Group divisible designs with block size five

A. D. Forbes*
LSBU Business School
London South Bank University
103 Borough Road, London SE1 OAA, U.K.
anthony.d.forbes@gmail.com

Abstract

We report some group divisible designs with block size five, including types 6^{15} and 10^{15}. As a consequence we are able to extend significantly the known spectrum for 5 -GDDs of type g^{u}.

1 Introduction

For the purpose of this paper, a group divisible design, K-GDD, of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \ldots g_{r}^{u_{r}}$ is an ordered triple $(V, \mathcal{G}, \mathcal{B})$ such that:
(i) V is a base set of cardinality $u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{r} g_{r}$;
(ii) \mathcal{G} is a partition of V into u_{i} subsets of cardinality $g_{i}, i=1,2, \ldots, r$, called groups;
(iii) \mathcal{B} is a non-empty collection of subsets of V with cardinalities $k \in K$, called blocks; and
(iv) each pair of elements from distinct groups occurs in precisely one block but no pair of elements from the same group occurs in any block.

We abbreviate $\{k\}$-GDD to k-GDD, and a k-GDD of type q^{k} is also called a transversal design, $\mathrm{TD}(k, q)$. A pairwise balanced design, $(v, K, 1)-\mathrm{PBD}$, is a K-GDD of type 1^{v}.

A parallel class in a group divisible design is a subset of the block set that partitions the base set. A k-GDD is called resolvable, and is denoted by k-RGDD, if the entire set of blocks can be partitioned into parallel classes. If there exist k mutually orthogonal Latin squares (MOLS) of side q, then there exists a $(k+2)$-GDD of type q^{k+2} and a $(k+1)$-RGDD of type q^{k+1}, [4, Theorem III.3.18]. Furthermore, as is well known, there exist $q-1$ MOLS of side q whenever q is a prime power.

[^0]Because of their widespread use in design theory, especially in the construction of infinite classes of combinatorial designs by means of the technique known as Wilson's Fundamental Construction, [17], [13, Theorem IV.2.5], group divisible designs are useful and important structures. The existence spectrum problem for group divisible designs with constant block sizes, k-GDDs, $k \geq 3$, appears to be a long way from being completely solved. Nevertheless, for $k \in\{3,4,5\}$ where all the groups have the same size, considerable progress has been made.

The necessary conditions for the existence of k-GDDs of type g^{u}, namely

$$
\begin{align*}
u & \geq k, \\
g(u-1) & \equiv 0(\bmod k-1), \tag{1}\\
g^{2} u(u-1) & \equiv 0(\bmod k(k-1)),
\end{align*}
$$

are known to be sufficient for $k=3$, [14, [9, Theorem IV.4.1], and for $k=4$ except for types 2^{4} and 6^{4}, [7], 9, Theorem IV.4.6]. For 5-GDDs of type g^{u}, a partial solution to the design spectrum problem has been achieved, [1, 2, 5, 6, 9, 10, 11, 14, 15, 16, 18, and for future reference, we quote the main result concerning 5-GDDs in the important paper of Wei and Ge, [16], which represents a considerable advance on [9, Theorem IV.4.16] in the Colbourn-Dinitz Handbook.

Theorem 1.1 (Wei, Ge, 2014) The necessary conditions (1) for the existence of a 5-GDD of type g^{u} are sufficient except for types $2^{5}, 2^{11}, 3^{5}, 6^{5}$, and except possibly for:

$$
\begin{aligned}
& g=3 \text { and } u \in\{45,65\} ; \\
& g=2 \text { and } u \in\{15,35,71,75,95,111,115,195,215\} ; \\
& g=6 \text { and } u \in\{15,35,75,95\} ; \\
& g \in\{14,18,22,26\} \text { and } u \in\{11,15,71,111,115\} ; \\
& g \in\{34,46,62\} \text { and } u \in\{11,15\} ; \\
& g \in\{38,58\} \text { and } u \in\{11,15,71,111\} ; \\
& g=2 \alpha, \operatorname{gcd}(\alpha, 30)=1,33 \leq \alpha \leq 2443, \text { and } u=15 ; \\
& g=10 \text { and } u \in\{5,7,15,23,27,33,35,39,47\} ; \\
& g=30 \text { and } u=15 ; \\
& g=50 \text { and } u \in\{15,23,27\} ; \\
& g=90 \text { and } u=23 ; \\
& g=10 \alpha, \alpha \in\{7,11,13,17,35,55,77,85,91,119,143,187,221\} \text { and } u=23 .
\end{aligned}
$$

Proof: This is Theorem 2.25 of [16].
The objective of this paper is to prove Theorem 1.2, below, which improves Theorem 1.1 by eliminating many possible exceptions.

Theorem 1.2 The necessary conditions (11) for the existence of a 5-GDD of type g^{u} are sufficient except for types $2^{5}, 2^{11}, 3^{5}, 6^{5}$, and except possibly for:

```
\(g=3\) and \(u=65\);
\(g=2\) and \(u \in\{15,75,95,115\} ;\)
\(g=6\) and \(u \in\{35,95\}\);
\(g \in\{14,18,22,26,38,58\}\) and \(u \in\{11,15\}\);
\(g \in\{74,82,86,94\}\) and \(u=15\);
\(g=10\) and \(u \in\{5,7,27,39,47\} ;\)
\(g=50\) and \(u=27\).
```


2 GDDs with block size 5 and type g^{u}

We begin with some directly constructed group divisible designs.
Theorem 2.1 There exist 5-GDDs of types $2^{35}, 2^{71}, 2^{111}, 3^{45}, 6^{15}, 10^{15}, 10^{23}$ and 10^{33}.

Proof: For $2^{35}, 2^{71}$, and 10^{23} see [8, Lemma 4.1].
2^{111} With the point set $\{0,1, \ldots, 221\}$ partitioned into residue classes modulo 111 for $\{0,1, \ldots, 221\}$, the design is generated from
$\{137,73,211,182,50\},\{138,74,212,183,51\},\{148,201,185,107,206\}$,
$\{149,202,186,108,207\},\{202,148,11,152,191\},\{203,149,12,153,192\}$,
$\{119,166,168,153,212\},\{120,167,169,154,213\},\{123,106,46,71,188\}$,
$\{124,107,47,72,189\},\{84,132,77,65,156\},\{0,3,12,122,136\}$,
$\{0,8,38,126,154\},\{0,7,83,156,219\},\{0,10,32,101,102\}$,
$\{0,27,55,75,182\},\{0,33,51,57,108\},\{0,1,107,121,204\}$,
$\{0,79,119,151,189\},\{1,9,31,97,123\},\{0,6,26,62,159\}$,
$\{0,9,71,127,195\}$
by the mapping: $x \mapsto x+2 j(\bmod 222), 0 \leq j<111$.
3^{45} With the point set $\{0,1, \ldots, 134\}$ partitioned into residue classes modulo 44 for $\{0,1, \ldots, 131\}$, and $\{132,133,134\}$, the design is generated from
$\{121,84,8,48,108\},\{82,9,79,86,124\},\{133,30,56,57,35\}$,
$\{131,80,60,9,37\},\{95,70,122,60,91\},\{0,2,8,30,49\}$,
$\{0,3,18,85,115\},\{0,12,75,77,86\},\{0,14,53,78,93\}$,
$\{0,16,45,50,119\},\{0,9,43,84,95\},\{0,7,23,83,131\}$,
$\{1,7,19,33,97\},\{0,33,66,99,134\}$
by the mapping: $x \mapsto x+2 j(\bmod 132)$ for $x<132, x \mapsto(x+j(\bmod 2))+132$ for $132 \leq x<134,134 \mapsto 134,0 \leq j<66$ for the first 13 blocks, $0 \leq j<33$ for the last block.
$\mathbf{6}^{\mathbf{1 5}}$ With the point set $\{0,1, \ldots, 89\}$ partitioned into residue classes modulo 15 for $\{0,1, \ldots, 89\}$, the design is generated from
$\{80,41,45,18,25\},\{0,1,41,67,88\},\{0,21,29,63,73\}$,
$\{0,14,39,40,71\},\{0,5,34,81,83\},\{0,4,13,16,84\}$,
$\{0,8,32,52,85\},\{0,11,17,42,79\},\{0,18,36,54,72\}$,
$\{1,19,37,55,73\}$
by the mapping: $x \mapsto x+2 j(\bmod 90), 0 \leq j<45$ for the first eight blocks, $0 \leq j<9$ for the last two blocks.
$\mathbf{1 0} \mathbf{0}^{\mathbf{1 5}}$ With the point set $\{0,1, \ldots, 149\}$ partitioned into residue classes modulo 15 for $\{0,1, \ldots, 149\}$, the design is generated from
$\{101,21,43,132,59\},\{12,85,61,88,129\},\{29,9,85,93,147\}$,
$\{141,39,26,48,88\},\{7,76,86,25,110\},\{0,1,12,108,137\}$,
$\{0,14,32,111,145\},\{0,17,57,63,67\},\{0,16,84,107,143\}$,
$\{0,2,21,102,146\},\{0,8,86,95,112\},\{0,7,35,36,130\}$,
$\{0,11,37,58,109\},\{0,3,5,70,122\}$
by the mapping: $x \mapsto x+2 j(\bmod 150), 0 \leq j<75$.
10^{33} With the point set $\{0,1, \ldots, 329\}$ partitioned into residue classes modulo 33 for $\{0,1, \ldots, 329\}$, the design is generated from
$\{102,84,56,8,268\},\{145,251,217,214,137\},\{57,303,73,97,184\}$,
$\{304,149,216,134,104\},\{203,229,88,107,278\},\{170,150,53,139,229\}$,
$\{300,246,79,41,278\},\{108,129,65,133,48\},\{0,13,120,193,222\}$,
$\{0,7,42,65,214\},\{0,1,148,153,162\},\{0,27,63,110,201\}$,
$\{0,10,62,136,197\},\{0,2,55,105,144\},\{0,6,57,98,202\}$,
$\{0,12,56,151,229\}$
by the mapping: $x \mapsto x+j(\bmod 330), 0 \leq j<330$.

For our proof of Theorem 1.2, we require some definitions and constructions.
A double group divisible design, k - DGDD , is an ordered quadruple $(V, \mathcal{G}, \mathcal{H}, \mathcal{B})$ such that:
(i) V is a base set of points;
(ii) \mathcal{G} is a partition of V, the groups;
(iii) \mathcal{H} is another partition of V, the holes;
(iv) \mathcal{B} is a non-empty collection of subsets of V of cardinality k, the blocks;
(v) for each block $B \in \mathcal{B}$, each group $G \in \mathcal{G}$ and each hole $H \in \mathcal{H}$, we have $|B \cap G| \leq 1$ and $|B \cap H| \leq 1 ;$
(vi) each pair of elements of V not in the same group and not in the same hole occurs in precisely one block.

A k-DGDD of type

$$
\left(g_{1}, h_{1}^{w}\right)^{u_{1}}\left(g_{2}, h_{2}^{w}\right)^{u_{2}} \ldots\left(g_{r}, h_{r}^{w}\right)^{u_{r}}, \quad g_{i}=w h_{i}, \quad i=1,2, \ldots, r,
$$

is a double group divisible design where:
(i) there are u_{i} groups of size $g_{i}, i=1,2, \ldots, r$;
(ii) there are w holes;
(iii) for $i=1,2, \ldots, r$, each group of size g_{i} intersects each hole in h_{i} points.

A modified group divisible design, k-MGDD, of type g^{u} is a k-DGDD of type $\left(g, 1^{g}\right)^{u}$. By interchanging groups and holes we see that a k-MGDD of type g^{u} exists if and only if a k-MGDD of type u^{g} exists. See [1] for an extensive treatment of 5 -MGDDs.

Lemma 2.1 Suppose there exists a 5-GDD of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \ldots g_{n}^{u_{n}}$. Then for any positive integer $h \notin\{2,3,6,10\}$, there exists a 5-GDD of type $\left(g_{1} h\right)^{u_{1}}\left(g_{2} h\right)^{u_{2}} \ldots\left(g_{n} h\right)^{u_{n}}$.

Proof: Inflate each point of the 5-GDD by a factor of h and replace the blocks with 5 -GDDs of type h^{5}. By Theorem 1.1, there exists a 5-GDD of type h^{5} for $h \geq 1$, $h \notin\{2,3,6,10\}$.

Lemma 2.2 Suppose there exists a K-GDD of type $g_{1}^{u_{1}} g_{2}^{u_{2}} \ldots g_{r}^{u_{r}}$, and let w be a positive integer. Suppose also that for each $k \in K$, there exists a 5-MGDD of type w^{k}, and for $i=1,2, \ldots, r$, there exists a 5-GDD of type g_{i}^{w}. Then there exists a 5 -GDD of type $\left(u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{r} g_{r}\right)^{w}$.

Proof: This is a combination of Constructions 2.19 and 2.20 in [16], and it also appears (for block size 4) as Constructions 1.8 and 1.10 in [12].
Take the K-GDD and inflate each point by a factor of w. Replace each inflated block by a 5 -MGDD of type $w^{k}, k \in K$ to obtain a 5 -DGDD of type

$$
\left(w g_{1}, g_{1}^{w}\right)^{u_{1}}\left(w g_{2}, g_{2}^{w}\right)^{u_{2}} \ldots\left(w g_{r}, g_{r}^{w}\right)^{u_{r}} .
$$

Then overlay the holes of this 5 -DGDD with 5 -GDDs of types $g_{i}^{w}, i=1,2, \ldots, r$.
We can now prove our main result.

Proof of Theorem 1.2.

For types $2^{35}, 2^{71}, 2^{111}, 3^{45}, 6^{15}, 10^{15}, 10^{23}$ and 10^{33}, see Theorem 2.1.
For types 2^{195} and 2^{215}, take a 5 -GDD of type $68^{5} 48^{1}$ or $68^{5} 88^{1}$, [15] (alternatively, see [5. Theorem 2.1] or [9, Theorem IV.4.17]), and adjoin two extra points. Overlay each group together with the new points with a 5 -GDD of type 2^{25} or 2^{35} or 2^{45}, as appropriate.

For type 6^{75}, take a 5 -GDD of type 90^{5} and overlay the groups with 5 -GDDs of type 6^{15}.

For type $g^{t}, g \in\{14,18,22,26,38,58\}, t \in\{71,111\}$, use Lemma 2.1 with type 2^{71} or 2^{111} and $h=g / 2$.

For type $g^{115}, g \in\{14,18,22,26\}$, construct a 5 -GDD of type $(5 g)^{23}$ using Lemma 2.1] with a 5 -GDD of type 10^{23} and $h=g / 2$; then replace each group with a 5 -GDD of type g^{5}.

For types $10^{35}, 30^{15}$ and 50^{15}, use Lemma 2.1 with a 5-GDD of type 2^{35} or 6^{15} or 10^{15}, as appropriate, and $h=5$.

For type $(10 \alpha)^{23}$, odd $\alpha \geq 5$, use Lemma 2.1 with a 5-GDD of type 10^{23} and $h=\alpha$.

For type $g^{11}, g \in\{34,46,62\}$ and $g^{15}, g=2 \alpha, \operatorname{gcd}(\alpha, 30)=1, \alpha \geq 33$, let

$$
\begin{aligned}
G= & \{34,46,62\} \cup\left\{\text { even } g \geq 66: \operatorname{gcd}\left(\frac{g}{2}, 30\right)=1\right\} \\
& \backslash\{74,82,86,94,98,106,118,178\} .
\end{aligned}
$$

For $g \in G$, there exists a $(g+1,\{5,7,9\}, 1)-\mathrm{PBD}$, [3, Table IV.3.23]. Take this PBD, remove a point and the blocks containing it to get a $\{5,7,9\}$-GDD of type $4^{a} 6^{b} 8^{c}$ for some non-negative integers a, b, c satisfying $4 a+6 b+8 c=g$. Now use Lemma 2.2 with this $\{5,7,9\}$-GDD and $w=11$ or 15 to obtain 5-GDDs of types g^{11} and g^{15} for every $g \in G$. For the existence of 5-MGDDs of types w^{5}, w^{7} and w^{9}, see [1]. For the existence of 5 -GDDs of types $4^{w}, 6^{w}$ and 8^{w}, see Theorems 1.1 and 2.1.

For type 98^{15}, take a $\operatorname{TD}(9,11)$, fill in the groups with blocks of size 11 and remove a point together with the blocks containing it to get a $\{9,11\}$-GDD of type $8^{11} 10^{1}$. Now use Lemma 2.2 with this $\{9,11\}$-GDD and $w=15$ to obtain a 5-GDD of type 98^{15}. For the existence of 5 -MGDDs of types 15^{9} and 15^{11}, see [1]. For the existence of 5 -GDDs of types 8^{15} and 10^{15}, see Theorems 1.1 and 2.1 .

For types $106^{15}, 118^{15}$ and 178^{15}, we refer the reader to Lemma 3.16 of [11], which proves that there exists a 5 -GDD of type h^{11} for $h \equiv 2(\bmod 4), h \geq 66$. By [11, Theorem 1.3], there exists a 4 -frame of type 6^{15}, i.e. a 4 -GDD $(V, \mathcal{G}, \mathcal{B})$ of type 6^{15} in which the block set can be partitioned into into 30 partial parallel classes of size 21 each of which partitions $V \backslash G$ for some $G \in \mathcal{G}$. Also we have the 5 -GDD of type 6^{15} from Theorem 2.1 as well as 5 -GDDs of type h^{15} for $h \equiv 0(\bmod 4)$ from Theorem 1.1. Then, by a straightforward adaptation of the proof of [11, Lemma 3.16], we obtain 5 -GDDs of type g^{15} for $g \in\{6 n, 6 n+4, \ldots, 8 n-2\}$ whenever there exists a $\operatorname{TD}(15, n)$ with odd n. This interval contains 106 and 118 when $n=17$, and 178 when $n=23$.

3 GDDs with block size 5 and type $g^{u} m^{1}$

Assuming they might be of some use for future research, we collect together an assortment of directly constructed 5-GDDs of type $g^{u} m^{1}$ that we have found during our investigations.

Theorem 3.1 There exist 5-GDDs of types $2^{36} 10^{1}, 6^{12} 2^{1}, 7^{20} 19^{1}, 8^{10} 4^{1}, 8^{12} 16^{1}$, $8^{13} 12^{1}, 8^{18} 12^{1}, 8^{20} 4^{1}, 8^{20} 24^{1}, 12^{5} 8^{1}, 16^{8} 24^{1}$ and $24^{7} 8^{1}$.

Proof: $\mathbf{2}^{\mathbf{3 6}} \mathbf{1 0} \mathbf{0}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 81\}$ partitioned into residue classes modulo 36 for $\{0,1, \ldots, 71\}$, and $\{72,73, \ldots, 81\}$, the design is generated from $\{21,76,30,35,0\},\{38,9,33,7,30\},\{65,23,8,15,4\}$,
$\{32,79,55,30,61\},\{72,63,9,64,54\},\{1,35,80,60,34\}$,
$\{9,61,28,21,65\},\{6,12,28,40,60\},\{0,14,59,69,73\}$
by the mapping: $x \mapsto x+2 j(\bmod 72)$ for $x<72, x \mapsto(x-72+5 j(\bmod 10))+72$ for $x \geq 72,0 \leq j<36$.
$\mathbf{6}^{\mathbf{1 2}} \mathbf{2}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 73\}$ partitioned into residue classes modulo 12 for $\{0,1, \ldots, 71\}$, and $\{72,73\}$, the design is generated from
$\{32,70,25,41,21\},\{14,31,46,56,0\},\{9,11,48,39,70\}$,
$\{64,58,60,41,63\},\{26,55,21,34,54\},\{57,72,32,47,50\}$,
$\{0,19,37,45,51\}$
by the mapping: $x \mapsto x+2 j(\bmod 72)$ for $x<72, x \mapsto(x+j(\bmod 2))+72$ for $x \geq 72,0 \leq j<36$.
$\mathbf{7}^{\mathbf{2 0}} \mathbf{1 9} \mathbf{9}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 158\}$ partitioned into residue classes modulo 19 for $\{0,1, \ldots, 132\},\{133,134, \ldots, 139\}$, and $\{140,141, \ldots, 158\}$, the design is generated from
$\{64,48,14,54,115\},\{39,2,156,51,94\},\{39,101,24,128,21\}$,
$\{0,4,91,98,145\},\{0,1,14,22,147\},\{0,2,25,30,88\}$,
$\{0,17,48,81,133\},\{0,9,68,122,140\},\{0,24,97,138,158\}$
by the mapping: $x \mapsto x+j(\bmod 133)$ for $x<133, x \mapsto(x+j(\bmod 7))+133$ for $133 \leq x<140, x \mapsto(x-140+j(\bmod 19))+140$ for $x \geq 140,0 \leq j<133$.
$8^{\mathbf{1 0}} \mathbf{4}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 83\}$ partitioned into residue classes modulo 10 for $\{0,1, \ldots, 79\}$, and $\{80,81,82,83\}$, the design is generated from
$\{56,2,24,70,3\},\{80,42,19,60,57\},\{14,49,6,30,77\}$,
$\{0,2,6,31,75\}$
by the mapping: $x \mapsto x+j(\bmod 80)$ for $x<80, x \mapsto(x+j(\bmod 4))+80$ for $x \geq 80,0 \leq j<80$.
 for $\{0,1, \ldots, 95\}$, and $\{96,97, \ldots, 111\}$, the design is generated from
$\{34,42,100,36,59\},\{92,89,55,85,36\},\{88,3,12,66,103\}$,
$\{111,28,66,56,1\},\{43,4,22,48,108\},\{0,1,14,46,81\}$
by the mapping: $x \mapsto x+j(\bmod 96)$ for $x<96, x \mapsto(x+j(\bmod 16))+96$ for $x \geq 96,0 \leq j<96$.
$\mathbf{8}^{\mathbf{1 3}} \mathbf{1 2} \mathbf{2}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 115\}$ partitioned into residue classes modulo 13 for $\{0,1, \ldots, 103\}$, and $\{104,105, \ldots, 115\}$, the design is generated from
$\{52,16,14,24,64\},\{38,99,70,95,79\},\{90,5,0,109,87\}$,
$\{41,103,10,113,68\},\{35,2,17,72,105\},\{0,1,7,60,81\}$
by the mapping: $x \mapsto x+j(\bmod 104)$ for $x<104, x \mapsto(x-104+3 j(\bmod 12))+104$ for $x \geq 104,0 \leq j<104$.
$\mathbf{8}^{\mathbf{1 8}} \mathbf{1 2} \mathbf{2}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 155\}$ partitioned into residue classes modulo 18 for $\{0,1, \ldots, 143\}$, and $\{144,145, \ldots, 155\}$, the design is generated from $\{49,57,14,17,15\},\{137,122,77,61,55\},\{52,21,14,65,150\}$,
$\{56,79,60,23,32\},\{6,84,32,11,59\},\{53,12,92,152,142\}$,
$\{2,71,13,83,100\},\{0,10,30,95,149\}$
by the mapping: $x \mapsto x+j(\bmod 144)$ for $x<144, x \mapsto(x+j(\bmod 12))+144$ for $x \geq 144,0 \leq j<144$.
$8^{\mathbf{2 0}} \mathbf{4}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 163\}$ partitioned into residue classes modulo 20 for $\{0,1, \ldots, 159\}$, and $\{160,161,162,163\}$, the design is generated from
$\{70,95,117,58,51\},\{9,133,124,148,61\},\{88,99,57,3,89\}$,
$\{67,144,10,136,14\},\{13,117,94,123,156\},\{15,66,80,64,148\}$,
$\{56,99,10,38,51\},\{0,3,58,93,160\}$
by the mapping: $x \mapsto x+j(\bmod 160)$ for $x<160, x \mapsto(x+j(\bmod 4))+160$ for $x \geq 160,0 \leq j<160$.
$\mathbf{8}^{\mathbf{2 0}} \mathbf{2 4} \mathbf{4}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 183\}$ partitioned into residue classes modulo 20 for $\{0,1, \ldots, 159\}$, and $\{160,161, \ldots, 183\}$, the design is generated from
$\{142,54,150,133,40\},\{172,8,137,115,2\},\{112,17,6,69,153\}$,
$\{72,114,39,175,129\},\{78,137,177,114,116\},\{46,19,145,170,108\}$,
$\{89,40,179,43,134\},\{125,52,120,42,174\},\{35,54,6,36,140\},\{0,4,16,125,132\}$
by the mapping: $x \mapsto x+j(\bmod 160)$ for $x<160, x \mapsto(x-160+9 j(\bmod 24))+160$ for $x \geq 160,0 \leq j<160$.
$1 \mathbf{2}^{\mathbf{5}} \mathbf{8}^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 67\}$ partitioned into residue classes modulo 5 for $\{0,1, \ldots, 59\}$, and $\{60,61, \ldots, 67\}$, the design is generated from
$\{0,2,49,51,64\},\{0,1,7,33,59\},\{0,4,38,41,57\},\{0,18,19,26,32\}$,
$\{0,9,13,31,62\},\{0,3,6,17,65\},\{0,8,22,29,60\},\{0,11,42,58,61\}$,
$\{1,18,22,39,55\},\{1,2,30,53,66\},\{0,16,39,43,67\},\{1,15,34,43,61\}$,
$\{0,12,24,36,48\}$
by the mapping: $x \mapsto x+4 j(\bmod 60)$ for $x<60, x \mapsto(x+j(\bmod 5))+60$ for $60 \leq x<65, x \mapsto(x-65+j(\bmod 3))+65$ for $x \geq 65,0 \leq j<15$ for the first 12 blocks; $x \mapsto x+j(\bmod 60)$ for $x<60, x \mapsto(x+j(\bmod 5))+60$ for $60 \leq x<65$, $x \mapsto(x-65+j(\bmod 3))+65$ for $x \geq 65,0 \leq j<12$ for the last block.
$\mathbf{1 6}^{\mathbf{8}} \mathbf{2 4}{ }^{\mathbf{1}}$ With the point set $\{0,1, \ldots, 151\}$ partitioned into residue classes modulo 8 for $\{0,1, \ldots, 127\}$, and $\{128,129, \ldots, 151\}$, the design is generated from $\{62,129,95,9,19\},\{94,11,93,55,146\},\{18,115,0,15,148\}$,
$\{30,77,9,23,96\},\{143,31,22,81,101\},\{3,80,106,102,135\}$,
$\{40,70,3,5,97\},\{0,5,11,116,139\}$
by the mapping: $x \mapsto x+j(\bmod 128)$ for $x<128, x \mapsto(x-128+9 j(\bmod 24))+128$ for $x \geq 128,0 \leq j<128$.
$\mathbf{2 4} \mathbf{8}^{\mathbf{7}}$ With the point set $\{0,1, \ldots, 175\}$ partitioned into residue classes modulo 7 for $\{0,1, \ldots, 167\}$, and $\{168,169, \ldots, 175\}$, the design is generated from
$\{135,1,159,70,81\},\{13,63,15,54,32\},\{159,28,29,3,114\}$,
$\{107,162,91,87,55\},\{127,17,12,173,104\},\{115,161,55,88,155\}$,
$\{90,16,24,120,133\},\{0,3,18,47,170\}$
by the mapping: $x \mapsto x+j(\bmod 168)$ for $x<168, x \mapsto(x+j(\bmod 8))+168$ for $x \geq 168,0 \leq j<168$.

The existence of type $12^{5} 8^{1}$ means that we can give the following update of [16, Theorem 2.27] (also [6, Theorem 5] or [9, Theorem IV.4.17]).

Theorem 3.2 A 5-GDD of type $g^{5} m^{1}$ exists whenever $g \equiv m \equiv 0(\bmod 4)$ and $m \leq 4 g / 3$ except possibly when $(g, m)=(12,4)$.

During the time this paper has been under review, direct constructions for many more small 5-GDDs have been obtained, the majority of them of type $g^{u} m^{1}$ for various $g \leq 48$. The results are recorded in Theorem 3.3, below. We save space here by placing the details of the constructions in a separate supplement, which is available online at http://arxiv.org/abs/2211.14124. Although the seven types $8^{15} 4^{1}, 12^{10} 8^{1}, 12^{10} 16^{1}, 12^{12} 4^{1}, 12^{13} 8^{1}, 16^{7} 12^{1}$ and $16^{8} 4^{1}$ are listed in 9 , Remark IV.4.19] as known, the only existence proofs we are aware of appear in an unpublished manuscript of J. Wang and H. Shen, Embeddings of Near Resolvable Designs with Block Size Four; therefore we include these 5-GDDs in Theorem 3.3 and, with our constructions, in the supplement. Types $4^{u} m^{1}$ are covered by [5]; delete a point from the block of size $m+1$ of a $\left(4 u+m+1,\left\{5,(m+1)^{*}\right\}, 1\right)$-PBD.

Theorem 3.3 There exist 5-GDDs of types
$1^{48} 9^{1}, 1^{60} 9^{1}, 1^{60} 13^{1}, 1^{68} 9^{1}, 1^{72} 17^{1}, 1^{80} 9^{1}, 1^{80} 13^{1}, 1^{80} 25^{1}, 1^{84} 21^{1}, 1^{88} 9^{1}, 1^{92} 17^{1}, 1^{96} 25^{1}$, $1^{100} 9^{1}, 1^{100} 13^{1}, 1^{100} 25^{1}, 1^{104} 21^{1}, 1^{108} 9^{1}$, $1^{108} 29^{1}, 1^{122} 17^{1}, 1^{124} 21^{1}, 1^{128} 9^{1}, 1^{128} 29^{1}$, $1^{132} 17^{1}, 1^{132} 37^{1}, 1^{136} 25^{1}, 1^{144} 21^{1}, 1^{144} 41^{1}, 1^{148} 29^{1}, 1^{152} 17^{1}, 1^{152} 37^{1}, 1^{156} 25^{1}, 1^{156} 45^{1}$,

```
1 160 33 ', , 164 21 , , 1 }\mp@subsup{}{}{164}4\mp@subsup{1}{}{1},\mp@subsup{1}{}{168}2\mp@subsup{9}{}{1},\mp@subsup{1}{}{168}4\mp@subsup{9}{}{1},\mp@subsup{1}{}{172}1\mp@subsup{7}{}{1},\mp@subsup{1}{}{176}2\mp@subsup{5}{}{1},\mp@subsup{1}{}{176}4\mp@subsup{5}{}{1},\mp@subsup{1}{}{184}2\mp@subsup{1}{}{1},\mp@subsup{1}{}{184}4\mp@subsup{1}{}{1}\mathrm{ ,
```



```
2 56}1\mp@subsup{0}{}{1},\mp@subsup{2}{}{60}\mp@subsup{6}{}{1},\mp@subsup{3}{}{20}1\mp@subsup{1}{}{1},\mp@subsup{3}{}{28}\mp@subsup{7}{}{1},\mp@subsup{3}{}{32}1\mp@subsup{1}{}{1},\mp@subsup{3}{}{36}1\mp@subsup{5}{}{1},\mp@subsup{5}{}{24}2\mp@subsup{5}{}{1},\mp@subsup{5}{}{28}2\mp@subsup{5}{}{1},\mp@subsup{5}{}{32}2\mp@subsup{5}{}{1},5\mp@subsup{5}{}{32}4\mp@subsup{5}{}{1},\mp@subsup{5}{}{36}4\mp@subsup{5}{}{1}\mathrm{ ,
5'0}4\mp@subsup{5}{}{1},\mp@subsup{5}{}{44}2\mp@subsup{5}{}{1},\mp@subsup{5}{}{44}4\mp@subsup{5}{}{1},\mp@subsup{6}{}{16}1\mp@subsup{0}{}{1},\mp@subsup{8}{}{8}1\mp@subsup{2}{}{1},\mp@subsup{8}{}{10}1\mp@subsup{6}{}{1},\mp@subsup{8}{}{10}2\mp@subsup{0}{}{1},\mp@subsup{8}{}{14}2\mp@subsup{8}{}{1},\mp@subsup{8}{}{15}\mp@subsup{4}{}{1},\mp@subsup{8}{}{15}1\mp@subsup{6}{}{1},\mp@subsup{8}{}{15}2\mp@subsup{4}{}{1}\mathrm{ ,
8 }\mp@subsup{}{}{15}3\mp@subsup{6}{}{1},\mp@subsup{8}{}{16}2\mp@subsup{0}{}{1},\mp@subsup{8}{}{17}1\mp@subsup{6}{}{1},\mp@subsup{8}{}{18}3\mp@subsup{2}{}{1},\mp@subsup{8}{}{20}4\mp@subsup{4}{}{1},\mp@subsup{8}{}{21}2\mp@subsup{0}{}{1},\mp@subsup{8}{}{21}4\mp@subsup{0}{}{1},\mp@subsup{8}{}{22}1\mp@subsup{6}{}{1},\mp@subsup{8}{}{22}3\mp@subsup{6}{}{1},\mp@subsup{8}{}{23}32\mp@subsup{2}{}{1},\mp@subsup{8}{}{24}2\mp@subsup{8}{}{1}\mathrm{ ,
8 25 4
920}3\mp@subsup{7}{}{1},\mp@subsup{9}{}{20}4\mp@subsup{9}{}{1}, 9\mp@subsup{9}{}{28}\mp@subsup{1}{}{1},1\mp@subsup{0}{}{10}1\mp@subsup{8}{}{1},1\mp@subsup{0}{}{20}3\mp@subsup{8}{}{1},1\mp@subsup{1}{}{20}1\mp@subsup{9}{}{1},1\mp@subsup{2}{}{5}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{10}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{10}1\mp@subsup{6}{}{1},1\mp@subsup{2}{}{10}2\mp@subsup{8}{}{1}\mathrm{ ,
12 11 20 1, }1\mp@subsup{2}{}{12}\mp@subsup{4}{}{1},1\mp@subsup{2}{}{12}2\mp@subsup{4}{}{1},1\mp@subsup{2}{}{13}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{13}2\mp@subsup{8}{}{1},1\mp@subsup{2}{}{14}3\mp@subsup{2}{}{1},1\mp@subsup{2}{}{15}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{15}1\mp@subsup{6}{}{1},1\mp@subsup{2}{}{15}2\mp@subsup{8}{}{1},1\mp@subsup{2}{}{15}3\mp@subsup{6}{}{1}\mathrm{ ,
12 15}4\mp@subsup{8}{}{1},1\mp@subsup{2}{}{16}2\mp@subsup{0}{}{1},1\mp@subsup{2}{}{16}4\mp@subsup{0}{}{1},1\mp@subsup{2}{}{17}\mp@subsup{4}{}{1},1\mp@subsup{2}{}{17}2\mp@subsup{4}{}{1},1\mp@subsup{2}{}{17}4\mp@subsup{4}{}{1},1\mp@subsup{2}{}{18}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{18}2\mp@subsup{8}{}{1},12\mp@subsup{2}{}{18}4\mp@subsup{8}{}{1},1\mp@subsup{2}{}{19}3\mp@subsup{2}{}{1}
12 19}5\mp@subsup{2}{}{1},1\mp@subsup{2}{}{20}\mp@subsup{8}{}{1},1\mp@subsup{2}{}{21}2\mp@subsup{0}{}{1},1\mp@subsup{2}{}{21}4\mp@subsup{0}{}{1},1\mp@subsup{2}{}{21}6\mp@subsup{0}{}{1},12\mp@subsup{2}{}{22}\mp@subsup{4}{}{1},1\mp@subsup{2}{}{22}2\mp@subsup{4}{}{1},1\mp@subsup{2}{}{22}4\mp@subsup{4}{}{1},1\mp@subsup{2}{}{22}6\mp@subsup{4}{}{1},1\mp@subsup{2}{}{23}2\mp@subsup{8}{}{1}\mathrm{ ,
12\mp@subsup{2}{}{23}4\mp@subsup{8}{}{1},1\mp@subsup{2}{}{23}6\mp@subsup{8}{}{1},1\mp@subsup{2}{}{24}3\mp@subsup{2}{}{1},1\mp@subsup{2}{}{24}5\mp@subsup{2}{}{1},1\mp@subsup{2}{}{27}\mp@subsup{4}{}{1},1\mp@subsup{3}{}{8}1\mp@subsup{7}{}{1},1\mp@subsup{3}{}{12}\mp@subsup{1}{}{1},1\mp@subsup{3}{}{12}2\mp@subsup{1}{}{1},1\mp@subsup{3}{}{12}4\mp@subsup{1}{}{1},1\mp@subsup{3}{}{16}5\mp@subsup{5}{}{1}\mathrm{ ,}
13 '6 }2\mp@subsup{5}{}{1},1\mp@subsup{3}{}{20}\mp@subsup{1}{}{1},1\mp@subsup{4}{}{8}\mp@subsup{6}{}{1},1\mp@subsup{6}{}{6}2\mp@subsup{0}{}{1},1\mp@subsup{6}{}{7}1\mp@subsup{2}{}{1}, 1\mp@subsup{6}{}{8}\mp@subsup{4}{}{1},1\mp@subsup{6}{}{9}3\mp@subsup{6}{}{1},1\mp@subsup{6}{}{10}\mp@subsup{8}{}{1},1\mp@subsup{6}{}{10}2\mp@subsup{0}{}{1},1\mp@subsup{6}{}{10}2\mp@subsup{8}{}{1}
16 10}3\mp@subsup{6}{}{1},1\mp@subsup{6}{}{10}4\mp@subsup{0}{}{1},1\mp@subsup{6}{}{11}2\mp@subsup{0}{}{1},1\mp@subsup{6}{}{11}4\mp@subsup{0}{}{1},1\mp@subsup{6}{}{12}1\mp@subsup{2}{}{1},1\mp@subsup{6}{}{12}5\mp@subsup{2}{}{1},1\mp@subsup{6}{}{13}\mp@subsup{4}{}{1},1\mp@subsup{6}{}{13}2\mp@subsup{4}{}{1},1\mp@subsup{6}{}{13}4\mp@subsup{4}{}{1},1\mp@subsup{6}{}{14}3\mp@subsup{6}{}{1}\mathrm{ ,
16 15 8
17\mp@subsup{7}{}{16}5}\mp@subsup{5}{}{1},2\mp@subsup{0}{}{8}4\mp@subsup{0}{}{1},2\mp@subsup{0}{}{9}4\mp@subsup{0}{}{1},2\mp@subsup{0}{}{10}3\mp@subsup{6}{}{1},2\mp@subsup{0}{}{10}4\mp@subsup{0}{}{1},2\mp@subsup{0}{}{11}4\mp@subsup{0}{}{1},2\mp@subsup{1}{}{8}\mp@subsup{9}{}{1},2\mp@subsup{1}{}{8}2\mp@subsup{9}{}{1},2\mp@subsup{1}{}{12}1\mp@subsup{7}{}{1},2\mp@subsup{3}{}{8}\mp@subsup{7}{}{1}\mathrm{ ,
24}\mp@subsup{}{}{6}2\mp@subsup{0}{}{1},2\mp@subsup{4}{}{7}\mp@subsup{8}{}{1},2\mp@subsup{4}{}{7}2\mp@subsup{8}{}{1},2\mp@subsup{4}{}{8}1\mp@subsup{6}{}{1},2\mp@subsup{4}{}{8}3\mp@subsup{6}{}{1},2\mp@subsup{4}{}{9}\mp@subsup{4}{}{1},24\mp@subsup{4}{}{9}4\mp@subsup{4}{}{1},24\mp@subsup{4}{}{10}\mp@subsup{4}{}{1},2\mp@subsup{4}{}{10}1\mp@subsup{2}{}{1},2\mp@subsup{4}{}{10}3\mp@subsup{2}{}{1}\mathrm{ ,
24\mp@subsup{4}{}{11}2\mp@subsup{0}{}{1},2\mp@subsup{5}{}{8}\mp@subsup{5}{}{1},2\mp@subsup{5}{}{8}4\mp@subsup{5}{}{1},2\mp@subsup{8}{}{6}2\mp@subsup{0}{}{1},2\mp@subsup{8}{}{6}4\mp@subsup{0}{}{1},2\mp@subsup{8}{}{7}1\mp@subsup{6}{}{1},2\mp@subsup{8}{}{7}3\mp@subsup{6}{}{1},2\mp@subsup{8}{}{8}1\mp@subsup{2}{}{1},2\mp@subsup{8}{}{8}3\mp@subsup{2}{}{1},2\mp@subsup{8}{}{8}5\mp@subsup{2}{}{1},2\mp@subsup{8}{}{9}\mp@subsup{8}{}{1}}\mathrm{ ,
289}4\mp@subsup{8}{}{1},2\mp@subsup{8}{}{10}\mp@subsup{4}{}{1},2\mp@subsup{8}{}{10}2\mp@subsup{4}{}{1},2\mp@subsup{9}{}{8}\mp@subsup{1}{}{1},2\mp@subsup{9}{}{8}2\mp@subsup{1}{}{1},3\mp@subsup{2}{}{6}2\mp@subsup{0}{}{1},3\mp@subsup{2}{}{6}4\mp@subsup{0}{}{1},3\mp@subsup{2}{}{7}\mp@subsup{4}{}{1},3\mp@subsup{2}{}{7}2\mp@subsup{4}{}{1},3\mp@subsup{2}{}{7}4\mp@subsup{4}{}{1},3\mp@subsup{2}{}{8}\mp@subsup{8}{}{1}\mathrm{ ,
32}\mp@subsup{}{}{8}2\mp@subsup{8}{}{1},3\mp@subsup{2}{}{9}1\mp@subsup{2}{}{1},3\mp@subsup{6}{}{6}2\mp@subsup{0}{}{1},3\mp@subsup{6}{}{6}4\mp@subsup{0}{}{1},3\mp@subsup{6}{}{7}1\mp@subsup{2}{}{1},3\mp@subsup{6}{}{7}3\mp@subsup{2}{}{1},3\mp@subsup{6}{}{8}2\mp@subsup{4}{}{1},4\mp@subsup{0}{}{6}2\mp@subsup{0}{}{1},4\mp@subsup{4}{}{6}2\mp@subsup{0}{}{1},4\mp@subsup{4}{}{6}4\mp@subsup{0}{}{1},4\mp@subsup{4}{}{7}\mp@subsup{8}{}{1}\mathrm{ ,
486}2\mp@subsup{0}{}{1},\mp@subsup{1}{}{16}\mp@subsup{9}{}{5},\mp@subsup{1}{}{46}\mp@subsup{5}{}{3}\mathrm{ and 45}\mp@subsup{4}{}{5}\mp@subsup{8}{}{5}
```

Proof: See http://arxiv.org/abs/2211.14124.

Acknowledgement

I would like to thank the reviewers for helpful comments from which the paper has benefitted.

References

[1] R. J. R. Abel and A. M. Assaf, Modified group divisible designs with block size 5 and $\lambda=1$, Discrete Math. 256 (2002), 1-22.
[2] R. J. R. Abel, A. M. Assaf, I. Bluskov, M. Greig and N. Shalaby, New results on GDDs, covering, packing and directable designs with block Size 5, J. Combin. Des 18 (2010), 337-368.
[3] R. J. R. Abel, F. E. Bennett and M. Greig, PBD-Closure, Handbook of Combinatorial Designs, 2nd edition (Eds.: C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press, Boca Raton, 2007, 255-260.
[4] R. J. R. Abel, C. J. Colbourn and J. H. Dinitz, Mutually Orthogonal Latin Squares (MOLS), Handbook of Combinatorial Designs, 2nd edition (Eds.: C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press, Boca Raton, 2007, 160-193.
[5] R. J. R. Abel, G. Ge, M. Greig and A. C. H. Ling, Further results on $\left(v, 5, w^{*}, 1\right)$ PBDs, Discrete Math. 309 (2009), 2323-2339.
[6] F. E. Bennett, Y. Chang, G. Ge and M. Greig, Existence of ($\left.v, 5, w^{*}, 1\right)$-PBDs, Discrete Math. 279, 2004, 61-105.
[7] A. E. Brouwer, A. Schrijver and H. Hanani, Group divisible designs with block size four, Discrete Math. 20 (1977), 1-10.
[8] A. D. Forbes, Pentagonal geometries with block sizes 3, 4 and 5, J. Combin. Des. 29 (2021), 307-330; preprint: https://arxiv.org/abs/2006.15734v3.
[9] G. Ge, Group Divisible Designs, Handbook of Combinatorial Designs, 2nd edition (Eds.: C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press, Boca Raton, 2007, 255-260.
[10] G. Ge and A. C. H. Ling, Some More 5-GDDs and Optimal ($v, 5,1$)-Packings, J. Combin. Des. 12 (2004), 132-141).
[11] G. Ge and A. C. H. Ling, Asymptotic results on the existence of 4-RGDDs and uniform 5-GDDs, J. Combin. Des. 13 (2005), 222-237.
[12] G. Ge, R. S. Rees and L. Zhu, Group-divisible designs with block size four and group-type $g^{u} m^{1}$ with m as large or as small as possible, J. Combin. Theory, Series A 98 (2002), 357-376.
[13] M. Greig and R. C. Mullin, PBDs: Recursive Constructions, Handbook of Combinatorial Designs, 2nd edition (Eds.: C.J. Colbourn and J.H. Dinitz), Chapman \& Hall/CRC Press, Boca Raton, 2007, 236-246.
[14] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[15] R. S. Rees, Group-divisible designs with block size k having $k+1$ groups for $k=4,5$, J. Combin. Des. 8 (2000), 363-386.
[16] H. Wei and G. Ge, Some more 5-GDDs, 4-frames and 4-RGDDs, Discrete Mathematics 336 (2014), 7-21.
[17] R. M. Wilson, An existence theory for pairwise balanced designs I: Composition theorems and morphisms, J. Combin. Theory Ser. A 13 (1972), 220-245.
[18] J. Yin, A. C. H. Ling, C. J. Colbourn and R. J. R. Abel, The existence of uniform 5-GDDs, J. Combin. Des. 5 (1997), 275-299.

[^0]: * ORCID: A.D. Forbes https://orcid.org/0000-0003-3805-7056

