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Abstract

For a graph G and t, k ∈ Z+ a t-tone k-coloring of G is a function
f : V (G)→

(
[k]
t

)
such that |f(v) ∩ f(w)| < d(v, w) for all distinct v, w ∈

V (G). The t-tone chromatic number of G, denoted τt(G), is the minimum
k such that G is t-tone k-colorable. For small values of t, we prove sharp
or nearly sharp upper bounds on the t-tone chromatic number of various
classes of sparse graphs. In particular, we determine τ2(G) exactly when
mad(G) < 12/5 and bound τ2(G), up to a small additive constant, when
G is outerplanar. We also determine τt(Cn) exactly when t ∈ {3, 4, 5}.

1 Introduction

All of our graphs are finite and simple. We write [k] to denote {1, . . . , k} and write(
[k]
t

)
to denote the collection of all subsets of [k] of size t; we refer to elements of

(
[k]
t

)
as t-sets. For a graph G and v, w ∈ V (G), we write d(v, w) for the distance (length
of the shortest path) between v and w.

In 2009, Ping Zhang led N. Fonger, J. Goss, B. Phillips, and C. Segroves [11]
in developing a new generalization of proper vertex coloring. They called it t-tone
coloring.

Definition 1. For a graph G and t, k ∈ Z+ a t-tone k-coloring of G is a function
f : V (G) →

(
[k]
t

)
such that |f(v) ∩ f(w)| < d(v, w) for all distinct v, w ∈ V (G).
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A graph that has a t-tone k-coloring is t-tone k-colorable, and the t-tone chromatic
number of G, denoted τt(G), is the minimum k such that G is t-tone k-colorable.
We assume throughout the paper that always V (G) 6= ∅ and E(G) 6= ∅; otherwise,
computing τt(G) is trivial.

The most widely studied case of t-tone coloring is the case t = 2. Fonger et al. [11]
calculated the 2-tone chromatic number for all trees. This includes stars, which often
provide a good lower bound for τ2(G); see Proposition 2.3. Bickle and Phillips [5]
determined, among other results, the 2-tone chromatic number of cycles and the
general t-tone chromatic number of paths; see Proposition 2.4. This problem has been
studied for various graph classes [8, 14, 17, 16, 3, 9] with several papers investigating
the t-tone chromatic number of graph products [4, 13, 6] and one studying t-tone
coloring of random graphs [1].

The paper is organized as follows. In Section 2 we present our definitions, and
collect some lemmas (proved elsewhere) that we will use in the rest of the paper.

In Section 3, we prove a sharp bound on τ2(G) for all graphs G with mad(G) <
12/5 (which includes planar graphs with girth at least 12), and a nearly sharp bound
on τ2(G) for all outerplanar graphs. For all planar graphs G, we prove a new upper
bound on τ2(G), that is sharp up to a factor of 2/

√
3 ≈ 1.155. We conclude the

section with some challenging conjectures. Our results in Section 3 partially answer
a question of West [15] about t-tone coloring of general planar graphs.

In Section 4 we determine τt(Cn) exactly, for all t ∈ {3, 4, 5} and all n ≥ 3; for
each t, the value is constant when n is sufficiently large. The general case relies on a
powerful lemma for combining t-tone colorings of subgraphs. And the stronger lower
bounds needed for some exceptional cases are proved using integer linear programs.
Again, we conclude the section with a challenging conjecture.

In Section 5, we study grid graphs Pm�Pn. We determine exactly τ3 and τ4 and
bound τ5.

2 Definitions and Useful Lemmas

Let G be a graph and fix v ∈ V (G). We denote by N(v) the neighborhood of v, by
N2(v) the second neighborhood of v (the set of vertices at distance 2 from v), by d(v)
the degree of v, and by ∆(G) the maximum degree of G. We write H ⊆ G if H is
a subgraph of G. We denote by d(G) the average degree of G and by mad(G) the
maximum average degree of G; recall that mad(G) := max∅6=H⊆G 2|E(H)|/|V (H)|.
We let Pn, Cn, and Pm�Pn denote the path on n vertices, cycle on n vertices, and
the m× n vertex grid graph (where � denotes the Cartesian product).

For a graph G and t, k ∈ Z+ a partial t-tone k-coloring of G is a function f :
V (G) →

(
[k]
t

)
∪ ∅ such that |f(v) ∩ f(w)| < d(v, w) for all distinct v, w ∈ V (G). To

construct a t-tone k-coloring of a graph G, we will often create a sequence of partial
t-tone k-colorings, at each step choosing a nonempty label for an additional vertex
whose label was previously empty.
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Below we list a number of lemmas that we will use later. We generally omit
formal proofs, but often include brief proof sketches. The reader should feel free to
skip ahead to Section 3 and only return to this list as needed.

Lemma 2.1. [11, Theorem 11] If H is a subgraph of G, then every t-tone coloring
of G induces a t-tone coloring of H. In particular τt(H) ≤ τt(G).

Lemma 2.2. [16, Theorem 1] τt(C4) = 4t− 2.

Proof. The labels for each pair of non-adjacent vertices share at most one color. So
τt(C4) ≥ t|V (C4)| − 2(1).

Lemma 2.3. [11, Theorem 17] Every graph G satisfies
⌈√

2∆(G) + 0.25 + 2.5
⌉
≤

τ2(G).

Proof. The star K1,∆(G) needs k colors with
(

k−2
2

)
≥ ∆(G).

Lemma 2.4. [5, Proposition 5] For all t, n ≥ 1 we have

τt(Pn) =
n−1∑
i=0

max

{
0, t−

(
i

2

)}
.

Proof. Color the path v1 · · · vn in order of increasing subscript. When vertex vi is
being colored, for each j ∈ [i − 1] there are j colors used on vi−j−1 that are unused
on vertices closer to vi. We use these colors on vi until either (a) vi has t colors or
(b) we run out of vertices. In the latter case, we have used

∑i−1
j=0 j =

(
i
2

)
colors from

previous vertices, and need t −
(

i
2

)
new colors. When

(
i
2

)
≥ t, no more new colors

are needed.

Lemma 2.5. [7, Theorem 2.2] Every graph G satisfies τ2(G) ≤
⌈
(2 +

√
2)∆(G)

⌉
.

Proof. We color greedily avoiding at most 2∆(G) colors on neighbors and at most
∆(G)(∆(G)− 1) 2-sets at distance 2.

A graph is k-degenerate if each of its subgraphs contains a vertex of degree at
most k.

Lemma 2.6. [7, Theorem 3.5] If G is k-degenerate, k ≥ 2, and ∆(G) ≤ r, then for
every t we have τt(G) ≤ kt+ kt2∆(G)1−1/t.

Proof. We color greedily with c+ kt colors. Neighbors forbid at most kt colors, and
vertices at distance d, for each d ∈ {2, . . . , t}, forbid at most

(
t
d

)(
c−d
t−d

)
dk∆(G)(∆(G)−

1)d−2 sets of size t that share at least d elements.

Lemma 2.7. [2, Theorem 2] For every planar graph G there exists v ∈ V (G) such
that d(v) ≤ 5 and v has at most two neighbors with degree at least 11.
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Lemma 2.8. [10, Theorem 5][12] For every outerplanar graph G there exists xy ∈
E(G) with d(x) = 1, or d(x) = 2 and d(y) ≤ 4.

We conclude this section with a construction of a planar graph that improves
the trivial lower bound, from Lemma 2.3, on colors needed to 2-tone color a planar
graph of given maximum degree.

Lemma 2.9. For each t ≥ 1, we form Ht from K3 by replacing each edge vw ∈ E(K3)
with a copy of K2,t, identifying the high degree vertices with v and w. For all t we

have
⌈√

3∆(Ht) + 0.25 + 0.5
⌉
≤ τ2(Ht) ≤

⌈√
3∆(Ht) + 30.25 + 0.5

⌉
. (When t ≥ 27

these two bounds differ by at most 1.)

Proof. Fix a positive integer k to be determined later. We consider a 2-tone k-
coloring of Ht. It is easy to check that τ2(C6) = 5, so assume t ≥ 2. Let x, y,
and z denote the vertices of degree at least 4. For the lower bound, note that all
3∆(Ht)/2 = 3t vertices excluding x, y, z must get distinct 2-element subsets of [k].
The inequality

(
k
2

)
≥ 3∆(Ht)/2 is equivalent to the lower bound.

Now we prove the upper bound. Color x with {1, 2}; color y with {3, 4}; and
color z with {5, 6}. Now we assign each remaining vertex of Ht a distinct element of(

[k]
2

)
\ {{1, 2}, {3, 4}, {5, 6}}. This requires that no vertex of degree 2 receive a label

from
(

[6]
2

)
. Thus, we need

(
k
2

)
−
(

6
2

)
≥ 3t. This inequality is equivalent to the upper

bound. We must also ensure that the coloring is proper, i.e., all labels including 1 or
2 (other than {1, 2}) be used on vertices non-adjacent to x, and similarly for {3, 4}
with y and for {5, 6} with z. However, this is easy to ensure.

Finally, we show that the bounds differ by at most 1 when t ≥ 27. For this
conclusion, it suffices that

√
3∆(Ht) + 30.25−

√
3∆(Ht) + 0.25 ≤ 1. This inequality

holds when ∆(Ht) ≥ 70, i.e., when t ≥ 35. And it easy to check the remaining eight
cases by hand.

x y

z

Figure 1: The graph H3.

3 2-tone Coloring of Planar Graphs

In this section, we prove our first two main results. In Theorem 3.3 we determine
τ2(G) for all outerplanar graphs, up to a small additive constant. And in Theorem 3.5
we determine τ2(G) for all graphs G with mad(G) < 12/5 and ∆(G) ≥ 11. This
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includes planar graphs with girth at least 12. As a warm-up, in Theorem 3.2 we
bound τ2(G) for all planar graphs; as ∆(G) grows, our bound is sharp asymptotically
up to a factor of 2/

√
3 ≈ 1.155.

All our proofs in this section proceed by minimal counterexample. This approach
requires extra care, since a 2-tone coloring of a subgraph H of G might fail to induce
a 2-tone coloring of G[V (H)]. Specifically, if we delete a vertex v to form a subgraph
H, we allow the possibility that neighbors of v in G will receive identical labels in
H; of course, this is forbidden in a 2-tone coloring of G. To avoid this difficulty,
rather than deleting vertices, we often instead contract edges, which never increases
distances. However, this adds the potential issue of increasing the maximum degree.
To avoid this pitfall, we typically contract an edge with one endpoint of degree at
most 2. To extend a partial 2-tone coloring of a graph G, we will often use the
following helpful lemma.

Lemma 3.1. Let G be a graph and ϕ be a partial 2-tone k-coloring of G. For any
uncolored vertex v ∈ V (G), if

(
k−2|N(v)|

2

)
> |N2(v)|, then ϕ can be extended to v.

Proof. Let G, ϕ, and v be as in the lemma. To extend ϕ to v, we must avoid all
colors used on N(v), which forbids at most 2|N(v)| colors. We must also avoid all
2-sets used on N2(v), which forbids at most |N2(v)| 2-sets. Thus, it suffices to have(

k−2|N(v)|
2

)
> |N2(v)|.

v

N(v)

N2(v)

G− {N(v) ∪N2(v) ∪ {v}}

Figure 2: A vertex v with its neighbours and second neighbours.

We first prove an upper bound on τ2(G) for every planar graph G, and then show
how to strengthen it for two classes of “sparse” planar graphs. For a general planar
graph G (with maximum degree ∆(G)), our upper bound in the next theorem differs
from the lower bound in Lemma 2.3 by a factor of approximately

√
2. However, for

our construction Ht in Lemma 2.9 the present upper bound differs from the lower
bound by only a factor of 2/

√
3 ≈ 1.155.

Theorem 3.2. If G is a planar graph, then τ2(G) ≤
⌊√

4∆(G) + 50.25 + 31.1
⌋
≤⌊√

4∆(G) + 36.5
⌋

. Furthermore, τ2(G) ≤ max
{

41,
⌊√

4∆(G) + 50.25 + 11.5
⌋}

.

Proof. In the first statement, the second inequality is easy to verify, so we focus on
the first. The second statement is clearly stronger when ∆(G) is sufficiently large,
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but we include the first to give a better bound when ∆(G) is small. We prove both
statements simultaneously.

Suppose the theorem is false and let G be a counterexample that minimizes
|V (G)|. If ∆(G) ≤ 12, then Lemma 2.5 gives

τ2(G) ≤
⌈
(2 +

√
2)∆(G)

⌉
≤ b
√

4∆(G) + 50.25 + 31.1c ≤ 41.

So we assume that ∆(G) ≥ 13. By Lemma 2.7, there exists v ∈ V (G) such that
d(v) ≤ 5 and v has at most two neighbors of degree at least 11. If d(v) ≥ 3,
then pick w ∈ N(v) with d(w) ≤ 10; otherwise let w be an arbitrary neighbor
of v. Form H from G by contracting vw. Since |V (H)| < |V (G)| and ∆(H) ≤
max{∆(G), 5 + 10− 2} = ∆(G), by induction

τ2(H) ≤ max
{

41,
⌊√

4∆(H) + 50.25 + 11.5
⌋}

≤ max
{

41,
⌊√

4∆(G) + 50.25 + 11.5
⌋}

.

Similarly, τ2(H) ≤
⌊√

4∆(H) + 50.25 + 31.1
⌋
≤
⌊√

4∆(G) + 50.25 + 31.1
⌋
. This

2-tone coloring of H induces a partial 2-tone coloring of G, with v uncolored. Now
NG(v) forbids at most 2|NG(v)| ≤ 10 colors from use on v. Further, vertices in N2

G(v)
forbid at most 2(∆(G) − 1) + 3(9) = 2∆(G) + 25 distinct 2-sets from use on v. By
Lemma 3.1 we can extend any partial 2-tone k-coloring of G (with v uncolored) to
a 2-tone k-coloring of G whenever ∆(G) ≥ 13 and(

k − 10

2

)
> 2∆(G) + 25.

This inequality is easy to verify when k =
⌊√

4∆(G) + 50.25 + 11.5
⌋
, which com-

pletes the proof of both statements.

In the next two theorems, we consider special classes of planar graphs that are
in a sense “tree-like”. For these graphs, we improve the leading coefficient in the
bound of Theorem 3.2 by a factor of approximately

√
2, so that it matches that in

the lower bound given by Lemma 2.3.

Theorem 3.3. If G is outerplanar, then

τ2(G) ≤
⌊√

2∆(G) + 4.25 + 5.5
⌋
≤
⌊√

2∆(G) + 6.6
⌋
.

Proof. The second inequality is easily verified by algebra, so we focus on the first.
Suppose the theorem is false and let G be a counterexample minimizing |V (G)|. Note
that the class of outerplanar graphs is closed under edge contraction.

By Lemma 2.8 there exists vw ∈ E(G) such that d(v) = 1, or d(v) = 2 and
d(w) ≤ 4. In either case, form H by contracting vw (restricting to the underlying
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simple graph if we create a pair of parallel edges). Note that |H| < |G| and ∆(H) ≤
∆(G). By the minimality of G,

τ2(H) ≤
⌊√

2∆(H) + 4.25 + 5.5
⌋
≤
⌊√

2∆(G) + 4.25 + 5.5
⌋
.

The vertices in NG(v) forbid at most 2|N(v)| ≤ 4 colors from use on v. Further, the
vertices in N2

G(v) forbid at most ∆(G)− 1 + (4− 1) = ∆(G) + 2 distinct 2-sets from
use on v. By Lemma 3.1 we can extend any 2-tone k-coloring of H to G when(

k − 4

2

)
> ∆(G) + 2.

This inequality is easy to verify when k =
⌊√

2∆(G) + 4.25 + 5.5
⌋
.

Lemma 3.4 is a structural result that we will use to prove Theorem 3.5. As a
special case, that theorem will exactly determine τ2 for planar graphs with sufficiently
large girth and max degree.

We will also need some new definitions. A d+-vertex, d−-vertex, or d-vertex is,
respectively, a vertex of degree at least d, at most d, and exactly d. An `-thread in a
graph G is a trail of length ` + 1 in G whose ` internal vertices have degree 2 in G.
We refer to the non-internal vertices of an `-thread as endpoints. So an `-thread has
two endpoints, not necessarily distinct. For Lemma 3.4 and Theorem 3.5 we present
the proofs as if each `-thread has two distinct endpoints, but all arguments remain
valid if the endpoints are not distinct.

Lemma 3.4. Let G be a graph with δ(G) ≥ 2. If mad(G) < 12/5, then G contains
at least one of the following:

(a) a 4-thread,

(b) a 3-thread with a 5−-vertex as an endpoint, or

(c) a 2-thread with a 3−-vertex and a 5−-vertex as endpoints.

Proof. Let G be a graph with δ(G) ≥ 2 and mad(G) < 12/5. Assume for contra-
diction that G has no threads of type (a), (b), and (c). If G contains a 2-regular
component, then it contains an instance of (c); so assume no component of G is
2-regular. Thus, every 2-vertex appears in a unique maximal thread, and the end-
points of that thread are 3+-vertices. We give each vertex v initial charge d(v). To
redistribute charge, each maximal thread takes charge 1 − 12/(5d(v)) from each of
its endpoints. Each thread redistributes its charge equally to its internal vertices.
Below we show that each vertex ends with charge at least 12/5, contradicting that
mad(G) < 12/5.

Since G has no 4-thread, each maximal thread has at most 3 internal vertices. If
a thread t has a vertex v as an endpoint, then the charge that t receives from v is:
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1− 12/(3(5)) = 1/5 if d(v) = 3; and at least 1− 12/(4(5)) = 2/5 if d(v) ≥ 4; and at
least 1− 12/(6(5)) = 3/5 if d(v) ≥ 6.

Each 1-thread gains at least 1/5 from each endpoint, so finishes with at least
12/5.

Each 2-thread cannot be an instance of (c), so either (i) both of its endpoints are
4+-vertices or (ii) it has a 6+-vertex as an endpoint. So a 2-thread gains either (i) at
least 2/5 from each endpoint or (ii) at least 3/5 from the endpoint that is a 6+-vertex
and at least 1/5 from the other endpoint. Thus, each 2-thread finishes with at least
2(2) + 4/5 = 2(12/5).

Each 3-thread has a 6+-vertex for each endpoint, otherwise G contains (b). So a
3-thread gains at least 3/5 from each endpoint. Thus, each 3-thread finishes with at
least 3(2) + 6/5 = 3(12/5). If v is an endpoint of a thread, then v sees at most d(v)
threads. Thus, v has final charge d(v) − d(v)(1 − 12/(5d(v)) = 12/5. This implies
that d(G) ≥ 12/5; which contradicts the hypothesis mad(G) < 12/5.

Theorem 3.5. If G is a graph with mad(G) < 12/5, then

τ2(G) ≤ max
{

7,
⌈√

2∆(G) + 0.25 + 2.5
⌉}

.

Further, if G is planar with girth at least 12 and ∆(G) ≥ 7, then

τ2(G) =
⌈√

2∆(G) + 0.25 + 2.5
⌉
.

Proof. The second statement follows from the first since a planar graph G with girth
at least 12 has mad(G) < 2(12)/(12 − 2) = 12/5 and Lemma 2.3 implies that if
∆(G) ≥ 7, then τ2(G) ≥ 7. We now prove the first statement.

Suppose the theorem is false and let G be a counterexample minimizing |V (G)|.
If there exists v with d(v) ≤ 1, then by minimality

τ2(G− v) ≤ max
{

7,
⌈√

2∆(G) + 0.25 + 2.5
⌉}

.

And by Lemma 3.1 we get τ2(G) ≤ max
{

7,
⌈√

2∆(G) + 0.25 + 2.5
⌉}

. Thus, we

assume δ(G) ≥ 2.

By Lemma 3.4 we know G contains configuration (a), (b), or (c) in that lemma.
We will show that none of these configurations can appear in our minimal counterex-
ample G. To do so, we form a subgraph H by deleting some vertices of G, color H
by minimality, and extend our coloring of H to the deleted vertices of G, to con-

tradict that G was a counterexample. Let kG = max
{

7,
⌈√

2∆(G) + 0.25 + 2.5
⌉}

.

For an arbitrary subgraph H of G (which will be clear from context), let kH =

max
{

7,
⌈√

2∆(H) + 0.25 + 2.5
⌉}

.

Case 1: G contains a 4-thread, as shown in Figure 3. Form H from G by
deleting v2 and v3. Note that |H| < |G| and ∆(H) ≤ ∆(G). By the minimality of
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G, we have τ2(H) ≤ kH ≤ kG. Let ϕ be a 2-tone kG-coloring of H. By Lemma 3.1,
since kG ≥ 7 we can extend ϕ to v2 followed by v3, a contradiction.

x yv1 v2 v3 v4

Figure 3: A 4-thread with endpoints x and y.

Case 2: G contains a 3-thread, as shown in Figure 4. Form H by deleting
v2 and v3. Note that |H| < |G| and ∆(H) ≤ ∆(G). By the minimality of G, we have
τ2(H) ≤ kH ≤ kG. Let ϕ be a 2-tone kG-coloring of H. By Lemma 3.1, since kG ≥ 7
we can extend ϕ to v3 followed by v2, a contradiction. In particular, since y forbids
2 colors from use on v3 and the vertices at distance 2 (in G) from v3 forbid at most
5 distinct 2-sets from use on v3, since kG ≥ 7 we have at least

(
5
2

)
− 5 = 5 remaining

2-sets available for v3. Afterwards, it is easy to color v2. This finishes the extension
of ϕ to a 2-tone kG-coloring of G, which is a contradiction.

x yv1 v2 v3

Figure 4: A 3-thread with endpoints x and y, where d(y) ≤ 5.

Case 3: G contains a 2-thread, as shown in Figure 5. Form H from G by
deleting v1. Note that |H| < |G| and ∆(H) = ∆(G). By the minimality of G, we
have τ2(H) ≤ kH ≤ kG. Let ϕ be a 2-tone kG-coloring of H. Note that ϕ might fail
to induce a partial 2-tone coloring of G since it is possible that ϕ(v2) = ϕ(x), which
creates a problem since d(v2, x) = 2. To avoid this issue we can simply recolor v2,
since d(v2) = 2. In this case, v2 is a leaf of H, so its neighbor forbids 2 colors from use
on v2; furthermore, the vertices at distance 2 from v2 (in G) forbid at most 5 distinct
2-sets from use on v2. So we can recolor v2 with another 2-set, since

(
7−2

2

)
> 4 + 1;

in fact, we have at least 5 choices of label for v2. Thus, we assume that ϕ induces
a proper 2-tone coloring of G. Finally, we consider coloring v1. Its two neighbors
forbid at most 2(2) = 4 colors. And the three vertices at distance two forbid at most
an additional three 2-sets. If kG ≥ 8, then we have a 2-set available to use on v1.
So assume instead that kG = 7. If no 2-sets are available to use on v1, then the two
2-sets used on its neighbors are disjoint. Further, the three 2-sets used on vertices
at distance two are distinct, and they are all disjoint from the set of colors used on
its neighbors. But now to escape this situation we can recolor v2 with one of the
other 4 possible 2-sets we had to choose from. Afterward, we can extend the 2-tone
7-coloring to G, a contradiction.
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x yv1 v2

Figure 5: A 2-thread with endpoints x and y, where d(x) = 3 and d(y) ≤ 5.

We conclude this section with a few conjectures.

Conjecture 3.6. There exists a constant C such that all planar G satisfy τ2(G) ≤√
3∆(G) + C.

Perhaps the following stronger statement holds. It is essentially best possible,
due to Lemma 2.9.

Conjecture 3.7. If G is planar with ∆(G) sufficiently large, then

τ2(G) ≤
⌈√

3∆(G) + 30.25 + 0.25
⌉
.

We also believe that for planar graphs the girth requirement in Theorem 3.5 can
be significantly weakened.

Conjecture 3.8. There exists a constant C such that every planar graph G with
girth at least 5 satisfies τ2(G) ≤

√
2∆(G) + C.

It is interesting to note the following. For every integer t ≥ 2 there exists a girth
gt and a maximum degree ∆t such the maximum value of τt(G), taken over all planar
graphs G with girth at least gt and ∆(G) ≥ ∆t, is achieved by a tree. Cranston, Kim,
and Kinnersley [7, Theorem 2] showed that this maximum (for trees) is bounded by
ct

√
∆(G) for some constant ct; and this is asymptotically sharp. We briefly sketch

the extension to planar graphs with sufficiently large girth and maximum degree.
Following an approach similar to (but simpler than) the proof of Lemma 3.4, we
can prove that if G has sufficiently low maximum average degree, then it contains
either a 1−-vertex or a 3t-thread. Every 1−-vertex can be handled inductively (by
coloring greedily). For a 3t-thread, we delete the middle t vertices and color the
smaller graph by induction. We choose ∆t large enough that τt(K1,∆t) ≥ 3τt(Pt).
(Recall that τt(K1,∆t) ≥ τ2(K1,∆t) ≥

√
2∆t, by Lemma 2.3.) Now the number of

colors forbidden on all of the uncolored vertices (taken together) is at most 2τt(Pt).
Thus, we have at least τt(Pt) colors that are available for use on all of the uncolored
vertices. So we can extend the coloring.

4 3-Tone, 4-Tone, and 5-Tone Coloring of Cycles

We can easily prove that τt(Cn) = O(t3/2), as follows. Let f(t) := τt(Pt). By
Lemma 2.4, there exists a constant c such that τt(Pt) ≤ ct3/2 for all t. Further,
τt(Pn) = τt(Pt) for all n ≥ t. Whenever n ≥ 2t + 2, to prove τt(Cn) ≤ 2f(t) we
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simply color the first t + 1 vertices with one set of f(t) colors and the remaining
vertices with a disjoint set of f(t) colors. But is it true that τt(Cn) = τt(Pn) for all n
sufficiently large (as a function of t)? Bickle and Phillips [5, Theorem 18] showed that
τ2(Cn) = 6 when n ∈ {3, 4, 7} and otherwise τ2(Cn) = τ2(Pn) = 5. We generalize
their approach to prove analogous results for τ3, τ4, and τ5. Our next lemma plays a
key role in these proofs.

Lemma 4.1. Fix t, k, n ∈ Z+. Let C be a set of positive integers, each at least t. If
n can be written as an integer linear combination of elements in C (with nonnegative
coefficients), then τt(Cn) ≤ k provided that the following two properties hold:

(1) For each ` ∈ C, there exist a t-tone k-coloring ϕ` of C`; and

(2) For each ordered pair (`1, `2) ∈ C × C (allowing `1 = `2), we get a t-tone k-
coloring of C2t if we color its first t vertices as vertices `1− t+ 1, . . . , `1 of C`1

under ϕ`1 and we color its last t vertices as vertices 1, . . . , t of C`2 under ϕ`2.

Proof. Fix t, k, and C satisfying the hypotheses. We prove the stronger statement
that if n satisfies the hypotheses, then Cn has a t-tone k-coloring in which its vertices
are partitioned into copies of P`i

, with each `i ∈ C, and each copy of P`i
colored by

ϕ`i
. Our proof is by induction on the sum of the coefficients in the integer linear

combination representation of n.

Assume, by symmetry, that `1 has a positive coefficient, and let n′ := n− `1. By
hypothesis, we have the desired t-tone k-coloring ϕn′ of Cn′ . We insert a path on
`1 vertices between the “first” and “last” vertex of the cycle Cn′ to get Cn. Note
that ϕn′ induces a partial t-tone k-coloring of Cn, with these `1 successive vertices
uncolored. To extend this partial coloring, we color the uncolored vertices using ϕ`1 .
By properties (1) and (2), this yields a t-tone k-coloring of Cn, as desired.

Note that Property (2) holds trivially if each t-tone coloring ϕ`i
agrees on (is

identical on) its first t vertices. For example, as illustrated in Figure 6, we can use
Lemma 4.1 with C = {4, 5} to show τ3(C13) ≤ 10 since 13 = 2(4) + 1(5) and the
3-tone 10-colorings of C4 and C5 agree in the first 3 vertices. We use Lemma 4.1 to
prove our next three theorems, which show that τt(Cn) = τt(Pn) for all t ∈ {3, 4, 5},
for all but a small (finite) number of values of n.

Theorem 4.2.

τ3(Cn) =


10 if n ∈ {4, 5}
9 if n ∈ {3, 7, 10, 13}
8 otherwise.

Proof. It is easy to check that τ3(P3) = 8. So τ3(Cn) ≥ τ3(P3) = 8 for all n ≥ 3.
Pan and Wu [16] showed that τ3(Cn) = 9 when n ∈ {3, 7} and that τ3(Cn) = 10
when n ∈ {4, 5}. So we assume below that n = 6 or n ≥ 8. The case n ∈ {10, 13} is
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{4, 5, 6}{1, 2, 3}

{4, 9, 10} {1, 7, 8}

{1, 7, 8}

{4, 5, 6}

{1, 2, 3}

{5, 7, 10} {4, 2, 9}

{5, 7, 10}

{4, 2, 9}{1, 7, 8}{4, 5, 6}

{1, 2, 3}

{4, 9, 10}

{1, 7, 8}

{4, 5, 6}
{1, 2, 3} {4, 9, 10}

{1, 7, 8}

{4, 5, 6}

{1, 2, 3}

Figure 6: Using 3-tone 10-colorings of C4 and C5 to show τ3(C13) ≤ 10.

exceptional, so we defer it briefly to handle the general case. In Lemma 4.1, we let
C = {6, 8, 9, 11} and take ϕk as described below.

ϕ6: −123− 456− 178− 234− 156− 478−
ϕ8: −123− 456− 178− 234− 568− 127− 345− 678−
ϕ9: −123− 456− 178− 234− 568− 174− 238− 156− 478−
ϕ11: −123− 456− 178− 234− 568− 127− 634− 578− 126− 345− 678−

So it remains to show that n can be written as an integer linear combination of
elements of C whenever n ≥ 3 and n /∈ {3, 4, 5, 7, 10, 13}. To see this, we consider
the integer linear combinations, 6, 8, 9, 11, 6 + 6, 6 + 8, 6 + 9, 8 + 8, 8 + 9, 9 + 9, 8 + 11
and note that every larger integer can be written as one of the final 6, plus some
multiple of 6.

Now assume n ∈ {10, 13}. To see that τ3(Cn) ≤ 9, consider the two following
3-tone 9-colorings.

3-tone 9-coloring of C10 :− 123− 456− 178− 369− 458− 279− 368− 245−
− 169− 578−

3-tone 9-coloring of C13 :− 123− 456− 178− 369− 458− 279− 368− 459−
− 278− 369− 245− 168− 579−

Finally, we show for each n ∈ {10, 13} that τ3(Cn) > 8. Assume the contrary, let
ϕ be a 3-tone 8-coloring of Cn, and let ci denote the number of vertices receiving color
i under ϕ for each i ∈ [8]. Let s := (n− 1)/3. It is straightforward to check that, for
at least (ci − s)2 pairs of vertices at distance 2, both vertices receive color i. Note
that

∑8
i=1 ci = 3n = 9s+3. Further,

∑8
i=1(ci−s)2 = 18s+6−16s = 2s+6. Observe

that Cn has precisely n = 3s + 1 pairs of vertices at distance 2. Since n ∈ {10, 13},
we have s ∈ {3, 4}, so 2s+ 6 > 3s+ 1. Thus, by Pigeonhole some pair of vertices at
distance 2 receive two common colors under ϕ, a contradiction.
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Theorem 4.3.

τ4(Cn) =


15 if n = 5
14 if n = 4
13 if n = 7
12 otherwise.

Proof. We have τ4(Cn) ≥ τ4(Pn) = 12. Using results from [16], we have τ4(C3) = 12,
τ4(C4) = 14, τ4(C5) = 15, and τ4(C7) = 13. We let C = {6, 8, 9, 10, 11, 12, 13} and
take ϕk as described below.

ϕ6: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 4, 6, 7, 9− 8, 10, 11, 12−
ϕ8: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 4, 7, 8, 11− 1, 3, 6, 10−

−2, 5, 8, 9− 7, 10, 11, 12−
ϕ9: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 4, 7, 8, 11− 3, 6, 9, 10−

−1, 4, 5, 12− 2, 7, 8, 10− 6, 9, 11, 12−
ϕ10: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 4, 7, 8, 11− 6, 9, 10, 12−

−1, 3, 5, 11− 2, 4, 8, 12− 3, 6, 7, 10− 5, 9, 11, 12
ϕ11: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 1, 4, 6, 7− 5, 8, 9, 10−

−2, 3, 7, 11− 4, 6, 8, 12− 1, 3, 5, 10− 2, 6, 7, 9− 8, 10, 11, 12−
ϕ13: −1, 2, 3, 4− 5, 6, 7, 8− 1, 9, 10, 11− 2, 3, 5, 12− 4, 7, 8, 11− 6, 9, 10, 12−

−1, 3, 5, 11− 2, 7, 8, 12− 4, 9, 10, 11− 3, 5, 6, 12− 1, 2, 8, 11− 4, 6, 7, 10−
−5, 9, 11, 12−

So it remains to show that n can be written as an integer linear combination of
elements of C whenever n ≥ 3 and n /∈ {3, 4, 5, 7}. To see this, we consider the
integer linear combinations, 6, 8, 9, 10, 11, 6 + 6, 13 and note that every larger integer
can be written as one of the final 6, plus some multiple of 6.

Theorem 4.4.

τ5(Cn) =


20 if n = 5
18 if n ∈ {4, 6}
17 if n ∈ {7, 9}
15 if n = 3
16 otherwise.

Proof. We have τ5(Cn) ≥ τ5(Pn) = 16 when n ≥ 4. Using results from [16], we
have τ5(C3) = 15, τ5(C4) = 18, τ5(C5) = 20, τ5(C6) = 18, and τ5(C7) = 17. We let
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C = {8, 10, 11, 12, 13, 14, 15, 17} and take ϕk as described below.

ϕ8: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 14−
−1, 3, 7, 8, 13− 2, 6, 10, 11, 12− 9, 13, 14, 15, 16−

ϕ10: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 14−
−7, 8, 12, 13, 16− 1, 5, 6, 11, 15− 2, 3, 9, 10, 16− 4, 7, 8, 11, 14− 6, 12, 13, 15, 16−

ϕ11: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 7, 8, 4, 5, 11−
−1, 6, 9, 10, 14− 7, 12, 13, 15, 16− 2, 3, 5, 8, 14− 1, 4, 7, 10, 11− 6, 2, 9, 12, 13−
−8, 11, 14, 15, 16−

ϕ12: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 1, 7, 8, 4, 5−
−6, 11, 12, 9, 10− 1, 2, 3, 13, 14− 6, 7, 8, 15, 16− 1, 11, 12, 4, 5− 6, 2, 3, 9, 10−
−1, 7, 8, 13, 14− 6, 11, 12, 15, 16−

ϕ13: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 13−
−1, 7, 8, 11, 15− 2, 6, 10, 12, 14− 3, 4, 7, 13, 16− 5, 9, 10, 11, 15− 1, 2, 8, 12, 16−
−4, 5, 6, 7, 14− 3, 8, 10, 11, 13− 9, 12, 14, 15, 16−

ϕ14: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 13−
−1, 7, 8, 11, 15− 2, 6, 10, 12, 14− 3, 4, 7, 13, 16− 5, 9, 10, 11, 15− 1, 2, 8, 12, 16−
−3, 5, 6, 13, 14− 1, 4, 7, 10, 15− 2, 8, 9, 11, 14− 6, 12, 13, 15, 16

ϕ15: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 14−
−7, 8, 12, 13, 16− 1, 6, 11, 14, 15− 2, 3, 9, 10, 16− 4, 5, 12, 13, 15− 7, 8, 11, 14, 16−
−1, 6, 9, 10, 15− 2, 3, 12, 13, 16− 4, 5, 8, 10, 14− 1, 7, 9, 11, 13− 6, 12, 14, 15, 16−

ϕ17: −1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14− 6, 2, 3, 15, 16− 4, 5, 9, 10, 13−
−1, 7, 8, 11, 15− 2, 6, 10, 12, 14− 3, 4, 7, 13, 16− 5, 9, 10, 11, 15− 1, 2, 8, 12, 16−
−3, 5, 6, 13, 14− 1, 4, 7, 10, 15− 3, 8, 9, 11, 16− 2, 5, 12, 14, 15− 1, 3, 6, 10, 13−
−4, 7, 9, 11, 14− 8, 12, 13, 15, 16−

So it remains to show that n can be written as an integer linear combination of
elements of C whenever n ≥ 3 and n 6= 9. To see this, we consider the integer linear
combinations, 8, 10, 11, 12, 13, 14, 15, 8 + 8, 17, 8 + 10, 8 + 11, 10 + 10, 10 + 11, 11 +
11, 8 + 15, 8 + 8 + 8, 10 + 15 and note that every larger integer can be written as one
of the final 8, plus some multiple of 8.

Now assume that n = 9. To see that τ5(C9) ≤ 17, consider the following 5-tone
17-coloring.

5-tone 17-coloring of C9 :− 1, 2, 3, 4, 5− 6, 7, 8, 9, 10− 1, 11, 12, 13, 14−
− 6, 2, 3, 15, 16− 4, 5, 7, 9, 12− 1, 8, 10, 11, 15−
− 2, 4, 6, 13, 14− 3, 7, 8, 12, 16− 9, 11, 13, 15, 17−

Finally, we will prove that τ5(C9) ≥ 17. Assume, to the contrary, that C9 has a
5-tone 16-coloring. Note that each color appears on at most 4 vertices. Each color
must appear on at least one vertex, since τ5(C9) ≥ τ5(P4) = 16. For each i ∈ [4], let
si denote the number of colors used on exactly i vertices. So we have

∑4
i=1 si = 16

and
∑4

i=1 isi = 9(5) = 45. Further, let s′3 denote the number of colors used on
exactly 3 vertices, where some pair is at distance 2, and let s′′3 denote the number of
colors used on exactly 3 vertices, where each pair is distance 3. Note that each color
used on 4 vertices is used on 3 pairs of vertices at distance 2. Since C9 has 9 pairs
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of vertices at distance 2, and each pair can share at most 1 common color, we get
3s4 + s′3 ≤ 9. Similarly, by considering vertex pairs with a common color that are at
distance 3, we get s′3 + 3s′′3 ≤ 18. Multiplying the first inequality by 2, adding it to
the second inequality, and dividing by 3 (recalling s′3 + s′′3 = s3) gives

2s4 + s3 ≤ 12. (∗)

Recall that
∑4

i=1 si = 16 and
∑4

i=1 isi = 9(5) = 45. Multiplying the first equation
by 3 and subtracting the second gives 2s1 + s2 − s4 = 3. Adding this to (∗) gives
2s1 + s2 + s3 + s4 ≤ 12 + 3 = 15. Since s1 ≥ 0, this contradicts the first equation,
and this contradiction finishes the proof.

We conclude this section with a bold conjecture.

Conjecture 4.5. For each t ≥ 2 there exists N ∈ N such that τt(Cn) = τt(Pn) for
all n ≥ N .

5 3-Tone, 4-Tone, and 5-Tone Coloring of Grid Graphs

In this section we will consider the t-tone chromatic number of grid graphs for each
t ∈ {3, 4, 5}.

Bickle [4, Proposition 32] (also Cooper and Wash [6, Theorem 5]) showed that
τ2(Pn�Pm) = 6 for all n,m ≥ 2. It is useful in their proof, and in the following
three theorems, to imagine the grid graph as being drawn in the first quadrant of the
xy-plane with vertices as integer points. Now their proof can be viewed as coloring
lines of slope 1 by cycling through the colors 1, 2, 3 and coloring lines of slope −1 by
cycling through the colors 4, 5, 6. Each vertex v needs two colors; it takes one color
from the line through it of slope 1 and takes the other color from the line through it
of slope −1.

For Theorem 5.1, the proof can be viewed as coloring the lines of slope 1 and
slope −1 as above, but also coloring lines of slope 2. This theorem improves a result
in [6, Theorem 8]. For Theorem 5.2, the proof can be viewed as coloring the lines of
slope 1, slope −1, and slope 2 as in Theorem 5.1, but further coloring lines of slope
−1

2
. Finally, for Theorem 5.3, the proof can also be viewed as coloring the lines of

slope 1, slope −1, slope 2, and slope −1
2

as in Theorem 5.2, but adding colors to
lines of slope 1.

For the following three theorems we consider the vertices of Pm�Pn as integer
points on the xy-plane where a vertex (xi, yj) is denoted by (i, j) with 1 ≤ i ≤ m and
1 ≤ j ≤ n. For all vertices (i1, j1) and (i2, j2) in V (Pm�Pn), note that the distance
between them is exactly |i1 − i2|+ |j1 − j2|.

Theorem 5.1. τ3(Pm�Pn) = 10 for all integers m and n with 2 ≤ m ≤ n.

Proof. Lemmas 2.1 and 2.2 imply that 10 = τ3(C4) ≤ τ3(Pm�Pn). So it suffices to
construct a 3-tone 10-coloring of Pm�Pn. Let f : V (Pm�Pn)→

(
[10]
3

)
where we write
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f((i, j)) as f(i, j) and we let f(i, j) := {f1(i, j), f2(i, j), f3(i, j)}, where

f1(i, j) := (i− j) mod 3

f2(i, j) := ((i+ j) mod 3) + 3

f3(i, j) := ((2i+ j) mod 4) + 6.

Denote v by (i1, j1) and w by (i2, j2). It suffices to prove the following three
claims.

Claim 1: If |f(v) ∩ f(w)| = 3, then d(v, w) ≥ 4.

If |f(v) ∩ f(w)| = 3, then fi(v) = fi(w) for all i ∈ [3]. So (i1 − j1) ≡ (i2 − j2)
mod 3 and (i1 + j1) ≡ (i2 + j2) mod 3. Thus i1 ≡ i2 mod 3 and j1 ≡ j2 mod 3. If
d(v, w) ≤ 3 and v 6= w, then i1 ≡ i2 ± 3 and j1 = j2 or else i1 = i2 and j1 = j2 ± 3.
But now (2i1 + j1) 6≡ (2i2 + j2) mod 4.

Claim 2: If |f(v) ∩ f(w)| = 2, then d(v, w) ≥ 3.

Assume |f(v)∩ f(w)| = 2. If {f1(v), f2(v)} = {f1(w), f2(w)}, then the argument
in Claim 1 still holds. Instead we assume f3(v) = f3(w) and d(v, w) ≤ 2. Thus
i1 = i2 ± 2 and j1 = j2, but now f1(v) 6= f2(v) and f2(v) 6= f2(w), a contradiction.

Claim 3: If |f(v) ∩ f(w)| = 1, then d(v, w) ≥ 2.

Assume that d(v, w) = 1. So either i1 = i2 and j1 − j2 = ±1 or else j1 = j2 and
i1 − i2 = ±1. Now clearly fi(v) 6= fi(w) for all i ∈ [3], a contradiction.

Theorem 5.2. τ4(Pm�Pn) = 14 for integers m and n with 2 ≤ m ≤ n.

Proof. Lemmas 2.1 and 2.2 imply that 14 = τ4(C4) ≤ τ4(Pm�Pn). So it suffices to
construct a 4-tone 14-coloring of Pm�Pn. Let f : V (Pm�Pn) →

(
[14]
4

)
, where we

write f((i, j)) as f(i, j) and we let f(i, j) := {f1(i, j), f2(i, j), f3(i, j), f4(i, j)}, where

f1(i, j) := (i− j) mod 3

f2(i, j) := ((i+ j) mod 3) + 3

f3(i, j) := ((2i+ j) mod 4) + 6 (∗∗)
f4(i, j) := ((i+ 2j) mod 4) + 10.

Denote v by (i1, j1) and w by (i2, j2). Assume d(v, w) = 1. It suffices to prove
the following four claims.

Claim 1: If |f(v) ∩ f(w)| = 4, then d(v, w) ≥ 5.

Assume |f(v)∩f(w)| = 4. So fi(v) = fi(w) for all i ∈ [4]. Claim 1 in Theorem 5.1
implies d(v, w) ≥ 4. Suppose d(v, w) = 4. Since f4(v) = f4(w) we have i1 − i2 ≡ 0
mod 4 and j1 = j2, or j1 − j2 ≡ 0 mod 4 and i1 = i2. In either case this implies
fk(v) 6= fk(w) for each k ∈ {1, 2}, a contradiction.
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Claim 2: If |f(v) ∩ f(w)| = 3, then d(v, w) ≥ 4.

Assume |f(v) ∩ f(w)| = 3. Claim 1 in Theorem 5.1 implies f4(v) = f4(w); and
Claim 2 in Theorem 5.1 implies d(v, w) ≥ 3. Suppose d(v, w) = 3. If f3(v) 6= f3(w),
then i1 ≡ i2 mod 3 and j1 ≡ j2 mod 3, but then f4(v) 6= f4(w), a contradiction.
If f3(v) = f3(w), then i1 − i2 ≡ j1 − j2 mod 4, which implies f1(v) 6= f1(w) and
f2(v) 6= f2(w), contradicting |f(v) ∩ f(w)| = 3.

Claim 3: If |f(v) ∩ f(w)| = 2, then d(v, w) ≥ 3.

Assume |f(v) ∩ f(w)| = 2. If f4(v) 6= f4(w), then by Claim 2 in Theorem 5.1
we know d(v, w) ≥ 3. So we may assume f4(v) = f4(w) and fk(v) = fk(w) for some
single k ∈ [3]. From Claim 3 in Theorem 5.1 we have that d(v, w) ≥ 2. Suppose
d(v, w) = 2. Since f4(v) = f4(w) it must be that i1 = i2. So j1 − j2 ≡ 2 mod 4; but
now fk(v) 6= fk(w) for all k ∈ {1, 2}, a contradiction.

Claim 4: If |f(v) ∩ f(w)| = 1, then d(v, w) ≥ 2.

Assume |f(v)∩f(w)| = 1. If f4(v) 6= f4(w), then Claim 3 in Theorem 5.1 implies
d(v, w) ≥ 2. So f4(v) = f4(w), which implies d(v, w) ≥ 2.

Theorem 5.3. 20 ≤ τ5(Pm�Pn) ≤ 22 for all 2 ≤ m < n.

Proof. Using Lemma 2.2 when t ≥ 5 implies τt(P2�P3) = 6t−10; in fact, an optimal
t-tone coloring ϕ of P2�P3 is unique up to relabelling. This fact combined with
Lemma 2.1 implies 20 = τ5(P2�P3) ≤ τ5(Pm�Pn).

It now suffices to show a 5-tone 22-coloring of Pm�Pn. Let f : V (Pm�Pn)→
(

[22]
5

)
where we will denote f((i, j)) as f(i, j) and define f(i, j) := {f1(i, j), f2(i, j), f3(i, j),
f4(i, j), f5(i, j)} where

f1(i, j) := (i− j) mod 3

f2(i, j) := ((i+ j) mod 3) + 3

f3(i, j) := ((2i+ j) mod 4) + 6

f4(i, j) := ((i+ 2j) mod 4) + 10

f5(i, j) := ((i+ 3j) mod 8) + 14.

Let v = (i1, j1), w = (i2, j2), and q = |f(v) ∩ f(w)|. If q ∈ {0, . . . , 4} and f5(v) 6=
f5(v), then (∗∗) and the claims in Theorem 5.2 imply d(v, w) ≥ q+ 1. So we assume
f5(v) = f5(v). This implies d(v, w) ≥ 4 since otherwise ((i1−i2)+3(j1−j2)) mod 8 6=
0. So it suffices to prove the following two claims.

Claim 1: If |f(v) ∩ f(w)| = 4, then d(v, w) ≥ 5.

Assume |f(v) ∩ f(w)| = 4. Suppose d(v, w) = 4. Since f5(v) = f5(w), either:
i1 − i2 = ±1 and j1 − j2 = ∓3; or i1 − i2 = ±2 and j1 − j2 = ±2; or i1 − i2 = ±3
and j1 − j2 = ∓1. In all cases f2(v) 6= f2(w) and f3(v) 6= f3(w), a contradiction to
|f(v) ∩ f(w)| = 4.

Claim 2: If |f(v) ∩ f(w)| = 5, then d(v, w) ≥ 6.

Assume |f(v)∩f(w)| = 5. Claim 1 implies d(v, w) ≥ 5. So |i1− i2|+ |j1−j2| = 5.
But now f5(v) 6= f5(w), a contradiction.
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