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Abstract

We report some group divisible designs with block size five, including
types 615 and 1015. As a consequence we are able to extend significantly
the known spectrum for 5-GDDs of type gu.

1 Introduction

For the purpose of this paper, a group divisible design, K-GDD, of type gu1
1 gu2

2 . . . gur
r

is an ordered triple (V,G,B) such that:

(i) V is a base set of cardinality u1g1 + u2g2 + · · ·+ urgr;

(ii) G is a partition of V into ui subsets of cardinality gi, i = 1, 2, . . . , r, called
groups;

(iii) B is a non-empty collection of subsets of V with cardinalities k ∈ K, called
blocks ; and

(iv) each pair of elements from distinct groups occurs in precisely one block but no
pair of elements from the same group occurs in any block.

We abbreviate {k}-GDD to k-GDD, and a k-GDD of type qk is also called a transver-
sal design, TD(k, q). A pairwise balanced design, (v,K, 1)-PBD, is a K-GDD of
type 1v.

A parallel class in a group divisible design is a subset of the block set that parti-
tions the base set. A k-GDD is called resolvable, and is denoted by k-RGDD, if the
entire set of blocks can be partitioned into parallel classes. If there exist k mutually
orthogonal Latin squares (MOLS) of side q, then there exists a (k+2)-GDD of type
qk+2 and a (k+1)-RGDD of type qk+1, [4, Theorem III.3.18]. Furthermore, as is well
known, there exist q − 1 MOLS of side q whenever q is a prime power.
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Because of their widespread use in design theory, especially in the construction of
infinite classes of combinatorial designs by means of the technique known as Wilson’s
Fundamental Construction, [17], [13, Theorem IV.2.5], group divisible designs are
useful and important structures. The existence spectrum problem for group divisible
designs with constant block sizes, k-GDDs, k ≥ 3, appears to be a long way from
being completely solved. Nevertheless, for k ∈ {3, 4, 5} where all the groups have
the same size, considerable progress has been made.

The necessary conditions for the existence of k-GDDs of type gu, namely

u ≥ k,
g(u− 1) ≡ 0 (mod k − 1),

g2u(u− 1) ≡ 0 (mod k(k − 1)),
(1)

are known to be sufficient for k = 3, [14], [9, Theorem IV.4.1], and for k = 4 except
for types 24 and 64, [7], [9, Theorem IV.4.6]. For 5-GDDs of type gu, a partial
solution to the design spectrum problem has been achieved, [1, 2, 5, 6, 9, 10, 11, 14,
15, 16, 18], and for future reference, we quote the main result concerning 5-GDDs in
the important paper of Wei and Ge, [16], which represents a considerable advance
on [9, Theorem IV.4.16] in the Colbourn–Dinitz Handbook.

Theorem 1.1 (Wei, Ge, 2014) The necessary conditions (1) for the existence of
a 5-GDD of type gu are sufficient except for types 25, 211, 35, 65, and except possibly
for:

g = 3 and u ∈ {45, 65};
g = 2 and u ∈ {15, 35, 71, 75, 95, 111, 115, 195, 215};
g = 6 and u ∈ {15, 35, 75, 95};
g ∈ {14, 18, 22, 26} and u ∈ {11, 15, 71, 111, 115};
g ∈ {34, 46, 62} and u ∈ {11, 15};
g ∈ {38, 58} and u ∈ {11, 15, 71, 111};
g = 2α, gcd(α, 30) = 1, 33 ≤ α ≤ 2443, and u = 15;

g = 10 and u ∈ {5, 7, 15, 23, 27, 33, 35, 39, 47};
g = 30 and u = 15;

g = 50 and u ∈ {15, 23, 27};
g = 90 and u = 23;

g = 10α, α ∈ {7, 11, 13, 17, 35, 55, 77, 85, 91, 119, 143, 187, 221} and u = 23.

Proof: This is Theorem 2.25 of [16]. �

The objective of this paper is to prove Theorem 1.2, below, which improves
Theorem 1.1 by eliminating many possible exceptions.

Theorem 1.2 The necessary conditions (1) for the existence of a 5-GDD of type gu

are sufficient except for types 25, 211, 35, 65, and except possibly for:



A.D. FORBES /AUSTRALAS. J. COMBIN. 87 (1) (2023), 1–11 3

g = 3 and u = 65;

g = 2 and u ∈ {15, 75, 95, 115};
g = 6 and u ∈ {35, 95};
g ∈ {14, 18, 22, 26, 38, 58} and u ∈ {11, 15};
g ∈ {74, 82, 86, 94} and u = 15;

g = 10 and u ∈ {5, 7, 27, 39, 47};
g = 50 and u = 27.

2 GDDs with block size 5 and type gu

We begin with some directly constructed group divisible designs.

Theorem 2.1 There exist 5-GDDs of types 235, 271, 2111, 345, 615, 1015, 1023 and
1033.

Proof: For 235, 271, and 1023 see [8, Lemma 4.1].

2111 With the point set {0, 1, . . . , 221} partitioned into residue classes modulo 111
for {0, 1, . . . , 221}, the design is generated from

{137, 73, 211, 182, 50}, {138, 74, 212, 183, 51}, {148, 201, 185, 107, 206},
{149, 202, 186, 108, 207}, {202, 148, 11, 152, 191}, {203, 149, 12, 153, 192},
{119, 166, 168, 153, 212}, {120, 167, 169, 154, 213}, {123, 106, 46, 71, 188},
{124, 107, 47, 72, 189}, {84, 132, 77, 65, 156}, {0, 3, 12, 122, 136},
{0, 8, 38, 126, 154}, {0, 7, 83, 156, 219}, {0, 10, 32, 101, 102},
{0, 27, 55, 75, 182}, {0, 33, 51, 57, 108}, {0, 1, 107, 121, 204},
{0, 79, 119, 151, 189}, {1, 9, 31, 97, 123}, {0, 6, 26, 62, 159},
{0, 9, 71, 127, 195}
by the mapping: x �→ x+ 2j (mod 222), 0 ≤ j < 111.

345 With the point set {0, 1, . . . , 134} partitioned into residue classes modulo 44 for
{0, 1, . . . , 131}, and {132, 133, 134}, the design is generated from

{121, 84, 8, 48, 108}, {82, 9, 79, 86, 124}, {133, 30, 56, 57, 35},
{131, 80, 60, 9, 37}, {95, 70, 122, 60, 91}, {0, 2, 8, 30, 49},
{0, 3, 18, 85, 115}, {0, 12, 75, 77, 86}, {0, 14, 53, 78, 93},
{0, 16, 45, 50, 119}, {0, 9, 43, 84, 95}, {0, 7, 23, 83, 131},
{1, 7, 19, 33, 97}, {0, 33, 66, 99, 134}
by the mapping: x �→ x+ 2j (mod 132) for x < 132, x �→ (x+ j (mod 2)) + 132 for
132 ≤ x < 134, 134 �→ 134, 0 ≤ j < 66 for the first 13 blocks, 0 ≤ j < 33 for the last
block.
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615 With the point set {0, 1, . . . , 89} partitioned into residue classes modulo 15 for
{0, 1, . . . , 89}, the design is generated from

{80, 41, 45, 18, 25}, {0, 1, 41, 67, 88}, {0, 21, 29, 63, 73},
{0, 14, 39, 40, 71}, {0, 5, 34, 81, 83}, {0, 4, 13, 16, 84},
{0, 8, 32, 52, 85}, {0, 11, 17, 42, 79}, {0, 18, 36, 54, 72},
{1, 19, 37, 55, 73}
by the mapping: x �→ x+2j (mod 90), 0 ≤ j < 45 for the first eight blocks, 0 ≤ j < 9
for the last two blocks.

1015 With the point set {0, 1, . . . , 149} partitioned into residue classes modulo 15
for {0, 1, . . . , 149}, the design is generated from

{101, 21, 43, 132, 59}, {12, 85, 61, 88, 129}, {29, 9, 85, 93, 147},
{141, 39, 26, 48, 88}, {7, 76, 86, 25, 110}, {0, 1, 12, 108, 137},
{0, 14, 32, 111, 145}, {0, 17, 57, 63, 67}, {0, 16, 84, 107, 143},
{0, 2, 21, 102, 146}, {0, 8, 86, 95, 112}, {0, 7, 35, 36, 130},
{0, 11, 37, 58, 109}, {0, 3, 5, 70, 122}
by the mapping: x �→ x+ 2j (mod 150), 0 ≤ j < 75.

1033 With the point set {0, 1, . . . , 329} partitioned into residue classes modulo 33
for {0, 1, . . . , 329}, the design is generated from

{102, 84, 56, 8, 268}, {145, 251, 217, 214, 137}, {57, 303, 73, 97, 184},
{304, 149, 216, 134, 104}, {203, 229, 88, 107, 278}, {170, 150, 53, 139, 229},
{300, 246, 79, 41, 278}, {108, 129, 65, 133, 48}, {0, 13, 120, 193, 222},
{0, 7, 42, 65, 214}, {0, 1, 148, 153, 162}, {0, 27, 63, 110, 201},
{0, 10, 62, 136, 197}, {0, 2, 55, 105, 144}, {0, 6, 57, 98, 202},
{0, 12, 56, 151, 229}
by the mapping: x �→ x+ j (mod 330), 0 ≤ j < 330. �

For our proof of Theorem 1.2, we require some definitions and constructions.

A double group divisible design, k-DGDD, is an ordered quadruple (V,G,H,B)
such that:

(i) V is a base set of points;

(ii) G is a partition of V , the groups;

(iii) H is another partition of V , the holes ;

(iv) B is a non-empty collection of subsets of V of cardinality k, the blocks ;

(v) for each block B ∈ B, each group G ∈ G and each hole H ∈ H, we have
|B ∩G| ≤ 1 and |B ∩H| ≤ 1;
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(vi) each pair of elements of V not in the same group and not in the same hole
occurs in precisely one block.

A k-DGDD of type

(g1, h
w
1 )

u1(g2, h
w
2 )

u2 . . . (gr, h
w
r )

ur , gi = whi, i = 1, 2, . . . , r,

is a double group divisible design where:

(i) there are ui groups of size gi, i = 1, 2, . . . , r;

(ii) there are w holes;

(iii) for i = 1, 2, . . . , r, each group of size gi intersects each hole in hi points.

A modified group divisible design, k-MGDD, of type gu is a k-DGDD of type (g, 1g)u.
By interchanging groups and holes we see that a k-MGDD of type gu exists if and
only if a k-MGDD of type ug exists. See [1] for an extensive treatment of 5-MGDDs.

Lemma 2.1 Suppose there exists a 5-GDD of type gu1
1 gu2

2 . . . gun
n . Then for any pos-

itive integer h /∈ {2, 3, 6, 10}, there exists a 5-GDD of type (g1h)
u1(g2h)

u2 . . . (gnh)
un.

Proof: Inflate each point of the 5-GDD by a factor of h and replace the blocks with
5-GDDs of type h5. By Theorem 1.1, there exists a 5-GDD of type h5 for h ≥ 1,
h 
∈ {2, 3, 6, 10}. �

Lemma 2.2 Suppose there exists a K-GDD of type gu1
1 gu2

2 . . . gur
r , and let w be a

positive integer. Suppose also that for each k ∈ K, there exists a 5-MGDD of type
wk, and for i = 1, 2, . . . , r, there exists a 5-GDD of type gwi . Then there exists a
5-GDD of type (u1g1 + u2g2 + · · ·+ urgr)

w.

Proof: This is a combination of Constructions 2.19 and 2.20 in [16], and it also
appears (for block size 4) as Constructions 1.8 and 1.10 in [12].

Take the K-GDD and inflate each point by a factor of w. Replace each inflated block
by a 5-MGDD of type wk, k ∈ K to obtain a 5-DGDD of type

(wg1, g
w
1 )

u1(wg2, g
w
2 )

u2 . . . (wgr, g
w
r )

ur .

Then overlay the holes of this 5-DGDD with 5-GDDs of types gwi , i = 1, 2, . . . , r. �

We can now prove our main result.

Proof of Theorem 1.2.

For types 235, 271, 2111, 345, 615, 1015, 1023 and 1033, see Theorem 2.1.

For types 2195 and 2215, take a 5-GDD of type 685481 or 685881, [15] (alternatively,
see [5, Theorem 2.1] or [9, Theorem IV.4.17]), and adjoin two extra points. Overlay
each group together with the new points with a 5-GDD of type 225 or 235 or 245, as
appropriate.
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For type 675, take a 5-GDD of type 905 and overlay the groups with 5-GDDs of
type 615.

For type gt, g ∈ {14, 18, 22, 26, 38, 58}, t ∈ {71, 111}, use Lemma 2.1 with type
271 or 2111 and h = g/2.

For type g115, g ∈ {14, 18, 22, 26}, construct a 5-GDD of type (5g)23 using
Lemma 2.1 with a 5-GDD of type 1023 and h = g/2; then replace each group with a
5-GDD of type g5.

For types 1035, 3015 and 5015, use Lemma 2.1 with a 5-GDD of type 235 or 615 or
1015, as appropriate, and h = 5.

For type (10α)23, odd α ≥ 5, use Lemma 2.1 with a 5-GDD of type 1023 and
h = α.

For type g11, g ∈ {34, 46, 62} and g15, g = 2α, gcd(α, 30) = 1, α ≥ 33, let

G = {34, 46, 62} ∪
{
even g ≥ 66 : gcd

(g
2
, 30

)
= 1

}

\ {74, 82, 86, 94, 98, 106, 118, 178}.
For g ∈ G, there exists a (g+1, {5, 7, 9}, 1)-PBD, [3, Table IV.3.23]. Take this PBD,
remove a point and the blocks containing it to get a {5, 7, 9}-GDD of type 4a6b8c for
some non-negative integers a, b, c satisfying 4a + 6b + 8c = g. Now use Lemma 2.2
with this {5, 7, 9}-GDD and w = 11 or 15 to obtain 5-GDDs of types g11 and g15 for
every g ∈ G. For the existence of 5-MGDDs of types w5, w7 and w9, see [1]. For the
existence of 5-GDDs of types 4w, 6w and 8w, see Theorems 1.1 and 2.1.

For type 9815, take a TD(9, 11), fill in the groups with blocks of size 11 and
remove a point together with the blocks containing it to get a {9, 11}-GDD of type
811101. Now use Lemma 2.2 with this {9, 11}-GDD and w = 15 to obtain a 5-GDD
of type 9815. For the existence of 5-MGDDs of types 159 and 1511, see [1]. For the
existence of 5-GDDs of types 815 and 1015, see Theorems 1.1 and 2.1.

For types 10615, 11815 and 17815, we refer the reader to Lemma 3.16 of [11], which
proves that there exists a 5-GDD of type h11 for h ≡ 2 (mod 4), h ≥ 66. By [11,
Theorem 1.3], there exists a 4-frame of type 615, i.e. a 4-GDD (V,G,B) of type 615

in which the block set can be partitioned into into 30 partial parallel classes of size
21 each of which partitions V \ G for some G ∈ G. Also we have the 5-GDD of
type 615 from Theorem 2.1 as well as 5-GDDs of type h15 for h ≡ 0 (mod 4) from
Theorem 1.1. Then, by a straightforward adaptation of the proof of [11, Lemma
3.16], we obtain 5-GDDs of type g15 for g ∈ {6n, 6n+ 4, . . . , 8n− 2} whenever there
exists a TD(15, n) with odd n. This interval contains 106 and 118 when n = 17, and
178 when n = 23. �

3 GDDs with block size 5 and type gum1

Assuming they might be of some use for future research, we collect together an
assortment of directly constructed 5-GDDs of type gum1 that we have found during
our investigations.
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Theorem 3.1 There exist 5-GDDs of types 236101, 61221, 720191, 81041, 812161,
813121, 818121, 82041, 820241, 12581, 168241 and 24781.

Proof: 236101 With the point set {0, 1, . . . , 81} partitioned into residue classes
modulo 36 for {0, 1, . . . , 71}, and {72, 73, . . . , 81}, the design is generated from

{21, 76, 30, 35, 0}, {38, 9, 33, 7, 30}, {65, 23, 8, 15, 4},
{32, 79, 55, 30, 61}, {72, 63, 9, 64, 54}, {1, 35, 80, 60, 34},
{9, 61, 28, 21, 65}, {6, 12, 28, 40, 60}, {0, 14, 59, 69, 73}
by the mapping: x �→ x+ 2j (mod 72) for x < 72, x �→ (x− 72 + 5j (mod 10)) + 72
for x ≥ 72, 0 ≤ j < 36.

61221 With the point set {0, 1, . . . , 73} partitioned into residue classes modulo 12
for {0, 1, . . . , 71}, and {72, 73}, the design is generated from

{32, 70, 25, 41, 21}, {14, 31, 46, 56, 0}, {9, 11, 48, 39, 70},
{64, 58, 60, 41, 63}, {26, 55, 21, 34, 54}, {57, 72, 32, 47, 50},
{0, 19, 37, 45, 51}
by the mapping: x �→ x + 2j (mod 72) for x < 72, x �→ (x + j (mod 2)) + 72 for
x ≥ 72, 0 ≤ j < 36.

720191 With the point set {0, 1, . . . , 158} partitioned into residue classes modulo 19
for {0, 1, . . . , 132}, {133, 134, . . . , 139}, and {140, 141, . . . , 158}, the design is gener-
ated from

{64, 48, 14, 54, 115}, {39, 2, 156, 51, 94}, {39, 101, 24, 128, 21},
{0, 4, 91, 98, 145}, {0, 1, 14, 22, 147}, {0, 2, 25, 30, 88},
{0, 17, 48, 81, 133}, {0, 9, 68, 122, 140}, {0, 24, 97, 138, 158}
by the mapping: x �→ x + j (mod 133) for x < 133, x �→ (x+ j (mod 7)) + 133 for
133 ≤ x < 140, x �→ (x− 140 + j (mod 19)) + 140 for x ≥ 140, 0 ≤ j < 133.

81041 With the point set {0, 1, . . . , 83} partitioned into residue classes modulo 10
for {0, 1, . . . , 79}, and {80, 81, 82, 83}, the design is generated from

{56, 2, 24, 70, 3}, {80, 42, 19, 60, 57}, {14, 49, 6, 30, 77},
{0, 2, 6, 31, 75}
by the mapping: x �→ x + j (mod 80) for x < 80, x �→ (x + j (mod 4)) + 80 for
x ≥ 80, 0 ≤ j < 80.

812161 With the point set {0, 1, . . . , 111} partitioned into residue classes modulo 12
for {0, 1, . . . , 95}, and {96, 97, . . . , 111}, the design is generated from

{34, 42, 100, 36, 59}, {92, 89, 55, 85, 36}, {88, 3, 12, 66, 103},
{111, 28, 66, 56, 1}, {43, 4, 22, 48, 108}, {0, 1, 14, 46, 81}
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by the mapping: x �→ x + j (mod 96) for x < 96, x �→ (x + j (mod 16)) + 96 for
x ≥ 96, 0 ≤ j < 96.

813121 With the point set {0, 1, . . . , 115} partitioned into residue classes modulo 13
for {0, 1, . . . , 103}, and {104, 105, . . . , 115}, the design is generated from

{52, 16, 14, 24, 64}, {38, 99, 70, 95, 79}, {90, 5, 0, 109, 87},
{41, 103, 10, 113, 68}, {35, 2, 17, 72, 105}, {0, 1, 7, 60, 81}
by the mapping: x �→ x+j (mod 104) for x < 104, x �→ (x−104+3j (mod 12))+104
for x ≥ 104, 0 ≤ j < 104.

818121 With the point set {0, 1, . . . , 155} partitioned into residue classes modulo 18
for {0, 1, . . . , 143}, and {144, 145, . . . , 155}, the design is generated from

{49, 57, 14, 17, 15}, {137, 122, 77, 61, 55}, {52, 21, 14, 65, 150},
{56, 79, 60, 23, 32}, {6, 84, 32, 11, 59}, {53, 12, 92, 152, 142},
{2, 71, 13, 83, 100}, {0, 10, 30, 95, 149}
by the mapping: x �→ x+ j (mod 144) for x < 144, x �→ (x+ j (mod 12)) + 144 for
x ≥ 144, 0 ≤ j < 144.

82041 With the point set {0, 1, . . . , 163} partitioned into residue classes modulo 20
for {0, 1, . . . , 159}, and {160, 161, 162, 163}, the design is generated from

{70, 95, 117, 58, 51}, {9, 133, 124, 148, 61}, {88, 99, 57, 3, 89},
{67, 144, 10, 136, 14}, {13, 117, 94, 123, 156}, {15, 66, 80, 64, 148},
{56, 99, 10, 38, 51}, {0, 3, 58, 93, 160}
by the mapping: x �→ x + j (mod 160) for x < 160, x �→ (x+ j (mod 4)) + 160 for
x ≥ 160, 0 ≤ j < 160.

820241 With the point set {0, 1, . . . , 183} partitioned into residue classes modulo 20
for {0, 1, . . . , 159}, and {160, 161, . . . , 183}, the design is generated from

{142, 54, 150, 133, 40}, {172, 8, 137, 115, 2}, {112, 17, 6, 69, 153},
{72, 114, 39, 175, 129}, {78, 137, 177, 114, 116}, {46, 19, 145, 170, 108},
{89, 40, 179, 43, 134}, {125, 52, 120, 42, 174}, {35, 54, 6, 36, 140}, {0, 4, 16, 125, 132}
by the mapping: x �→ x+j (mod 160) for x < 160, x �→ (x−160+9j (mod 24))+160
for x ≥ 160, 0 ≤ j < 160.

12581 With the point set {0, 1, . . . , 67} partitioned into residue classes modulo 5 for
{0, 1, . . . , 59}, and {60, 61, . . . , 67}, the design is generated from

{0, 2, 49, 51, 64}, {0, 1, 7, 33, 59}, {0, 4, 38, 41, 57}, {0, 18, 19, 26, 32},
{0, 9, 13, 31, 62}, {0, 3, 6, 17, 65}, {0, 8, 22, 29, 60}, {0, 11, 42, 58, 61},
{1, 18, 22, 39, 55}, {1, 2, 30, 53, 66}, {0, 16, 39, 43, 67}, {1, 15, 34, 43, 61},
{0, 12, 24, 36, 48}
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by the mapping: x �→ x + 4j (mod 60) for x < 60, x �→ (x + j (mod 5)) + 60 for
60 ≤ x < 65, x �→ (x− 65 + j (mod 3)) + 65 for x ≥ 65, 0 ≤ j < 15 for the first 12
blocks; x �→ x+ j (mod 60) for x < 60, x �→ (x+ j (mod 5)) + 60 for 60 ≤ x < 65,
x �→ (x− 65 + j (mod 3)) + 65 for x ≥ 65, 0 ≤ j < 12 for the last block.

168241 With the point set {0, 1, . . . , 151} partitioned into residue classes modulo 8
for {0, 1, . . . , 127}, and {128, 129, . . . , 151}, the design is generated from

{62, 129, 95, 9, 19}, {94, 11, 93, 55, 146}, {18, 115, 0, 15, 148},
{30, 77, 9, 23, 96}, {143, 31, 22, 81, 101}, {3, 80, 106, 102, 135},
{40, 70, 3, 5, 97}, {0, 5, 11, 116, 139}
by the mapping: x �→ x+j (mod 128) for x < 128, x �→ (x−128+9j (mod 24))+128
for x ≥ 128, 0 ≤ j < 128.

24781 With the point set {0, 1, . . . , 175} partitioned into residue classes modulo 7
for {0, 1, . . . , 167}, and {168, 169, . . . , 175}, the design is generated from

{135, 1, 159, 70, 81}, {13, 63, 15, 54, 32}, {159, 28, 29, 3, 114},
{107, 162, 91, 87, 55}, {127, 17, 12, 173, 104}, {115, 161, 55, 88, 155},
{90, 16, 24, 120, 133}, {0, 3, 18, 47, 170}
by the mapping: x �→ x + j (mod 168) for x < 168, x �→ (x+ j (mod 8)) + 168 for
x ≥ 168, 0 ≤ j < 168. �

The existence of type 12581 means that we can give the following update of [16,
Theorem 2.27] (also [6, Theorem 5] or [9, Theorem IV.4.17]).

Theorem 3.2 A 5-GDD of type g5m1 exists whenever g ≡ m ≡ 0 (mod 4) and
m ≤ 4g/3 except possibly when (g,m) = (12, 4).

During the time this paper has been under review, direct constructions for many
more small 5-GDDs have been obtained, the majority of them of type gum1 for
various g ≤ 48. The results are recorded in Theorem 3.3, below. We save space
here by placing the details of the constructions in a separate supplement, which
is available online at http://arxiv.org/abs/2211.14124. Although the seven
types 81541, 121081, 1210161, 121241, 121381, 167121 and 16841 are listed in [9, Remark
IV.4.19] as known, the only existence proofs we are aware of appear in an unpublished
manuscript of J. Wang and H. Shen, Embeddings of Near Resolvable Designs with
Block Size Four; therefore we include these 5-GDDs in Theorem 3.3 and, with our
constructions, in the supplement. Types 4um1 are covered by [5]; delete a point from
the block of size m+ 1 of a (4u+m+ 1, {5, (m+ 1)∗}, 1)-PBD.

Theorem 3.3 There exist 5-GDDs of types
14891, 16091, 160131, 16891, 172171, 18091, 180131, 180251, 184211, 18891, 192171, 196251,
110091, 1100131, 1100251, 1104211, 110891, 1108291, 1112171, 1124211, 112891, 1128291,
1132171, 1132371, 1136251, 1144211, 1144411, 1148291, 1152171, 1152371, 1156251, 1156451,
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1160331, 1164211, 1164411, 1168291, 1168491, 1172171, 1176251, 1176451, 1184211, 1184411,
1188291, 1192171, 1192371, 1192571, 1196251, 1196451, 232141, 24061, 248181, 252141,
256101, 26061, 320111, 32871, 332111, 336151, 524251, 528251, 532251, 532451, 536451,
540451, 544251, 544451, 616101, 88121, 810161, 810201, 814281, 81541, 815161, 815241,
815361, 816201, 817161, 818321, 820441, 821201, 821401, 822161, 822361, 823321, 824281,
82541, 825241, 826201, 827161, 828121, 9811, 912131, 91651, 916251, 920171, 920291,
920371, 920491, 92811, 1010181, 1020381, 1120191, 12581, 121081, 1210161, 1210281,
1211201, 121241, 1212241, 121381, 1213281, 1214321, 121581, 1215161, 1215281, 1215361,
1215481, 1216201, 1216401, 121741, 1217241, 1217441, 121881, 1218281, 1218481, 1219321,
1219521, 122081, 1221201, 1221401, 1221601, 122241, 1222241, 1222441, 1222641, 1223281,
1223481, 1223681, 1224321, 1224521, 122741, 138171, 131211, 1312211, 1312411, 131651,
1316251, 132011, 14861, 166201, 167121, 16841, 169361, 161081, 1610201, 1610281,
1610361, 1610401, 1611201, 1611401, 1612121, 1612521, 161341, 1613241, 1613441, 1614361,
161581, 1615281, 1616201, 1616401, 1617121, 178131, 178331, 171291, 1712291, 1712491,
171651, 208401, 209401, 2010361, 2010401, 2011401, 21891, 218291, 2112171, 23871,
246201, 24781, 247281, 248161, 248361, 24941, 249441, 241041, 2410121, 2410321,
2411201, 25851, 258451, 286201, 286401, 287161, 287361, 288121, 288321, 288521, 28981,
289481, 281041, 2810241, 29811, 298211, 326201, 326401, 32741, 327241, 327441, 32881,
328281, 329121, 366201, 366401, 367121, 367321, 368241, 406201, 446201, 446401, 44781,
486201, 11695, 14653 and 4585.

Proof: See http://arxiv.org/abs/2211.14124. �
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