(k+1)-line graphs of k-trees

ZHONGYUAN CHE

Department of Mathematics Penn State University, Beaver Campus Monaca, PA 15061, U.S.A. zxc10@psu.edu

Abstract

Let G be a k-tree of order larger than k + 1 and let $\ell_{k+1}(G)$ be its (k + 1)line graph. We introduce a new concept called the k-clique graph of G, and denote it by G/[k]. We show that G/[k] is a connected block graph and $\ell_{k+1}(G)$ is isomorphic to the block graph of G/[k]. This provides an alternative proof for a recent result by Oliveira et al. that $\ell_{k+1}(G)$ is a connected block graph. A relation between the Wiener index of G/[k]and the Wiener index of its block graph $\ell_{k+1}(G)$ is obtained as a natural generalization of the relation between the Wiener index of a tree T and the Wiener index of its line graph L(T). We further show that there is a 1–1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G. Another new concept called the separator-kclique graph of G, denoted by $G/[k]_S$, arises naturally with the property that $G/[k]_S$ is isomorphic to the block graph of $\ell_{k+1}(G)$. By the Szeged-Wiener Theorem, the Wiener index and the Szeged index are equal for each of the connected block graphs $G/[k], \ell_{k+1}(G)$ and $G/[k]_S$.

1 Introduction

Let k be a positive integer. The concept of k-trees was first introduced by Harary and Palmer [13] as k-dimensional simplicial complexes. Beineke and Pippert [4] provided an inductive definition for k-trees. A k-clique is a k-tree, and a k-tree of order ncan be extended to a k-tree of order n + 1 by adding a new vertex which is adjacent to all vertices of a k-clique. Patil [20] observed that the above inductive definition of a k-tree is equivalent to a perfect elimination ordering of a k-tree. We would like to mention that standard trees are 1-trees in the k-tree notation.

A **block** of a graph is a maximal connected subgraph with more than one vertex and without cut vertices. A **block graph** is a graph whose blocks are cliques. Block graphs are a generalization of trees whose blocks are K_2 's. The **block graph of a graph** G, denoted by B(G), is a graph whose vertices are blocks of G and two blocks are adjacent in B(G) if and only if they have a vertex in common. The block graph of a tree T is just its line graph L(T). It was shown in [11] that a graph is a block graph if and only if it is the block graph B(G) of some graph G. Block graphs are known as chordal and distance-hereditary graphs in which a shortest path between any two vertices is unique (see [12]).

The concept of k-line graphs was first introduced by Lê [16] as a generalization of line graphs. The (k+1)-line graph of a k-tree G of order larger than k+1, denoted by $\ell_{k+1}(G)$, is the graph whose vertices are (k + 1)-cliques of G and two (k+1)-cliques are adjacent in $\ell_{k+1}(G)$ if and only if they have k vertices in common. Oliveira et al. [19] showed that $\ell_{k+1}(G)$ is a connected block graph. In [17], special types of k-trees called the **simple-clique** k-trees (briefly, SC k-tree) were characterized as k-trees whose (k+1)-line graphs are trees. Some well-known planar graphs such as maximal outerplanar graphs and chordal maximal planar graphs (also called Apollonian networks) are examples of SC k-trees. Sharp bounds on Wiener indices of maximal outerplanar graphs and Apollonian networks and their extremal graphs were given in [2] and [7], respectively.

Assume that G is a k-tree of order n where n > k + 1. We first introduce a new concept called the k-clique graph of G (denoted by G/[k]) to show that G/[k] is a connected block graph and $\ell_{k+1}(G)$ is isomorphic to the block graph of G/[k]. This provides an alternative proof for the result in [19] that $\ell_{k+1}(G)$ is a connected block graph. Parallel to the relation $W(T) = W(L(T)) + \binom{n}{2}$ (see [1]) between the Wiener index of a tree T of order n and the Wiener index of its line graph L(T), we prove that $W(G/[k]) = k^2 W(\ell_{k+1}(G)) + \binom{1+(n-k)k}{2}$ as a relation between the Wiener index of G/[k] and the Wiener index of its block graph $\ell_{k+1}(G)$ for a k-tree G of order n. Recursive formulas for the Wiener index of $\ell_{k+1}(G)$ and the Wiener index of G/[k]are obtained based on their inductive constructions. We then show that there is a 1–1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G, that is, the set of k-cliques of G each of which is contained in at least two (k+1)-cliques of G. A new concept called the separator-k-clique graph of G (denoted by $G/[k]_S$) arises naturally. It turns out that $G/[k]_S$ is isomorphic to the block graph of $\ell_{k+1}(G)$. The Szeged-Wiener theorem [9] states that the Wiener index and the Szeged index of a connected graph are equal if and only if the graph is a connected block graph, which holds for each of G/[k], $\ell_{k+1}(G)$ and $G/[k]_S$. This further develops our work in [6] because the Wiener index of G/[k] is equivalent to the k-Wiener index of a k-tree G introduced there.

2 Preliminaries

Let G be a finite simple graph with the vertex set V(G) and the edge set E(G). The order of G is the number of its vertices. Assume that H_1 and H_2 are two subgraphs of a graph H. Then the graph with the vertex set $V(H_1) \cap V(H_2)$ and the edge set $E(H_1) \cap E(H_2)$ is called the **intersection** of H_1 and H_2 and denoted by $H_1 \cap H_2$. Let S be a subset of V(G). We use $S \cup v$ (respectively, $S \setminus v$) to represent the set obtained by adding one vertex v to S (respectively, removing one vertex v from S). We write G[S] for the induced subgraph of G on the set S, and G - S (respectively, G - v) for the induced subgraph of G obtained by removing all vertices in S (respectively, removing one vertex v). The graph obtained from the disjoint union of a vertex v and a graph H such that v is adjacent to all vertices of H is called the **join** of v and H, and denoted by v + H.

Assume that G is a connected graph. Let $d_G(u, v)$ be the distance between two vertices u and v in G. The diameter of G is the maximum distance between two vertices of G. The **Wiener index** W(G) of G is defined as $W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u, v)$ [21]. The **status** $\sigma_G(u)$ of a vertex u in G is defined as $\sigma_G(u) = \sum_{v \in V(G)} d_G(u, v)$. If H is a subgraph of G satisfying $d_H(u, v) = d_G(u, v)$ for any two vertices u and v of H, then H is called an **isometric subgraph** of G. A **distance-hereditary graph** is a graph in which any connected induced subgraph is an isometric subgraph.

Lemma 2.1 [10] Let G be a connected graph. Then

(i) $W(G) \leq W(G-v) + \sigma_G(v)$ for any vertex v of G. The equality holds if and only if G-v is an isometric subgraph of G.

(ii) $W(G) = \sum_{i \ge 1} i \cdot D_i$, where D_i is the number of unordered pairs of vertices of G with distance i in G.

Let $N_G(v)$ be the set of all vertices adjacent to a vertex v in G. A vertex v is called a **simplicial** vertex of G if $N_G(v)$ induces a clique. A **perfect elimination** ordering (briefly, **peo**) of a graph G is a bijection $\phi : \{1, 2, \ldots, n\} \to V(G)$ such that for each $1 \leq i < n, \phi(i) = v_i$ is a simplicial vertex of the induced subgraph $G[\{v_n, v_{n-1}, \ldots, v_i\}]$. By [20], a graph G of order n is a k-tree if and only if it has a peo $\phi = (v_1, v_2, \ldots, v_n)$ such that each v_i $(1 \leq i \leq n - k)$ is a simplicial vertex of degree k in $G[\{v_n, v_{n-1}, \ldots, v_i\}]$.

During an inductive construction of a k-tree, the first k-clique chosen is called its **base** k-clique. When a new vertex v is added, the k-clique chosen whose vertices are all adjacent to v, is called the **joint** k-clique of v and denoted by JC(v), a corresponding (k + 1)-clique v + JC(v) is generated and denoted as $\langle v \rangle$. The well-known inductive definition [4, 20] of a k-tree can be stated as follows.

Observation 2.2 Let G be a k-tree of order n where n > k and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. Then G can be constructed inductively with respect to ϕ as follows. Start from the base k-clique $G[\{v_n, v_{n-1}, \ldots, v_{n-k+1}\}]$, proceed by adding vertices $v_{n-k}, v_{n-k-1}, \ldots, v_1$ in order such that each of them is adjacent to all vertices of its corresponding joint k-clique $JC(v_{n-k}), JC(v_{n-k-1}), \ldots, JC(v_1)$. Then a sequence of k-trees $G_{n-k}, G_{n-k-1}, \ldots, G_1$ is generated in order. At the end, $G = G_1$ is obtained.

It is known [4, 5] that for any k-tree of order n where n > k, each k-clique is contained in a (k + 1)-clique, and the number of r-cliques is $n_r = \binom{k}{r} + (n - k)\binom{k}{r-1}$ for $r \ge 1$. In particular, $n_k = 1 + (n - k)k$, $n_{k+1} = n - k$, and $n_{k+2} = 0$. Hence, any k-tree is K_{k+2} -free, and the number of (k + 1)-cliques in a k-tree of order n is n - k. By Observation 2.2, an inductive construction can be obtained for the (k + 1)-line graph $\ell_{k+1}(G)$ of a k-tree G. **Corollary 2.3** Let G be a k-tree of order n where n > k and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. Then vertices of $\ell_{k+1}(G)$ can be represented by $\langle v_i \rangle = v_i + JC(v_i)$, where $JC(v_i)$ is the joint k-clique of v_i for $1 \le i \le n - k$, and generated in order $\langle v_{n-k} \rangle, \langle v_{n-k-1} \rangle, \ldots, \langle v_1 \rangle$ during an inductive construction of G in Observation 2.2.

The concept of a k-walk was introduced in [5] as a generalization of a walk in a graph. An alternating sequence $\rho_0 \tau_1 \rho_1 \tau_2 \rho_2 \dots \rho_{t-1} \tau_t \rho_t$ of k-cliques and (k+1)-cliques is called a k-walk if each (k+1)-clique τ_i contains two distinct k-cliques ρ_{i-1} and ρ_i for $1 \leq i \leq t$. A graph of order at least k + 1 is called k-linked if any two k-cliques are joined by a k-walk, and every r-clique is contained in a k-clique for $1 \leq r < k$. A k-walk is a k-path if all terms of the alternating sequence are distinct. The k-distance between two k-cliques of a graph is the minimum number of (k+1)-cliques on a k-path between them. The k-diameter of a k-linked graph is the maximum k-distance between two k-cliques. A k-walk is a k-circuit if $t \geq 3$ and $\rho_t = \rho_0$, and all other terms of the sequence are distinct. A graph is k-acyclic if it has no k-circuits. Every k-tree of order at least k + 1 is k-linked and k-acyclic [5].

In [6], we introduced the k-status of a k-clique in a k-tree and the k-Wiener index of a k-tree, and characterized the extremal graphs for the k-Wiener index of a k-tree. Let G be a k-tree of order at least k + 1. The k-status of a k-clique ρ in G, denoted as $\sigma_G^{[k]}(\rho)$, is the summation of k-distances between ρ and all other k-cliques of G. The k-Wiener index of G, denoted as $W^{[k]}(G)$, is the summation of k-distances between every two k-cliques in G.

A minimal separator of a graph is an induced subgraph on a minimal set of vertices whose removal results in a graph with more components. A minimal separator on one vertex is called the **cut vertex** of the graph. A graph is k-connected if it has more than k vertices and the removal of any k - 1 vertices cannot disconnect the graph. A graph is said to be **triangulated** or **chordal** if every cycle of length larger than 3 contains an edge which is not a part of the cycle but connects two vertices of the cycle. In [20], a k-tree of order at least k + 1 was characterized as a k-connected and k-acyclic triangulated graph. Moreover, any minimal separator of a k-tree is a k-clique. It follows that a k-clique of a k-tree is a minimal separator if and only if it is contained in at least two (k + 1)-cliques.

For a peo $\phi = (v_1, v_2, \dots, v_n)$ of a k-tree G, the **position of a vertex** v_i is $\phi^{-1}(v_i) = i$, and the **monotone adjacency set** of v_i is the set of vertices

$$X(v_i) = \{ w \in N_G(v_i) \mid \phi^{-1}(w) > \phi^{-1}(v_i) \}.$$

For $1 \leq i \leq n-k$, $|X(v_i)| = k$ and $X(v_i)$ is the set of all vertices of the joint k-clique $JC(v_i)$, and so $JC(v_i) = G[X(v_i)]$. For $n-k+1 \leq i \leq n$, $|X(v_i)| = n-i$ and $X(v_i) \subseteq \{v_n, v_{n-1}, \ldots, v_{n-k+2}\}$.

Theorem 2.4 [18] Let G be a k-tree of order n where n > k and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. Then for each $1 \le i \le n - k$, there exists a unique j satisfying $i < j \le n - k + 1, v_j \in X(v_i)$ and $X(v_i) \subseteq v_j \cup X(v_j)$. Moreover, (i) $j = \min\{\phi^{-1}(w) \mid w \in X(v_i)\},\$

(*ii*)
$$|X(v_j) \setminus X(v_i)| = \begin{cases} 1, & \text{if } j \le n-k \\ 0, & \text{if } j = n-k+1 \end{cases}$$
 and $X(v_i) \setminus X(v_j) = v_j.$

Hence, if $j \leq n-k$, there is a unique vertex $\beta_j \in X(v_j) \setminus X(v_i)$ such that $\beta_j \neq v_j$ and $X(v_i) = v_j \cup X(v_j) \setminus \beta_j$; if j = n-k+1, then $X(v_i) = \{v_n, v_{n-1}, \dots, v_{n-k+1}\}$.

3 Main Results

A k-tree of order at most k + 1 is either a k-clique or a (k + 1)-clique. All k-trees considered in this section have order larger than k + 1.

Definition 1 Let G be a k-tree of order larger than k + 1. The k-clique graph of G, denoted by G/[k], is a graph whose vertices are k-cliques of G, and two k-cliques are adjacent in G/[k] if and only if they are contained in a common (k + 1)-clique of G.

Lemma 3.1 Let G be a k-tree of order larger than k + 1. Then (i) G/[k] is a connected block graph, (ii) $\ell_{k+1}(G)$ is isomorphic to B(G/[k]).

Proof. By [5], any two distinct k-cliques of a k-tree G are connected by a k-path, so G/[k] is connected. The set of all k-cliques contained in one (k + 1)-clique of G induces a complete subgraph of G/[k] of order k + 1. By [20], G is K_{k+2} -free and a k-clique is a minimal separator of G if and only if it is contained in more than one (k + 1)-clique of G. By [5], every k-tree of order at least k + 1 is k-linked and k-acyclic, we observe that a k-clique is a minimal separator of G if and only if it is a cut vertex of G/[k]. It follows that all k-cliques which are vertices of a block of G/[k] must be contained in one common (k + 1)-clique of G. Hence, any block of G/[k] is a complete subgraph of order k + 1, and G/[k] is a block graph.

We have shown that all vertices of a block of G/[k] are the set of k-cliques contained in a (k + 1)-clique of G. Then the set of blocks of G/[k] is in a 1–1 correspondence to the set of (k + 1)-cliques of G, which is the set of vertices of $\ell_{k+1}(G)$. Two vertices of $\ell_{k+1}(G)$ are adjacent if and only if they have a k-clique of G in common if and only if the corresponding two blocks of G/[k] have one vertex in common if and only if the corresponding two blocks of G/[k] are adjacent in B(G/[k]). Therefore, $\ell_{k+1}(G)$ is isomorphic to B(G/[k]).

By Lemma 3.1, we provide an alternative proof for the following result in [19].

Corollary 3.2 [19] Let G be a k-tree of order larger than k + 1. Then $\ell_{k+1}(G)$ is a connected block graph.

Proof. A graph is a block graph if and only if it is the block graph of some graph [11]. By Lemma 3.1, the conclusion follows. \Box

It was shown in [1] that $W(T) = W(L(T)) + \binom{n}{2}$ for any tree T of order n, where the line graph L(T) of a tree T is just the block graph of T. We will generalize this result to a relation between W(G/[k]) and $W(\ell_{k+1}(G))$, where $\ell_{k+1}(G)$ is the block graph of G/[k] for a k-tree G of order n. By definition, the distance between two vertices in the k-clique graph G/[k] is the k-distance between the corresponding two k-cliques in G. Therefore, the Wiener index W(G/[k]) is the k-Wiener index $W^{[k]}(G)$ introduced in [6] for a k-tree G.

Theorem 3.3 Let G be a k-tree of order n where n > k + 1. Then

$$W(G/[k]) = W^{[k]}(G) = k^2 \cdot W(\ell_{k+1}(G)) + \binom{1 + (n-k)k}{2}.$$

Proof. Note that the diameter of G/[k] is the k-diameter of G, which is at most n-k, the number of (k+1)-cliques of G. Let $1 \leq i \leq n-k-1$. Assume that μ and ν are two vertices of $\ell_{k+1}(G)$ with $d_{\ell_{k+1}(G)}(\mu,\nu) = i$. Then there is a unique path of length i between μ and ν in $\ell_{k+1}(G)$ because a shortest path between any two vertices in a block graph is unique [12], and $\ell_{k+1}(G)$ is a connected block graph by Corollary 3.2. Any vertex of $\ell_{k+1}(G)$ is a (k+1)-clique of G and the intersection of any two adjacent vertices in $\ell_{k+1}(G)$ is a k-clique of G. Then the unique shortest path between $\mu = \mu_0$ and $\nu = \mu_i$ in $\ell_{k+1}(G)$ can be written as an alternating sequence $(\mu = \mu_0)\rho_1\mu_1\rho_2\dots\mu_{i-1}\rho_i(\mu_i = \nu)$ of (k+1)-cliques and k-cliques of G such that for each $1 \leq j \leq i$, ρ_j is a k-clique which is the intersection of two (k+1)-cliques: μ_{j-1} and μ_j . The number of k-cliques contained in each (k+1)-clique is k+1. Let $\rho_{\mu} \neq \rho_1$ be a k-clique of G contained in $\mu = \mu_0$. Then G has k such ρ_{μ} 's. Let $\rho_{\nu} \neq \rho_i$ be a k-clique of G contained in $\nu = \mu_i$. Then G has k such ρ_{ν} 's. Recall that G/[k] is a connected block graph by Lemma 3.1. Then the alternating sequence $\rho_{\mu}(\mu = \mu_0)\rho_1\mu_1\rho_2\dots\rho_i(\mu_i = \nu)\rho_{\nu}$ is the unique shortest path between ρ_{μ} and ρ_{ν} in G/[k]. So, $d_{G/[k]}(\rho_{\mu}, \rho_{\nu}) = i+1$, which is the number of (k+1)-cliques on the shortest path between ρ_{μ} and ρ_{ν} . It follows that for each $1 \leq i \leq n - k - 1$ and any pair of vertices $\{\mu, \nu\}$ with distance *i* in $\ell_{k+1}(G)$, there are k^2 pairs of vertices $\{\rho_{\mu}, \rho_{\nu}\}$ with distance i + 1 in G/[k], and vice versa.

Let D'_i be the number of pairs of vertices of $\ell_{k+1}(G)$ with distance i in $\ell_{k+1}(G)$. Let D_i be the number of pairs of vertices of G/[k] with distance i in G/[k]. We have shown that $D'_i = \frac{1}{k^2}D_{i+1}$ for $1 \le i \le n-k-1$. It is clear that the diameter of $\ell_{k+1}(G)$ is at most n-k-1 since the diameter of G/[k] is at most n-k. By Lemma 2.1,

$$W(\ell_{k+1}(G)) = \sum_{i=1}^{n-k-1} i \cdot D'_i = \frac{1}{k^2} \sum_{i=1}^{n-k-1} i \cdot D_{i+1} = \frac{1}{k^2} \sum_{i=2}^{n-k} (i-1) \cdot D_i$$

= $\frac{1}{k^2} \left[\sum_{i=2}^{n-k} i \cdot D_i - \sum_{i=2}^{n-k} D_i \right] = \frac{1}{k^2} \left[\sum_{i=1}^{n-k} i \cdot D_i - \sum_{i=1}^{n-k} D_i \right].$

By Lemma 2.1, $\sum_{i=1}^{n-k} i \cdot D_i = W(G/[k])$. Note that $\sum_{i=1}^{n-k} D_i = \binom{1+(n-k)k}{2}$, which is the number of 2-element subsets of the set of k-cliques in G, and the number of k-cliques

in G is 1 + (n-k)k. Hence, $W(\ell_{k+1}(G)) = \frac{1}{k^2} \left[W(G/[k]) - \binom{1+(n-k)k}{2} \right]$. It follows that

$$W(G/[k]) = W^{[k]}(G) = k^2 \cdot W(\ell_{k+1}(G)) + \binom{1 + (n-k)k}{2}.$$

By Lemma 3.1, G/[k] is a connected block graph, and the set of blocks of G/[k] is in a 1–1 correspondence to the set of (k+1)-cliques of G. Parallel to the inductive construction of $\ell_{k+1}(G)$, an inductive construction of G/[k] can also be obtained by Observation 2.2.

Corollary 3.4 Let G be a k-tree of order n where n > k+1 and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. During an inductive construction of G in Observation 2.2, a sequence of k-clique graphs $G_{n-k}/[k], G_{n-k-1}/[k], \ldots, G_1/[k]$ can be generated in order. For each $n - k - 1 \ge i \ge 1$, when a vertex v_i is added to the k-tree G_{i+1} to get the k-tree G_i , a block B_i whose vertices are k-cliques of G contained in $v_i + JC(v_i)$ is added to $G_{i+1}/[k]$ to get $G_i/[k]$ with the property that B_i has exactly one common vertex $JC(v_i)$ with $G_{i+1}/[k]$.

By Observation 2.2, for $1 \leq i \leq n-k-1$, each v_i is a simplicial vertex of G_i , and so $G_{i+1} = G_i - v_i$ is an isometric subgraph of G_i . By Lemma 2.1, $W(G_i) = W(G_{i+1}) + \sigma_{G_i}(v_i)$ for $1 \leq i \leq n-k-1$. Note that $W(G_{n-k}) = \binom{k+1}{2}$ since G_{n-k} is a (k+1)-clique. Then $W(G) = \binom{k+1}{2} + \sum_{i=1}^{n-k-1} \sigma_{G_i}(v_i)$. Similar formulas for Wiener indices $W(\ell_{k+1}(G))$ and W(G/[k]) can be obtained by the inductive constructions of $\ell_{k+1}(G)$ and G/[k], respectively.

Lemma 3.5 Let G be a k-tree of order n where n > k+1 and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. Assume that G_i where $n-k \ge i \ge 1$ is the sequence of k-trees generated during the inductive construction of G in Observation 2.2. Then $G_1 = G$ and

(i) $W(\ell_{k+1}(G)) = \sum_{i=1}^{n-k-1} \sigma_{\ell_{k+1}(G_i)}(\langle v_i \rangle)$, where $\langle v_i \rangle$ is a vertex of the (k+1)-line graph $\ell_{k+1}(G_i)$ of G_i for $1 \le i \le n-k-1$;

(ii)
$$W(G/[k]) = k \binom{k+1}{2} - n \binom{k}{2} + k \left[\sum_{i=1}^{n-k-1} \sigma_{G_i/[k]}(\rho_i) \right]$$
, where ρ_i is a k-clique of the k-tree G_i containing v_i for $1 \le i \le n-k-1$.

Proof. (i) For $1 \leq i \leq n-k$, write $H_i = \ell_{k+1}(G_i)$. By Corollary 3.2, we observe that H_i is a block graph of order n-i+1-k since G_i is a k-tree of order n-i+1, and $\langle v_i \rangle = v_i + JC(v_i)$ is a vertex of H_i . Then $H_{i+1} = H_i - \langle v_i \rangle$ is an isometric subgraph of H_i for $1 \leq i \leq n-k-1$. By Lemma 2.1, we have $W(H_i) = W(H_{i+1}) + \sigma_{H_i}(\langle v_i \rangle)$ for $1 \leq i \leq n-k-1$. Note that $H_1 = \ell_{k+1}(G_1)$ where $G_1 = G$. It follows that

$$W(\ell_{k+1}(G)) = W(H_{n-k}) + \sigma_{H_{n-k-1}}(\langle v_{n-k-1} \rangle) + \ldots + \sigma_{H_1}(\langle v_1 \rangle)$$
$$= \sum_{i=1}^{n-k-1} \sigma_{H_i}(\langle v_i \rangle).$$

The last equality is valid because $W(H_{n-k}) = 0$ where $H_{n-k} = \ell_{k+1}(G_{n-k})$ is a one vertex graph.

(ii) Recall that the Wiener index of G/[k] is the k-Wiener index of G, and the status of a vertex in G/[k] is the k-status of the corresponding k-clique in G. By Theorem 4.3 in [6], $W(G/[k]) = k \left[\sum_{i=1}^{n-k} \sigma_{G_i/[k]}(\rho_i)\right] - (n-k) {k \choose 2}$, where ρ_i is a k-clique of G_i containing v_i for $1 \le i \le n-k$. Note that $G_{n-k}/[k]$ is a (k+1)-clique and ρ_{n-k} is a vertex of $G_{n-k}/[k]$. Then the vertex status $\sigma_{G_{n-k}/[k]}(\rho_{n-k}) = k$. It follows that

$$W(G/[k]) = k^{2} + k \left[\sum_{i=1}^{n-k-1} \sigma_{G_{i}/[k]}(\rho_{i}) \right] - (n-k) \binom{k}{2} \\ = k \binom{k+1}{2} - n\binom{k}{2} + k \left[\sum_{i=1}^{n-k-1} \sigma_{G_{i}/[k]}(\rho_{i}) \right].$$

The k-star of order n, denoted by S_n^k , is a k-tree obtained from a base k-clique by adding n - k vertices, each of them is adjacent to all vertices of the base k-clique. The k-th power of a path of order n, denoted by P_n^k , is a k-tree whose vertices can be labelled as v_1, v_2, \ldots, v_n such that two vertices v_i and v_j are adjacent if and only if $1 \leq |j - i| \leq k$. In [6], we showed that the k-Wiener index of a k-tree G of order n where n > k is bounded below by $2\binom{1+(n-k)k}{2} - (n-k)\binom{k+1}{2}$ and above by $k^2\binom{n-k+2}{3} - (n-k)\binom{k}{2}$. The bounds are attained when G is a k-star and a k-th power of a path, respectively. The above results for the k-Wiener index of a k-tree G also hold for the Wiener index of its k-clique graph G/[k] since $W(G/[k]) = W^{[k]}(G)$. It is well-known that the Wiener indices of connected graphs of order n-k are bounded below by $\binom{n-k}{2}$ and above by $\binom{n-k+1}{3}$, whose extremal graphs are a complete graph and a path of order n - k, respectively. Therefore, the bounds and extremal graphs for $W(\ell_{k+1}(G))$ follow immediately.

Corollary 3.6 Let G be a k-tree of order n where n > k + 1. Then

(i)
$$2\binom{1+(n-k)k}{2} - (n-k)\binom{k+1}{2} \le W(G/[k]) \le k^2\binom{n-k+2}{3} - (n-k)\binom{k}{2};$$

(ii) $\binom{n-k}{2} \le W(\ell_{k+1}(G)) \le \binom{n-k+1}{3}.$

Moreover, the lower bounds (respectively, upper bounds) can be attained when G is S_n^k (respectively, G is P_n^k).

Parallel to the **compact code** of a k-tree defined in [18], we provide the following terminology.

Definition 2 Let G be a k-tree of order n where n > k + 1 and $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G. For $1 \le i \le n - k$, the unique j satisfying the property stated in Theorem 2.4 is called the **compact code index** of i with respect to ϕ and denoted by $c_{\phi}(i)$.

By Theorem 2.4 and the definition of a compact code index, if $j = c_{\phi}(i) \leq n - k$, then $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$, and so $\langle v_i \rangle$ and $\langle v_j \rangle$ are adjacent in $\ell_{k+1}(G)$. **Theorem 3.7** Let G be a k-tree of order n where n > k+1 and let $\phi = (v_1, v_2, \ldots, v_n)$ be a peo of G.

- (i) Let $i < j \leq n-k$. Then $\langle v_i \rangle$ and $\langle v_j \rangle$ are adjacent in $\ell_{k+1}(G)$ if and only if $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$. Moreover, $JC(v_i) = JC(v_j)$ if and only if $\langle v_i \rangle$ and $\langle v_j \rangle$ are adjacent in $\ell_{k+1}(G)$ and $j \neq c_{\phi}(i)$.
- (ii) Let B be a block of $\ell_{k+1}(G)$ with vertices $\langle v_{i_j} \rangle = v_{i_j} + JC(v_{i_j})$, where $1 \le j \le b$ and $1 \le i_1 < i_2 < \ldots < i_b \le n-k$. Then $\bigcap_{j=1}^b \langle v_{i_j} \rangle = JC(v_{i_1})$. Moreover, either all $JC(v_{i_j})$ where $1 \le j \le b$ are the base k-clique of G with respect to ϕ , or $JC(v_{i_j})$ are the same for $1 \le j \le b-1$ and different from $JC(v_{i_b})$.

Proof. (i) Assume that $i < j \leq n - k$. Note that $\langle v_i \rangle = v_i + JC(v_i)$ and $\langle v_j \rangle = v_j + JC(v_j)$. By an inductive construction of G in Observation 2.2, v_i cannot be a vertex of $JC(v_j)$ since j > i. So, v_i cannot be a vertex of $\langle v_i \rangle \cap \langle v_j \rangle$. Then $\langle v_i \rangle$ and $\langle v_j \rangle$ are adjacent in $\ell_{k+1}(G)$ if and only if $\langle v_i \rangle \cap \langle v_j \rangle$ is a k-clique of G if and only if $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$.

If $JC(v_i) = JC(v_j)$, then $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$ and $v_j \notin X(v_i)$. It follows that $j \neq c_{\phi}(i)$ by Theorem 2.4. On other hand, if $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$ and $j \neq c_{\phi}(i)$, then $v_j \notin X(v_i)$. Otherwise, if $v_j \in X(v_i)$, then j satisfies the property stated in Theorem 2.4: $i < j \leq n - k, v_j \in X(v_i)$ and $X(v_i) \subseteq v_j \cup X(v_j)$. So, $j = c_{\phi}(i)$. This is a contradiction. Therefore, $v_j \notin X(v_i)$. By the assumption that $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_i)$ which is a k-clique of G, we have $\langle v_i \rangle \cap \langle v_j \rangle = JC(v_j)$ since $v_j \notin X(v_i)$. Then $JC(v_i) = JC(v_j)$.

(ii) Note that $b \ge 2$ since any block *B* has at least two vertices. By Corollary 2.3, $\langle v_{i_b} \rangle, \langle v_{i_{b-1}} \rangle, \ldots, \langle v_{i_1} \rangle$ are added to *B* in order during an inductive construction of $\ell_{k+1}(G)$ with respect to ϕ . Since $\ell_{k+1}(G)$ is a connected block graph, all vertices of *B* are pairwise adjacent. Then the intersection of any two vertices of *B* is a *k*-clique of *G*. By (i), $\bigcap_{j=1}^{b} \langle v_{i_j} \rangle = JC(v_{i_1})$ since $\langle v_{i_1} \rangle$ is the last vertex added to the block *B*. In particular, the intersection of any two vertices of *B* is $JC(v_{i_1})$.

By (i), for all $1 \leq j \leq b-1$, $\langle v_{i_b} \rangle \cap \langle v_{i_j} \rangle = JC(v_{i_j})$ since $i_j < i_b \leq n-k$. We have shown that the intersection of any two vertices of B is $JC(v_{i_1})$. Then $JC(v_{i_j}) = JC(v_{i_1})$ for all $1 \leq j \leq b-1$. It follows that $X(v_{i_j}) = X(v_{i_1})$ for all $1 \leq j \leq b-1$. By Theorem 2.4, $c_{\phi}(i_j) = \min\{\phi^{-1}(w) \mid w \in X(v_{i_j})\} = \min\{\phi^{-1}(w) \mid w \in X(v_{i_1})\} = c_{\phi}(i_1)$ for all $1 \leq j \leq b-1$. By Theorem 2.4, either $c_{\phi}(i_1) = n-k+1$ or $c_{\phi}(i_1) \leq n-k$.

If $c_{\phi}(i_1) = n - k + 1$, then $c_{\phi}(i_j) = c_{\phi}(i_1) = n - k + 1$ for all $1 \leq j \leq b - 1$. Moreover, $i_b \notin X(v_{i_1})$ since $i_b \leq n - k$. Then $\langle v_{i_b} \rangle \cap \langle v_{i_1} \rangle = JC(v_{i_1})$ implies that $X(v_{i_b}) = X(v_{i_1})$ and so $c_{\phi}(i_b) = c_{\phi}(i_1) = n - k + 1$. Therefore, for all $1 \leq j \leq b$, $JC(v_{i_j}) = G[\{v_n, v_{n-1}, \ldots, v_{n-k+1}\}]$, which is the base k-clique of G with respect to ϕ .

If $c_{\phi}(i_1) \leq n-k$, then $c_{\phi}(i_j) = c_{\phi}(i_1) \leq n-k$ for $1 \leq j \leq b-1$. Since $i_j < c_{\phi}(i_j) \leq n-k$ for $1 \leq j \leq b-1$, we observe that $\langle v_{i_j} \rangle$ and $\langle v_{c_{\phi}(i_j)} \rangle$ are

adjacent with $\langle v_{i_j} \rangle \cap \langle v_{c_{\phi}(i_j)} \rangle = JC(v_{i_j}) = JC(v_{i_1})$ for $1 \leq j \leq b-1$. Then the vertex $\langle v_{c_{\phi}(i_j)} \rangle = \langle v_{c_{\phi}(i_1)} \rangle$ is also contained in the block *B* for $1 \leq j \leq b-1$. Note that $c_{\phi}(i_j) \notin \{i_{b-1}, \ldots, i_j, \ldots, i_1\}$ for each $1 \leq j \leq b-1$. Then $\langle v_{c_{\phi}(i_j)} \rangle \notin \{\langle v_{i_{b-1}} \rangle, \ldots, \langle v_{i_j} \rangle, \ldots, \langle v_{i_1} \rangle\}$ for each $1 \leq j \leq b-1$. It follows that $\langle v_{c_{\phi}(i_j)} \rangle$ is the vertex $\langle v_{i_b} \rangle$ of *B* for $1 \leq j \leq b-1$. Therefore, $c_{\phi}(i_j) = i_b$ for all $1 \leq j \leq b-1$. By (i), $JC(v_{i_j})$ are the same for $1 \leq j \leq b-1$ and different from $JC(v_{i_b})$.

Corollary 3.8 Let G be a k-tree of order larger than k+1 and $\ell_{k+1}(G)$ be its (k+1)line graph. Then there is a 1–1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G.

Proof. By Theorem 3.7, the intersection of all vertices in a block of $\ell_{k+1}(G)$ is a k-clique of G. So, each block of $\ell_{k+1}(G)$ corresponds to a k-clique of G which is contained in at least two (k+1)-cliques of G. On the other hand, if a k-clique of G is contained in at least two (k+1)-cliques of G, then all (k+1)-cliques containing the same k-clique are pairwise adjacent in $\ell_{k+1}(G)$ and form a block of $\ell_{k+1}(G)$. Recall that a k-clique of G is a minimal separator of G if and only if it is contained in at least two (k+1)-cliques of G. Therefore, there is a 1–1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of minimal separators of G.

Definition 3 Let G be a k-tree of order larger than k+1. The **separator**-k-clique graph of G, denoted by $G/[k]_S$, is a graph whose vertices are the minimal separators of G, that is, the k-cliques of G each of which is contained in at least two (k + 1)-cliques of G, and two minimal separators of G are adjacent in $G/[k]_S$ if and only if they are contained in a common (k + 1)-clique of G.

The cut-point graph was first defined by Harary in [11]. The **cut-point graph** of a graph G, denoted by C(G), is a graph whose vertices are the cut vertices of G and two cut vertices are adjacent if and only if they are contained in a common block. It was shown in [11] that a graph is a block graph if and only if it is the block graph B(G) of some graph G and B(B(G)) = C(G).

Lemma 3.9 Let G be a k-tree of order larger than k+1. Then both $B(\ell_{k+1}(G))$ and C(G/[k]) are isomorphic to $G/[k]_S$, and $G/[k]_S$ is an isometric subgraph of G/[k].

Proof. By Corollary 3.8, there is a 1–1 correspondence between the set of the blocks of $\ell_{k+1}(G)$ and the set of vertices of $G/[k]_S$. Two blocks of $\ell_{k+1}(G)$ are adjacent in $B(\ell_{k+1}(G))$ if and only if two blocks of $\ell_{k+1}(G)$ have a cut vertex $\langle v \rangle$ of $\ell_{k+1}(G)$ in common if and only if the corresponding two vertices of $G/[k]_S$ (considered as kcliques of G) are contained in $\langle v \rangle$ (considered as (k+1)-cliques of G) if and only if the corresponding two vertices of $G/[k]_S$ are adjacent in $G/[k]_S$. Therefore, $B(\ell_{k+1}(G))$ is isomorphic to $G/[k]_S$. By Lemma 3.1, $\ell_{k+1}(G)$ is isomorphic to B(G/[k]). Then B(B(G/[k])) is isomorphic to $G/[k]_S$. By [11], B(B(G/[k])) = C(G/[k]). It follows that C(G/[k]) is isomorphic to $G/[k]_S$. By the definition of a separator-k-clique graph, $G/[k]_S$ is an induced subgraph of G/[k]. Moreover, $G/[k]_S$ is isometric in G/[k] because G/[k] is a block graph and block graphs are distance-hereditary graphs by [12].

Assume that G is a connected graph. Let e = uv be an edge of G. A vertex w of G is said to be closer to u than to v in G if $d_G(w, u) < d_G(w, v)$. Let $n_e(u)$ be the number of vertices that are closer to u than to v in G, and $n_e(v)$ be the number of vertices that are closer to v than to u in G. The Szeged index of G is defined as $Sz(G) = \sum_{uv \in E(G)} n_e(u)n_e(v)$ [8]. The Wiener index and the Szeged index are two closely related graph invariants. It is known [15] that $W(G) \leq Sz(G)$ for any connected graph G. The Szeged-Wiener Theorem [9] states that W(G) = Sz(G) if and only if G is a connected block graph; proofs are available in [3, 9, 14]. In particular, W(G) = Sz(G) if G is a tree [21]. By Lemma 3.1 and Lemma 3.9, G/[k], $\ell_{k+1}(G)$ and $G/[k]_S$ are connected block graphs, since a graph is a block graph if and only if it is the block graph of some graph [11]. We have the following conclusion by the Szeged-Wiener Theorem.

Corollary 3.10 Let G be a k-tree of order larger than k + 1. Then

(i) W(G/[k]) = Sz(G/[k]).(ii) $W(\ell_{k+1}(G)) = Sz(\ell_{k+1}(G)).$ (iii) $W(G/[k]_S) = Sz(G/[k]_S).$

Acknowledgements

We would like to thank referees for their careful reading and helpful suggestions.

References

- [1] F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981), 153–162.
- [2] A. Bickle and Z. Che, Wiener Indices of Maximal k-Degenerate Graphs, Graphs Combin. 37 (2021), 581–589.
- [3] A. Behtoei, M. Jannesari and B. Taeri, A characterization of block graphs, Discrete Appl. Math. 158 (2010), 219–221.
- [4] L. W. Beineke and R. E. Pippert, The number of labeled k-dimensional trees, J. Combin. Theory 6 (1969), 200–205.
- [5] L. W. Beineke and R. E. Pippert, Properties and characterizations of k-trees, Mathematika 18 (1971), 141–151.
- [6] Z. Che, k-Wiener index of a k-plex, J. Comb. Optim. 43 (2022), 65–78.
- [7] Z. Che and K. L. Collins, An upper bound on Wiener indices of maximal planar graphs, *Discrete Appl. Math.* 258 (2019), 76–86.

- [8] A. Dobrynin and I. Gutman, On a graph invariant related to the sum of all distances in a graph, *Publ. Inst. Math.* 56 (1994), 18–22.
- [9] A. Dobrynin and I. Gutman, Solving a problem connected with distances in graphs, *Graph Theory Notes N. Y.* **28** (1995), 21–23.
- [10] R. C. Entringer, D. E. Jackson and D. A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283–296.
- [11] F. Harary, A characterization of block graphs, Canad. Math. Bull. 6 (1963), 1-6.
- [12] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory Ser. B 27 (1979), 67–74.
- [13] F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 (1968), 115–122.
- [14] H. Khodashenas, M. J. Nadjafi-Arani, A. R. Ashrafi and I. Gutman, A new proof of the Szeged-Wiener theorem, *Kragujevac J. Math.* 35 (2011), 165–172.
- [15] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45–49.
- [16] V. B. Lê, Perfect k-line graphs and k-total graphs, J. Graph Theory 17 (1993), 65–73.
- [17] L. Markenzon, C. M. Justel and N. Paciornik, Subclasses of k-trees: characterization and recognition, Discrete Appl. Math. 154 (2006), 818–825.
- [18] L. Markenzon, O. Vernet and P. R. da C. Pereira, A compact code for k-trees, Pesqui. Oper. 29 (2009), 493–502.
- [19] A.S.S. Oliveira, M.A.A. de Freitas, C.T.M. Vinagre and L. Markenzon, On (k+1)-line graphs of k-trees and their nullities, *Linear Algebra Appl.* **614** (2021), 244–255.
- [20] H. P. Patil, On the structure of k-trees, J. Combin. Inform. System Sci. 11 (1986), 57–64.
- [21] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17–20.

(Received 18 May 2022; revised 17 July 2023)