connected by a k-path, so $G /[k]$ is connected. The set of all k-cliques contained in one $(k+1)$-clique of G induces a complete subgraph of $G /[k]$ of order $k+1$. By [20], G is K_{k+2}-free and a k-clique is a minimal separator of G if and only if it is contained in more than one $(k+1)$-clique of G. By [5], every k-tree of order at least $k+1$ is k-linked and k-acyclic, we observe that a k-clique is a minimal separator of G if and only if it is a cut vertex of $G /[k]$. It follows that all k-cliques which are vertices of a block of $G /[k]$ must be contained in one common $(k+1)$-clique of G. Hence, any block of $G /[k]$ is a complete subgraph of order $k+1$, and $G /[k]$ is a block graph.

We have shown that all vertices of a block of $G /[k]$ are the set of k-cliques contained in a $(k+1)$-clique of G. Then the set of blocks of $G /[k]$ is in a $1-1$ correspondence to the set of $(k+1)$-cliques of G, which is the set of vertices of $\ell_{k+1}(G)$. Two vertices of $\ell_{k+1}(G)$ are adjacent if and only if they have a k-clique of G in common if and only if the corresponding two blocks of $G /[k]$ have one vertex in common if and only if the corresponding two blocks of $G /[k]$ are adjacent in $B(G /[k])$. Therefore, $\ell_{k+1}(G)$ is isomorphic to $B(G /[k])$.

By Lemma 3.1, we provide an alternative proof for the following result in [19].
Corollary 3.2 [19] Let G be a k-tree of order larger than $k+1$. Then $\ell_{k+1}(G)$ is a connected block graph.

Proof. A graph is a block graph if and only if it is the block graph of some graph [11]. By Lemma 3.1, the conclusion follows.

It was shown in [1] that $W(T)=W(L(T))+\binom{n}{2}$ for any tree T of order n, where the line graph $L(T)$ of a tree T is just the block graph of T. We will generalize this
result to a relation between $W(G /[k])$ and $W\left(\ell_{k+1}(G)\right)$, where $\ell_{k+1}(G)$ is the block graph of $G /[k]$ for a k-tree G of order n. By definition, the distance between two vertices in the k-clique graph $G /[k]$ is the k-distance between the corresponding two k-cliques in G. Therefore, the Wiener index $W(G /[k])$ is the k-Wiener index $W^{[k]}(G)$ introduced in [6] for a k-tree G.

Theorem 3.3 Let G be a k-tree of order n where $n>k+1$. Then

$$
W(G /[k])=W^{[k]}(G)=k^{2} \cdot W\left(\ell_{k+1}(G)\right)+\binom{1+(n-k) k}{2} .
$$

Proof. Note that the diameter of $G /[k]$ is the k-diameter of G, which is at most $n-k$, the number of $(k+1)$-cliques of G. Let $1 \leq i \leq n-k-1$. Assume that μ and ν are two vertices of $\ell_{k+1}(G)$ with $d_{\ell_{k+1}(G)}(\mu, \nu)=i$. Then there is a unique path of length i between μ and ν in $\ell_{k+1}(G)$ because a shortest path between any two vertices in a block graph is unique [12], and $\ell_{k+1}(G)$ is a connected block graph by Corollary 3.2. Any vertex of $\ell_{k+1}(G)$ is a $(k+1)$-clique of G and the intersection of any two adjacent vertices in $\ell_{k+1}(G)$ is a k-clique of G. Then the unique shortest path between $\mu=\mu_{0}$ and $\nu=\mu_{i}$ in $\ell_{k+1}(G)$ can be written as an alternating sequence $\left(\mu=\mu_{0}\right) \rho_{1} \mu_{1} \rho_{2} \ldots \mu_{i-1} \rho_{i}\left(\mu_{i}=\nu\right)$ of $(k+1)$-cliques and k-cliques of G such that for each $1 \leq j \leq i, \rho_{j}$ is a k-clique which is the intersection of two $(k+1)$-cliques: μ_{j-1} and μ_{j}. The number of k-cliques contained in each $(k+1)$-clique is $k+1$. Let $\rho_{\mu} \neq \rho_{1}$ be a k-clique of G contained in $\mu=\mu_{0}$. Then G has k such ρ_{μ} 's. Let $\rho_{\nu} \neq \rho_{i}$ be a k-clique of G contained in $\nu=\mu_{i}$. Then G has k such ρ_{ν} 's. Recall that $G /[k]$ is a connected block graph by Lemma 3.1. Then the alternating sequence $\rho_{\mu}\left(\mu=\mu_{0}\right) \rho_{1} \mu_{1} \rho_{2} \ldots \rho_{i}\left(\mu_{i}=\nu\right) \rho_{\nu}$ is the unique shortest path between ρ_{μ} and ρ_{ν} in $G /[k]$. So, $d_{G /[k]}\left(\rho_{\mu}, \rho_{\nu}\right)=i+1$, which is the number of $(k+1)$-cliques on the shortest path between ρ_{μ} and ρ_{ν}. It follows that for each $1 \leq i \leq n-k-1$ and any pair of vertices $\{\mu, \nu\}$ with distance i in $\ell_{k+1}(G)$, there are k^{2} pairs of vertices $\left\{\rho_{\mu}, \rho_{\nu}\right\}$ with distance $i+1$ in $G /[k]$, and vice versa.

Let D_{i}^{\prime} be the number of pairs of vertices of $\ell_{k+1}(G)$ with distance i in $\ell_{k+1}(G)$. Let D_{i} be the number of pairs of vertices of $G /[k]$ with distance i in $G /[k]$. We have shown that $D_{i}^{\prime}=\frac{1}{k^{2}} D_{i+1}$ for $1 \leq i \leq n-k-1$. It is clear that the diameter of $\ell_{k+1}(G)$ is at most $n-k-1$ since the diameter of $G /[k]$ is at most $n-k$. By Lemma 2.1,

$$
\begin{aligned}
W\left(\ell_{k+1}(G)\right) & =\sum_{i=1}^{n-k-1} i \cdot D_{i}^{\prime}=\frac{1}{k^{2}} \sum_{i=1}^{n-k-1} i \cdot D_{i+1}=\frac{1}{k^{2}} \sum_{i=2}^{n-k}(i-1) \cdot D_{i} \\
& =\frac{1}{k^{2}}\left[\sum_{i=2}^{n-k} i \cdot D_{i}-\sum_{i=2}^{n-k} D_{i}\right]=\frac{1}{k^{2}}\left[\sum_{i=1}^{n-k} i \cdot D_{i}-\sum_{i=1}^{n-k} D_{i}\right] .
\end{aligned}
$$

By Lemma 2.1, $\sum_{i=1}^{n-k} i \cdot D_{i}=W(G /[k])$. Note that $\sum_{i=1}^{n-k} D_{i}=\binom{1+(n-k) k}{2}$, which is the number of 2 -element subsets of the set of k-cliques in G, and the number of k-cliques
in G is $1+(n-k) k$. Hence, $W\left(\ell_{k+1}(G)\right)=\frac{1}{k^{2}}\left[W(G /[k])-\binom{1+(n-k) k}{2}\right]$. It follows that

$$
W(G /[k])=W^{[k]}(G)=k^{2} \cdot W\left(\ell_{k+1}(G)\right)+\binom{1+(n-k) k}{2}
$$

By Lemma 3.1, $G /[k]$ is a connected block graph, and the set of blocks of $G /[k]$ is in a 1-1 correspondence to the set of $(k+1)$-cliques of G. Parallel to the inductive construction of $\ell_{k+1}(G)$, an inductive construction of $G /[k]$ can also be obtained by Observation 2.2.

Corollary 3.4 Let G be a k-tree of order n where $n>k+1$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. During an inductive construction of G in Observation 2.2, a sequence of k-clique graphs $G_{n-k} /[k], G_{n-k-1} /[k], \ldots, G_{1} /[k]$ can be generated in order. For each $n-k-1 \geq i \geq 1$, when a vertex v_{i} is added to the k-tree G_{i+1} to get the k-tree G_{i}, a block B_{i} whose vertices are k-cliques of G contained in $v_{i}+J C\left(v_{i}\right)$ is added to $G_{i+1} /[k]$ to get $G_{i} /[k]$ with the property that B_{i} has exactly one common vertex $J C\left(v_{i}\right)$ with $G_{i+1} /[k]$.

By Observation 2.2, for $1 \leq i \leq n-k-1$, each v_{i} is a simplicial vertex of G_{i}, and so $G_{i+1}=G_{i}-v_{i}$ is an isometric subgraph of G_{i}. By Lemma 2.1, $W\left(G_{i}\right)=$ $W\left(G_{i+1}\right)+\sigma_{G_{i}}\left(v_{i}\right)$ for $1 \leq i \leq n-k-1$. Note that $W\left(G_{n-k}\right)=\binom{k+1}{2}$ since G_{n-k} is a $(k+1)$-clique. Then $W(G)=\binom{k+1}{2}+\sum_{i=1}^{n-k-1} \sigma_{G_{i}}\left(v_{i}\right)$. Similar formulas for Wiener indices $W\left(\ell_{k+1}(G)\right)$ and $W(G /[k])$ can be obtained by the inductive constructions of $\ell_{k+1}(G)$ and $G /[k]$, respectively.

Lemma 3.5 Let G be a k-tree of order n where $n>k+1$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. Assume that G_{i} where $n-k \geq i \geq 1$ is the sequence of k-trees generated during the inductive construction of G in Observation 2.2. Then $G_{1}=G$ and
(i) $W\left(\ell_{k+1}(G)\right)=\sum_{i=1}^{n-k-1} \sigma_{\ell_{k+1}\left(G_{i}\right)}\left(\left\langle v_{i}\right\rangle\right)$, where $\left\langle v_{i}\right\rangle$ is a vertex of the $(k+1)$-line graph $\ell_{k+1}\left(G_{i}\right)$ of G_{i} for $1 \leq i \leq n-k-1$;
(ii) $W(G /[k])=k\binom{k+1}{2}-n\binom{k}{2}+k\left[\sum_{i=1}^{n-k-1} \sigma_{G_{i} /[k]}\left(\rho_{i}\right)\right]$, where ρ_{i} is a k-clique of the k-tree G_{i} containing v_{i} for $1 \leq i \leq n-k-1$.

Proof. (i) For $1 \leq i \leq n-k$, write $H_{i}=\ell_{k+1}\left(G_{i}\right)$. By Corollary 3.2, we observe that H_{i} is a block graph of order $n-i+1-k$ since G_{i} is a k-tree of order $n-i+1$, and $\left\langle v_{i}\right\rangle=v_{i}+J C\left(v_{i}\right)$ is a vertex of H_{i}. Then $H_{i+1}=H_{i}-\left\langle v_{i}\right\rangle$ is an isometric subgraph of H_{i} for $1 \leq i \leq n-k-1$. By Lemma 2.1, we have $W\left(H_{i}\right)=W\left(H_{i+1}\right)+\sigma_{H_{i}}\left(\left\langle v_{i}\right\rangle\right)$ for $1 \leq i \leq n-k-1$. Note that $H_{1}=\ell_{k+1}\left(G_{1}\right)$ where $G_{1}=G$. It follows that

$$
\begin{aligned}
W\left(\ell_{k+1}(G)\right) & =W\left(H_{n-k}\right)+\sigma_{H_{n-k-1}}\left(\left\langle v_{n-k-1}\right\rangle\right)+\ldots+\sigma_{H_{1}}\left(\left\langle v_{1}\right\rangle\right) \\
& =\sum_{i=1}^{n-k-1} \sigma_{H_{i}}\left(\left\langle v_{i}\right\rangle\right)
\end{aligned}
$$

The last equality is valid because $W\left(H_{n-k}\right)=0$ where $H_{n-k}=\ell_{k+1}\left(G_{n-k}\right)$ is a one vertex graph.
(ii) Recall that the Wiener index of $G /[k]$ is the k-Wiener index of G, and the status of a vertex in $G /[k]$ is the k-status of the corresponding k-clique in G. By Theorem 4.3 in $[6], W(G /[k])=k\left[\sum_{i=1}^{n-k} \sigma_{G_{i} /[k]}\left(\rho_{i}\right)\right]-(n-k)\binom{k}{2}$, where ρ_{i} is a k-clique of G_{i} containing v_{i} for $1 \leq i \leq n-k$. Note that $G_{n-k} /[k]$ is a $(k+1)$-clique and ρ_{n-k} is a vertex of $G_{n-k} /[k]$. Then the vertex status $\sigma_{G_{n-k} /[k]}\left(\rho_{n-k}\right)=k$. It follows that

$$
\begin{aligned}
W(G /[k]) & =k^{2}+k\left[\sum_{i=1}^{n-k-1} \sigma_{G_{i} /[k]}\left(\rho_{i}\right)\right]-(n-k)\binom{k}{2} \\
& =k\binom{k+1}{2}-n\binom{k}{2}+k\left[\sum_{i=1}^{n-k-1} \sigma_{G_{i} /[k]}\left(\rho_{i}\right)\right] .
\end{aligned}
$$

The k-star of order n, denoted by S_{n}^{k}, is a k-tree obtained from a base k-clique by adding $n-k$ vertices, each of them is adjacent to all vertices of the base k-clique. The k-th power of a path of order n, denoted by P_{n}^{k}, is a k-tree whose vertices can be labelled as $v_{1}, v_{2}, \ldots, v_{n}$ such that two vertices v_{i} and v_{j} are adjacent if and only if $1 \leq|j-i| \leq k$. In [6], we showed that the k-Wiener index of a k-tree G of order n where $n>k$ is bounded below by $2\binom{1+(n-k) k}{2}-(n-k)\binom{k+1}{2}$ and above by $k^{2}\binom{n-k+2}{3}-(n-k)\binom{k}{2}$. The bounds are attained when G is a k-star and a k-th power of a path, respectively. The above results for the k-Wiener index of a k-tree G also hold for the Wiener index of its k-clique graph $G /[k]$ since $W(G /[k])=W^{[k]}(G)$. It is well-known that the Wiener indices of connected graphs of order $n-k$ are bounded below by $\binom{n-k}{2}$ and above by $\binom{n-k+1}{3}$, whose extremal graphs are a complete graph and a path of order $n-k$, respectively. Therefore, the bounds and extremal graphs for $W\left(\ell_{k+1}(G)\right)$ follow immediately.

Corollary 3.6 Let G be a k-tree of order n where $n>k+1$. Then
(i) $2\binom{1+(n-k) k}{2}-(n-k)\binom{k+1}{2} \leq W(G /[k]) \leq k^{2}\binom{n-k+2}{3}-(n-k)\binom{k}{2}$;
(ii) $\binom{n-k}{2} \leq W\left(\ell_{k+1}(G)\right) \leq\binom{ n-k+1}{3}$.

Moreover, the lower bounds (respectively, upper bounds) can be attained when G is S_{n}^{k} (respectively, G is P_{n}^{k}).

Parallel to the compact code of a k-tree defined in [18], we provide the following terminology.

Definition 2 Let G be a k-tree of order n where $n>k+1$ and $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G. For $1 \leq i \leq n-k$, the unique j satisfying the property stated in Theorem 2.4 is called the compact code index of i with respect to ϕ and denoted by $c_{\phi}(i)$.

By Theorem 2.4 and the definition of a compact code index, if $j=c_{\phi}(i) \leq n-k$, then $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$, and so $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are adjacent in $\ell_{k+1}(G)$.

Theorem 3.7 Let G be a k-tree of order n where $n>k+1$ and let $\phi=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a peo of G.
(i) Let $i<j \leq n-k$. Then $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are adjacent in $\ell_{k+1}(G)$ if and only if $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$. Moreover, $J C\left(v_{i}\right)=J C\left(v_{j}\right)$ if and only if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are adjacent in $\ell_{k+1}(G)$ and $j \neq c_{\phi}(i)$.
(ii) Let B be a block of $\ell_{k+1}(G)$ with vertices $\left\langle v_{i_{j}}\right\rangle=v_{i_{j}}+J C\left(v_{i_{j}}\right)$, where $1 \leq j \leq b$ and $1 \leq i_{1}<i_{2}<\ldots<i_{b} \leq n-k$. Then $\bigcap_{j=1}^{b}\left\langle v_{i_{j}}\right\rangle=J C\left(v_{i_{1}}\right)$. Moreover, either all $J C\left(v_{i_{j}}\right)$ where $1 \leq j \leq b$ are the base k-clique of G with respect to ϕ, or $J C\left(v_{i_{j} o}\right)$ are the same for $1 \leq j \leq b-1$ and different from $J C\left(v_{i_{b}}\right)$.

Proof. (i) Assume that $i<j \leq n-k$. Note that $\left\langle v_{i}\right\rangle=v_{i}+J C\left(v_{i}\right)$ and $\left\langle v_{j}\right\rangle=$ $v_{j}+J C\left(v_{j}\right)$. By an inductive construction of G in Observation 2.2, v_{i} cannot be a vertex of $J C\left(v_{j}\right)$ since $j>i$. So, v_{i} cannot be a vertex of $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle$. Then $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are adjacent in $\ell_{k+1}(G)$ if and only if $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle$ is a k-clique of G if and only if $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$.

If $J C\left(v_{i}\right)=J C\left(v_{j}\right)$, then $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$ and $v_{j} \notin X\left(v_{i}\right)$. It follows that $j \neq c_{\phi}(i)$ by Theorem 2.4. On other hand, if $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$ and $j \neq c_{\phi}(i)$, then $v_{j} \notin X\left(v_{i}\right)$. Otherwise, if $v_{j} \in X\left(v_{i}\right)$, then j satisfies the property stated in Theorem 2.4: $i<j \leq n-k, v_{j} \in X\left(v_{i}\right)$ and $X\left(v_{i}\right) \subseteq v_{j} \cup X\left(v_{j}\right)$. So, $j=c_{\phi}(i)$. This is a contradiction. Therefore, $v_{j} \notin X\left(v_{i}\right)$. By the assumption that $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{i}\right)$ which is a k-clique of G, we have $\left\langle v_{i}\right\rangle \cap\left\langle v_{j}\right\rangle=J C\left(v_{j}\right)$ since $v_{j} \notin X\left(v_{i}\right)$. Then $J C\left(v_{i}\right)=J C\left(v_{j}\right)$.
(ii) Note that $b \geq 2$ since any block B has at least two vertices. By Corollary 2.3, $\left\langle v_{i_{b}}\right\rangle,\left\langle v_{i_{b-1}}\right\rangle, \ldots,\left\langle v_{i_{1}}\right\rangle$ are added to B in order during an inductive construction of $\ell_{k+1}(G)$ with respect to ϕ. Since $\ell_{k+1}(G)$ is a connected block graph, all vertices of B are pairwise adjacent. Then the intersection of any two vertices of B is a k-clique of G. By (i), $\bigcap_{j=1}^{b}\left\langle v_{i_{j}}\right\rangle=J C\left(v_{i_{1}}\right)$ since $\left\langle v_{i_{1}}\right\rangle$ is the last vertex added to the block B. In particular, the intersection of any two vertices of B is $J C\left(v_{i_{1}}\right)$.

By (i), for all $1 \leq j \leq b-1,\left\langle v_{i_{b}}\right\rangle \cap\left\langle v_{i_{j}}\right\rangle=J C\left(v_{i_{j}}\right)$ since $i_{j}<i_{b} \leq n-k$. We have shown that the intersection of any two vertices of B is $J C\left(v_{i_{1}}\right)$. Then $J C\left(v_{i_{j}}\right)=J C\left(v_{i_{1}}\right)$ for all $1 \leq j \leq b-1$. It follows that $X\left(v_{i_{j}}\right)=X\left(v_{i_{1}}\right)$ for all $1 \leq j \leq b-1$. By Theorem 2.4, $c_{\phi}\left(i_{j}\right)=\min \left\{\phi^{-1}(w) \mid w \in X\left(v_{i_{j}}\right)\right\}=\min \left\{\phi^{-1}(w) \mid\right.$ $\left.w \in X\left(v_{i_{1}}\right)\right\}=c_{\phi}\left(i_{1}\right)$ for all $1 \leq j \leq b-1$. By Theorem 2.4, either $c_{\phi}\left(i_{1}\right)=n-k+1$ or $c_{\phi}\left(i_{1}\right) \leq n-k$.

If $c_{\phi}\left(i_{1}\right)=n-k+1$, then $c_{\phi}\left(i_{j}\right)=c_{\phi}\left(i_{1}\right)=n-k+1$ for all $1 \leq j \leq b-1$. Moreover, $i_{b} \notin X\left(v_{i_{1}}\right)$ since $i_{b} \leq n-k$. Then $\left\langle v_{i_{b}}\right\rangle \cap\left\langle v_{i_{1}}\right\rangle=J C\left(v_{i_{1}}\right)$ implies that $X\left(v_{i_{b}}\right)=X\left(v_{i_{1}}\right)$ and so $c_{\phi}\left(i_{b}\right)=c_{\phi}\left(i_{1}\right)=n-k+1$. Therefore, for all $1 \leq j \leq b$, $J C\left(v_{i_{j}}\right)=G\left[\left\{v_{n}, v_{n-1}, \ldots, v_{n-k+1}\right\}\right]$, which is the base k-clique of G with respect to ϕ.

If $c_{\phi}\left(i_{1}\right) \leq n-k$, then $c_{\phi}\left(i_{j}\right)=c_{\phi}\left(i_{1}\right) \leq n-k$ for $1 \leq j \leq b-1$. Since $i_{j}<c_{\phi}\left(i_{j}\right) \leq n-k$ for $1 \leq j \leq b-1$, we observe that $\left\langle v_{i_{j}}\right\rangle$ and $\left\langle v_{c_{\phi}\left(i_{j}\right)}\right\rangle$ are
adjacent with $\left\langle v_{i_{j}}\right\rangle \cap\left\langle v_{c_{\phi}\left(i_{j}\right)}\right\rangle=J C\left(v_{i_{j}}\right)=J C\left(v_{i_{1}}\right)$ for $1 \leq j \leq b-1$. Then the vertex $\left\langle v_{c_{\phi}\left(i_{j}\right)}\right\rangle=\left\langle v_{c_{\phi}\left(i_{1}\right)}\right\rangle$ is also contained in the block B for $1 \leq j \leq b-1$. Note that $c_{\phi}\left(i_{j}\right) \notin\left\{i_{b-1}, \ldots, i_{j}, \ldots, i_{1}\right\}$ for each $1 \leq j \leq b-1$. Then $\left\langle v_{c_{\phi}\left(i_{j}\right)}\right\rangle \notin$ $\left\{\left\langle v_{i_{b-1}}\right\rangle, \ldots,\left\langle v_{i_{j}}\right\rangle, \ldots,\left\langle v_{i_{1}}\right\rangle\right\}$ for each $1 \leq j \leq b-1$. It follows that $\left\langle v_{c_{\phi}\left(i_{j}\right)}\right\rangle$ is the vertex $\left\langle v_{i_{b}}\right\rangle$ of B for $1 \leq j \leq b-1$. Therefore, $c_{\phi}\left(i_{j}\right)=i_{b}$ for all $1 \leq j \leq b-1$. By (i), $J C\left(v_{i_{j}}\right)$ are the same for $1 \leq j \leq b-1$ and different from $J C\left(v_{i_{b}}\right)$.

Corollary 3.8 Let G be a k-tree of order larger than $k+1$ and $\ell_{k+1}(G)$ be its $(k+1)$ line graph. Then there is a 1-1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G.

Proof. By Theorem 3.7, the intersection of all vertices in a block of $\ell_{k+1}(G)$ is a k-clique of G. So, each block of $\ell_{k+1}(G)$ corresponds to a k-clique of G which is contained in at least two $(k+1)$-cliques of G. On the other hand, if a k-clique of G is contained in at least two $(k+1)$-cliques of G, then all $(k+1)$-cliques containing the same k-clique are pairwise adjacent in $\ell_{k+1}(G)$ and form a block of $\ell_{k+1}(G)$. Recall that a k-clique of G is a minimal separator of G if and only if it is contained in at least two $(k+1)$-cliques of G. Therefore, there is a 1-1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G.

Definition 3 Let G be a k-tree of order larger than $k+1$. The separator- k-clique graph of G, denoted by $G /[k]_{S}$, is a graph whose vertices are the minimal separators of G, that is, the k-cliques of G each of which is contained in at least two $(k+1)$ cliques of G, and two minimal separators of G are adjacent in $G /[k]_{S}$ if and only if they are contained in a common $(k+1)$-clique of G.

The cut-point graph was first defined by Harary in [11]. The cut-point graph of a graph G, denoted by $C(G)$, is a graph whose vertices are the cut vertices of G and two cut vertices are adjacent if and only if they are contained in a common block. It was shown in [11] that a graph is a block graph if and only if it is the block graph $B(G)$ of some graph G and $B(B(G))=C(G)$.

Lemma 3.9 Let G be a k-tree of order larger than $k+1$. Then both $B\left(\ell_{k+1}(G)\right)$ and $C(G /[k])$ are isomorphic to $G /[k]_{S}$, and $G /[k]_{S}$ is an isometric subgraph of $G /[k]$.

Proof. By Corollary 3.8, there is a 1-1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of vertices of $G /[k]_{S}$. Two blocks of $\ell_{k+1}(G)$ are adjacent in $B\left(\ell_{k+1}(G)\right)$ if and only if two blocks of $\ell_{k+1}(G)$ have a cut vertex $\langle v\rangle$ of $\ell_{k+1}(G)$ in common if and only if the corresponding two vertices of $G /[k]_{S}$ (considered as k cliques of G) are contained in $\langle v\rangle$ (considered as $(k+1)$-cliques of G) if and only if the corresponding two vertices of $G /[k]_{S}$ are adjacent in $G /[k]_{S}$. Therefore, $B\left(\ell_{k+1}(G)\right)$ is isomorphic to $G /[k]_{S}$. By Lemma 3.1, $\ell_{k+1}(G)$ is isomorphic to $B(G /[k])$. Then $B(B(G /[k]))$ is isomorphic to $G /[k]_{S}$. By [11], $B(B(G /[k]))=C(G /[k])$. It follows that $C(G /[k])$ is isomorphic to $G /[k]_{S}$. By the definition of a separator- k-clique graph, $G /[k]_{S}$ is an induced subgraph of $G /[k]$. Moreover, $G /[k]_{S}$ is isometric in
$G /[k]$ because $G /[k]$ is a block graph and block graphs are distance-hereditary graphs by [12].

Assume that G is a connected graph. Let $e=u v$ be an edge of G. A vertex w of G is said to be closer to u than to v in G if $d_{G}(w, u)<d_{G}(w, v)$. Let $n_{e}(u)$ be the number of vertices that are closer to u than to v in G, and $n_{e}(v)$ be the number of vertices that are closer to v than to u in G. The Szeged index of G is defined as $S z(G)=\sum_{u v \in E(G)} n_{e}(u) n_{e}(v)$ [8]. The Wiener index and the Szeged index are two closely related graph invariants. It is known [15] that $W(G) \leq S z(G)$ for any connected graph G. The Szeged-Wiener Theorem [9] states that $W(G)=S z(G)$ if and only if G is a connected block graph; proofs are available in [3, 9, 14]. In particular, $W(G)=S z(G)$ if G is a tree [21]. By Lemma 3.1 and Lemma 3.9, $G /[k]$, $\ell_{k+1}(G)$ and $G /[k]_{S}$ are connected block graphs, since a graph is a block graph if and only if it is the block graph of some graph [11]. We have the following conclusion by the Szeged-Wiener Theorem.

Corollary 3.10 Let G be a k-tree of order larger than $k+1$. Then
(i) $W(G /[k])=S z(G /[k])$.
(ii) $W\left(\ell_{k+1}(G)\right)=S z\left(\ell_{k+1}(G)\right)$.
(iii) $W\left(G /[k]_{S}\right)=S z\left(G /[k]_{S}\right)$.

Acknowledgements

We would like to thank referees for their careful reading and helpful suggestions.

References

[1] F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981), 153-162.
[2] A. Bickle and Z. Che, Wiener Indices of Maximal k-Degenerate Graphs, Graphs Combin. 37 (2021), 581-589.
[3] A. Behtoei, M. Jannesari and B. Taeri, A characterization of block graphs, Discrete Appl. Math. 158 (2010), 219-221.
[4] L. W. Beineke and R. E. Pippert, The number of labeled k-dimensional trees, J. Combin. Theory 6 (1969), 200-205.
[5] L. W. Beineke and R.E. Pippert, Properties and characterizations of k-trees, Mathematika 18 (1971), 141-151.
[6] Z. Che, k-Wiener index of a k-plex, J. Comb. Optim. 43 (2022), 65-78.
[7] Z. Che and K. L. Collins, An upper bound on Wiener indices of maximal planar graphs, Discrete Appl. Math. 258 (2019), 76-86.
[8] A. Dobrynin and I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publ. Inst. Math. 56 (1994), 18-22.
[9] A. Dobrynin and I. Gutman, Solving a problem connected with distances in graphs, Graph Theory Notes N. Y. 28 (1995), 21-23.
[10] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.
[11] F. Harary, A characterization of block graphs, Canad. Math. Bull. 6 (1963), 1-6.
[12] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory Ser. B 27 (1979), 67-74.
[13] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 (1968), 115-122.
[14] H. Khodashenas, M. J. Nadjafi-Arani, A. R. Ashrafi and I. Gutman, A new proof of the Szeged-Wiener theorem, Kragujevac J. Math. 35 (2011), 165-172.
[15] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45-49.
[16] V. B. Lê, Perfect k-line graphs and k-total graphs, J. Graph Theory 17 (1993), 65-73.
[17] L. Markenzon, C. M. Justel and N. Paciornik, Subclasses of k-trees: characterization and recognition, Discrete Appl. Math. 154 (2006), 818-825.
[18] L. Markenzon, O. Vernet and P. R. da C. Pereira, A compact code for k-trees, Pesqui. Oper. 29 (2009), 493-502.
[19] A. S. S. Oliveira, M. A. A. de Freitas, C.T. M. Vinagre and L. Markenzon, On ($k+1$)-line graphs of k-trees and their nullities, Linear Algebra Appl. 614 (2021), 244-255.
[20] H.P. Patil, On the structure of k-trees, J. Combin. Inform. System Sci. 11 (1986), 57-64.
[21] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

