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Abstract

Zero forcing is a process that models the spread of information through-
out a graph as white vertices are forced to turn blue using a color change
rule. The idea of throttling, introduced in 2013 by Butler and Young,
is to optimize the trade-off between the number of initial blue vertices
and the time taken to force all vertices to become blue. The original
throttling number of a graph minimizes the sum of these two quantities
and the product throttling number minimizes their product. In addition,
weighted throttling changes the weights given to these two quantities
when minimizing their sum. Since its introduction, throttling has ex-
panded to include many variants of zero forcing. This motivates the study
of zero forcing and throttling using abstract color change rules. Recently,
it has been shown that the graphs with high (sum) throttling numbers
are characterized by a finite family of forbidden induced subgraphs. In
this paper, we extend that result to throttling, product throttling, and
weighted throttling using abstract color change rules. To this end, we
define some important families of color change rules and explore their
properties.
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1 Introduction

Zero forcing is a combinatorial game played on graphs in which a color change rule
is used to change the color of vertices from white to blue. The standard color change
rule, denoted Z, states that if a blue vertex v has a unique white neighbor w, then
v can force w to become blue. Starting with an initial subset of vertices B ⊆ V (G)
colored blue and V (G)\B colored white, the goal of the game is to repeatedly apply
the color change rule and eventually force every vertex in V (G) to become blue. If
this goal is achievable using the standard color change rule, then the initial subset
B of blue vertices is called a (standard) zero forcing set of G. The (standard) zero
forcing number of a graph G, denoted Z(G), is the size of a minimum standard zero
forcing set of G.

The standard zero forcing number was introduced in [1] as an upper bound for
the maximum nullity of a family of symmetric matrices that correspond to a given
graph. Since its origin, many variants of zero forcing, obtained by altering the
standard color change rule, have been studied (see [4]). One variant, called positive
semidefinite (PSD) zero forcing, allows forcing to occur in multiple components of a
graph. Suppose G is a graph and B ⊆ V (G) is the set blue vertices in V (G). Let
W1,W2, . . . ,Wk be the sets of white vertices in the components of G−B respectively.
The PSD color change rule, denoted Z+, states that if v is a blue vertex and w is the
unique white neighbor of v in the graph G[B ∪Wi] for some 1 ≤ i ≤ k, then v can
force w to become blue. Note that the PSD color change rule is simply the standard
color change rule applied within each component of G − B. PSD forcing sets and
the PSD forcing number, denoted Z+(G), are defined analogously to their standard
counterparts.

Due to the numerous variants of zero forcing, attempts have been made to unify
these parameters with abstract definitions (see [4, 9, 12]). All zero forcing parameters
stem from a color change rule that specifies the conditions under which a vertex v
can force another vertex w to become blue. For a given color change rule X, a valid

force can be denoted as v
X→ w. In a graph G, suppose we start with B ⊆ V (G)

colored blue and V (G)\B colored white and we apply an arbitrary color change rule
X until no more forces are possible. The set of blue vertices in G that results from
this process is called an X final coloring of B. An X forcing set of G is a subset of
V (G) that has V (G) as an X final coloring and the X forcing number for G, denoted
X(G), is the size of a minimum X forcing set of G. In general, there can be many
distinct X final colorings of a given subset B ⊆ V (G) (see [4, 9]). For Z and Z+,
the final coloring of a given subset B ⊆ V (G) is unique and is sometimes called the
closure of B.

There are various ways to keep track of the forces that occur during a zero forcing
process. If B ⊆ V (G) is the initial set of blue vertices, the ordered list of forces
performed to obtain an X final coloring of B is called a chronological list of X forces
of B. Also, the set of forces that appear in a given chronological list is called a set of
X forces of B. For a set of X forces, F , an X forcing chain of F is a list of vertices
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v1, v2, . . . , vk ∈ V (G), such that the force (vi
X→ vi+1) ∈ F for each 1 ≤ i ≤ k − 1.

Note that this definition of forcing chain does not require the list of vertices in the
chain to be maximal. This diverges from some previous literature, but is necessary
for our investigation.

In addition to its connections to linear algebra, zero forcing is also studied for
its combinatorial properties. There are a variety of parameters that measure the
time taken during a zero forcing process. Suppose F is a set of X forces of a subset
B ⊆ V (G). Define F (0) = B and for each integer t > 0, define F (t) as follows. First,
color

⋃t−1
i=0 F (i) blue and color V (G)\⋃t−1

i=0 F (i) white. Given this coloring, F (t) is the
set of white vertices w for which there exists a blue vertex b such that (b → w) is a
valid X force in F . For each integer t ≥ 0, let F [t] =

⋃t
i=0 F (i). If F (i) is uniquely

determined by B independent of F , then we write B(i) = F (i) and B[i] = F [i]. The X
propagation time of F , denoted ptX(G;F), is the smallest nonnegative integer q such
that F [q] = V (G). Note that if B is not an X forcing set of G, then ptX(G;F) = ∞
for any set of X forces F of B. Since there are sometimes many distinct sets of
X forces of a given subset B ⊆ V (G), the X propagation time of B is defined as
ptX(G;B) = min{ptX(G;F) | F is a set of X forces of B}.

Informally, F [t] is the set of vertices in V (G) that are blue at time t and for each
t > 0, F (t) is the set of vertices that turn blue during time step t. In addition, let
U

(t)
F denote the set of vertices that perform the forces during each positive time step

t and let U
(0)
F = ∅. Analogously, for each integer t ≥ 0, the set U

[t]
F =

⋃t
i=0 U

(i)
F is the

set of vertices that have performed a force by time t.

It is clear that the the size of the initial set B ⊆ V (G) of blue vertices and the
propagation time of B are both important throughout a zero forcing process. As
such, there are a variety of parameters that combine both of these quantities. For
a subset B ⊆ V (G), the X throttling number of B is thX(G;B) = |B| + ptX(G;B)
and the X throttling number of G is thX(G) = min{thX(G;B) | B ⊆ V (G)}. The
concept of throttling for zero forcing was first introduced by Butler and Young in
[8]. In recent years, throttling has become a significant area of research which has
expanded to include many variants of zero forcing (see [7, 8, 9, 11, 14]) and some
variants of the game of cops and robbers (see [5, 6, 10]).

Sometimes, we may not want to give |B| and ptX(G;B) equal weight when mini-
mizing their sum. If ω is a nonnegative real number, the weighted X throttling number
of G is thω

X(G) = min{|B| + ω · ptX(G;B) | B ⊆ V (G)}. We can also minimize a
product instead of a sum. The (no initial cost) X product throttling number of G is

th∗
X(G) = min{|B| · ptX(G;B) | B ( V (G)}.

In each definition that involves an abstract color change rule X, the X can be dropped
if the exact rule is clear from context.

In [12], the authors show that the problem of determining graphs with high
standard or PSD throttling numbers is a forbidden subgraph problem.

Theorem 1.1. [12, Theorem 4.7] Suppose that X is either the standard or PSD
color change rule and k is a nonnegative integer. The set of graphs G such that
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thX(G) ≥ |V (G)| − k and |V (G)| ≥ k is characterized by a finite family of forbidden
induced subgraphs.

Given that abstract color change rules can behave very differently and there are
multiple types of throttling numbers, it is natural to ask the following question. To
what extent can Theorem 1.1 be generalized? In order to provide an answer to
this question, we begin by identifying some convenient properties held by many zero
forcing color change rules.

Definition 1.2. A forcing color change rule X is well-behaved if for any graph G,
any X forcing set B ⊆ V (G) with any set of X forces F such that ptX(G;F) < ∞,

1. if B is an X forcing set of G, then any super set of B is an X forcing set of G,

2. |U (i)
F | ≤ |F (i)| for all 0 ≤ i ≤ ptX(G;F),

3. F [i] \ U [i]
F is an X forcing set of G− U

[i]
F for all 0 ≤ i ≤ ptX(G;F), and

4. U
[t]
F is an X forcing set for G− (B \ U [t]

F ) for t = ptX(G,F).

We say a color change rule X is nearly well-behaved if X only satisfies properties 1
and 2.

The conditions in Definition 1.2 seem restrictive at first, but they are in fact
fairly natural for many variants of zero forcing. The first condition allows us to
add vertices to X forcing sets. The second condition ensures that in each time step,
the number of new blue vertices is at least the number of vertices that performed a
force. This condition is trivially satisfied by most zero forcing color change rules since
they typically specify that a particular vertex v forces a white vertex w. In other
words, the color change rule provides a surjective map from F (i) to U

(i)
F , relating

their cardinalities. Interestingly, the definition of well-behaved allows for multiple
vertices to cooperatively force a white vertex, as long as the cardinality condition is
met. The third condition says that vertices that have already performed a force are
not necessary for future forces and the fourth condition says that blue vertices in B
that never perform a force are not needed at all.

In Section 2, we extend Theorem 1.1 to weighted throttling for well-behaved color
change rules by modifying the proofs in [12]. Then, we introduce chain independent
color change rules in order to investigate product throttling in Section 3.

All graphs in this paper are simple, finite, and undirected. Furthermore, we follow
most of the graph theoretic notation found in [15].

2 Weighted throttling

In this section, we examine the weighted throttling number thω
X(G) for a well-behaved

color change rule X. Note that when ω = 1, thω
X(G) specializes to the classic throt-

tling number. If ω ≥ 0 and X is a well-behaved color change rule, the following
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proposition demonstrates that high values of thω
X(G) can be characterized using for-

bidden subgraphs. The proofs of Proposition 2.1, Lemma 2.3, and Theorem 2.5 are
modifications of Proposition 4.3, Lemmas 4.4, and Theorem 4.7 in [12].

Proposition 2.1. Let k be a constant and X be a well-behaved color change rule.
The set of graphs G such that thω

X ≥ |V (G)| − k and |V (G)| ≥ k is characterized by
a family of forbidden induced subgraphs.

Proof. Suppose that thω
X(G) < |V (G)| − k and let H be any graph such that G is an

induced subgraph of H with the injection φ : V (G) → V (H). Let B ⊆ V (G) be an
X forcing set that realizes th(G;B) = thω

X(G) < V (G) − k and let W = V (G) \ B.
Then B′ = V (H) \ φ(W ) is an X forcing set of H. This follows from the fact that if
v → u is possible in G given B, then φ(v) → φ(u) is possible in H given B′ since X
is well-behaved. In particular,

thω
X(H) ≤ |B′|+ω ·ptX(H;B′) = |V (H)\φ(V (G))|+|B|+ω ·ptX(G;B) < |V (H)|−k.

Therefore, B′ is an X forcing set ofH that demonstrates that thω
X(H) < V (H)−k.

Our goal is to show that the family of forbidden subgraphs in Propositon 2.1
is finite. This is achieved in [12] for ω = 1 and X ∈ {Z,Z+} by making use of
specific zero forcing sets called standard witnesses. The next definition formalizes
this concept for weighted throttling.

Definition 2.2. We say an X forcing set B ⊆ V (G) is a standard witness for
thω

X(G) < |V (G)| − k, if |F (i)| −ω > 0 for each time step i and |B|+ω · ptX(G;B) <
|V (G)| − k where F is a set of forces such that ptX(G;F) = ptX(G;B).

Before we prove the main result in this section, we need to establish some pre-
liminary facts about standard witnesses and the weighted throttling number.

Lemma 2.3. Suppose X is a well-behaved color change rule. If thω
X(G) < |V (G)|−k,

then there exists a standard witness thω
X(G) < |V (G)| − k.

Proof. Let B be an X forcing set such that thω
X(G;B) < |V (G)| − k. Let F be a

set of forces for B that realizes ptX(G;B). Let I be the set of times i such that
|F (i)| − ω ≤ 0. Then

B′ = B ∪
⋃

i∈I

F (i)

is a standard witness for thω
X(G) < |V (G)| − k since X is well-behaved.

Lemma 2.4. Let G be a graph, X be a color change rule, and ω be a non-negative
real number. Then, thω

X(G) < |V (G)| − k if and only if there exists an X forcing set
B ⊆ V (G) and set of forces F such that ptX(G;B) = ptX(G;F) and

pt
X
(G;B)
∑

i=1

|F (i)| − ω > k.
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Proof. Let B be an X forcing set of G with

pt
X
(G;B)
∑

i=1

|F (i)| − ω > k.

This implies that

|V (G) \B| − ω · ptX(G;B) > k

|V (G)| − |B| − ω · ptX(G;B) > k

|V (G)| − k > |B|+ ω · ptX(G;B)

|V (G)| − k > thω
X(G).

To prove the converse, assume that |V (G)| − k > thω
X(G) and let B be an X

forcing set that realizes this inequality. In particular, suppose that

|V (G)| − k > |B|+ ω · ptX(G;B).

This implies that
|V (G) \B| − ω · ptX(G;B) > k.

Since B is an X forcing set, we can partition V (G)\B into F (i) for 1 ≤ i ≤ ptX(G;B).
Using this partition, we can count the elements in V (G) \B to obtain

pt
X
(G;B)
∑

i=1

|F (i)| − ω > k.

This completes the proof.

The following theorem extends Theorem 1.1 to well-behaved color change rules
and arbitrary non-negative weights.

Theorem 2.5. Let X be a well-behaved color change rule. The set of graphs G such
that thω

X(G) ≥ |V (G)| − k and |V (G)| ≥ k is characterized by a finite family of
forbidden induced subgraphs.

Proof. Notice that we can write ω = ωN + ωR where ωN ∈ N and 0 ≤ ωR < 1 with
ωR ∈ R. Let k be a non-negative integer and G be the set of all graphs G such that
thω

X(G) < |V (G)| − k and |V (G)| ≤ 2(k + 1) + 2ω(k+1)
1−ωR

. We will prove the claim that

if thω
X(G) < |V (G)| − k and |V (G)| ≥ k, then G contains a graph in G as an induced

subgraph. By Lemma 2.4, there exists a zero forcing set B and set of forces F such
that ptX(G;B) = ptX(G;F) and

pt
X
(G;B)
∑

i=1

|F (i)| − ω > k.
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Without loss of generality, assume thatB is a standard witness for thω
X(G) < |V (G)|−

k. Let r be the first time step at which
∑r

i=1 |F (i)| − ω > k. In fact, we can choose

F̂ (r) ⊆ F (r) so that

|F̂ (r)| − ω +
r−1
∑

i=1

|F (i)| − ω ≤ k + 1.

To avoid cumbersome notation, let F̂ (i) = F (i) for each 1 ≤ i ≤ r − 1 so that

r
∑

i=1

|F̂ (i)| − ω ≤ k + 1.

Since B is a standard witness for thω
X(G) < |V (G)| − k, r ≤ k+1

1−ωR

. Let H = G[S]
where

S =
r
⋃

i=1

U
(i)
F ∪ F̂ (i).

First, we will show that thω
X(H) < |V (H)|−k. Then, we will show that |V (H)| ≤

2(k + 1) + 2ω(k+1)
1−ωR

. This will prove that H is in G.
Let

B̂ =
r
⋃

i=1

(

U
(i)
F \

i−1
⋃

j=1

F̂ (j)

)

.

We will prove that B̂(i) is blue after time step i by induction on i, assuming that B̂
is the initial zero forcing set. As a base case, B̂ is a set of blue vertices in H after 0
time steps by construction. We will assume that the sets F̂ (j) for 0 ≤ j ≤ i− 1 are
blue at the beginning of time step i. This implies that U

(i)
F is blue at the beginning

of time step i. Since H is an induced subgraph of G that contains U
(i)
F and F̂ (i), the

set U
(i)
F can force F̂ (i) in H. Therefore, after time step i, the vertices in F̂ (i) are blue

in H. Thus, B̂ can force all of H in at most X time steps. Now,

thω
X(H) ≤ |V (H)| −

r
∑

i=1

|F̂ (i)| − ω < |V (H)| − k

by Lemma 2.4.

Notice that |U (i)
F | ≤ |F̂ (i)| by the X color change rule (this is an equality for

standard zero forcing, but can be an inequality for PSD zero forcing). Therefore,

|S| ≤
r
∑

i=1

|U (i)
F |+ |F̂ (i)| ≤ 2

r
∑

i=1

|F̂ (i)| ≤ 2(k + 1 + rω) ≤ 2(k + 1) +
2ω(k + 1)

1− ωR

.

Thus, H = G[S] is a graph in G.

Counting exactly how many graphs are forbidden seems hard. The size of the
largest forbidden graph serves as an intuitive proxy for the number of graphs that are
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forbidden. A detail hidden in the proof of Theorem 2.5 is that the largest forbidden
graph in the characterizing family has order at most 2(k+1)+ 2ω(k+1)

1−ωR

. By contrast,

the largest graph forbidden in the proof of Theorem 1.1 (which is the unweighted
analog of Theorem 2.5) has order 4k + 4. This quantity is recovered exactly when
ω = 1.

3 Product throttling

In this section, we investigate no initial cost product throttling for abstract color
change rules. An overview of the current literature on product throttling is given
in [3] where the authors set up the following notation. Let G be a graph, X be an
abstract color change rule, and k be a non-negative integer. Then, ptX(G, k) is the
minimum value of ptX(G;B) where B ranges over all X forcing sets of G of size k.
Furthermore, for a non-negative integer p, kX(G, p) is the minimum cardinality of an
X forcing set B such that ptX(G;B) = p. The following theorem concerns no initial
cost product throttling for standard zero forcing.

Theorem 3.1. [3, Theorem 5.3] For any graph G, th∗
Z(G) is the least k such that

ptZ(G, k) = 1, i.e., th∗
Z(G) = kZ(G, 1). Necessarily, kZ(G, 1) ≥ n

2
.

Theorem 3.1 states that the standard product throttling number for a graph is
always achieved by a set that performs all of its forces in one time step. Since the
condition that th∗

Z(G) > |V (G)| − k implies that no zero forcing set of G forces k or
more vertices in one time step, Theorem 3.1 immediately gives that {G : th∗

Z(G) >
|V (G)| − k} is characterized by a finite family of forbidden induced subgraphs. In
particular, the forbidden family is given by

G = {G : |V (G)| = 2k, ∃B ⊂ V (G) s.t. |B(1)| = k, ptZ(G;B) = 1}.

In [3], this family is considered as M -sum graphs where M is a k-matching.

Recall that in the context of standard and PSD zero forcing, that the terminus
of a set of forces F is the set of vertices in V (G) that do not perform a force in F .
Furthermore, a reversal of a forcing set B, denoted rev(B), is the terminus of an
arbitrary set of forces of B. A key fact is that rev(B) is a (PSD) zero forcing set.

The proof of Theorem 3.1 relies on two facts about the standard zero forcing
process. First, a reversal of a zero forcing set B of size |B| is also a zero forcing

set of size |B|. Second, pt(G; rev(B) ∪ B) ≤ pt(G;B)
2

. In combination, these two facts
imply that for any zero forcing set B, we can find a zero forcing set that is at most
twice as large as B, but propagates in at most half the time of B. In the context of
product throttling, this is enough to conclude that any product throttling number
can be realized by a zero forcing set that performs all its forces in one time step.

Unfortunately, not every zero forcing rule has nice reversals (or a reversal may
not be an X forcing set). In particular, if rev+(B) is a reversal of a PSD zero forcing
set B, then | rev+(B)| can be much larger than |B| (consider a large d-ary tree).
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Furthermore, pt+(G; rev+(B)∪B) only improves on pt+(G;B) by a factor of around
1/2.

The goal of the remainder of this section is to prove versions of Theorem 3.1
for color change rules where the reversal based proof from [3] does not generalize.
Subsection 3.1 presents the PSD analog of Theorem 3.1. While interesting in its
own right, the PSD analog also provides a road map for the kinds of properties an
abstract color change rule should have to make an alternative proof of Theorem 3.1
work. Subsection 3.2 will define some properties of abstract color change rules that
generalize Theorem 3.1 to a number of different zero forcing color change rules.

3.1 PSD product throttling

Theorem 3.2 is the PSD zero forcing analog of Theorem 3.1. Since we cannot gen-
eralize the reversal based proof of Theorem 3.1 to PSD zero forcing, we will prove
Theorem 3.2 using a set of forbidden subgraphs.

Theorem 3.2. For a positive integer k, let G+,k be the set of graphs G with at most
2k vertices such that there exists an PSD forcing set B and set of forces F with
pt+(G;B) = pt+(G;F) = 1 and |F (1)| = k.

1. If G contains a graph in G+,k, then |V (G)| − k ≥ th∗
+(G).

2. Suppose G is a non-empty graph on n vertices that does not contain a graph in
G+,k as an induced subgraph. If 1 < k < (n/12)1/3, then th∗

+(G) = k+(G, 1) >
|V (G)| − k.

Proof of 1. Suppose G contains a graph in G+,k as an induced subgraph on vertex
set S ⊆ V (G). Since G[S] ∈ G+,k, there exists an PSD forcing set BS such that
pt+(G[S];BS) = 1 and |S| − |BS| = k. Therefore, th∗

+(G[S]) ≤ |S| − k. Since
the PSD zero forcing color change rule is well-behaved, this implies that th∗

+(G) ≤
|V (G)| − k.

Proof of 2. Suppose that B is a PSD zero forcing set of G with propagation time t
that achieves the PSD product throttling number of G. Let |B| = b. Let F be a set
of forces which realizes the propagation time of B in G.

Since G does not contain a graph in G+,k, all forcing chains of B given F have at
most 3k − 2 vertices. To prove this claim, suppose that

x1 → x2 → · · · → x3k−1

is a PSD forcing chain of B given F . Let S = {xi : i 6≡ 0 mod 3} and notice that
G[S] is a graph on 2k vertices. Furthermore, by the definition of PSD zero forcing
and propagation time xi is adjacent to xj if and only if j = i + 1 or j = i − 1. In
particular, G[S] is a matching with k edges. Therefore, BS = {xi : i ≡ 1 mod 3}
is a PSD zero forcing set of G[S] with pt+(G[S], BS) = 1 and |S| − |BS| = k. This
contradicts the fact that G does not contain a graph in G+,k.
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Furthermore, since G does not contain a graph in G+,k, each time step of forcing
has at most k − 1 forces. To prove this claim, suppose that |F (i)| ≥ k for some
1 ≤ i ≤ t. Let F1 ⊆ F (i) such that |F1| = k, and let U1 = {x ∈ U (i) : x → y ∈
F , y ∈ F1}. Let S = U

(i)
1 ∪F (i)

1 = U
(i)
1 ∪F1. Since the PSD zero forcing color change

rule is well-behaved, we have that |S| ≤ 2k, pt+(G[S];U
(i)
1 ) = 1 and |F1| = k. Thus,

G[S] ∈ G+,k, which is a contradiction. Therefore,

t(k − 1) ≥ n− b and b(3k − 3)(k − 1) ≥ n− b.

In particular, the second bound comes from the fact that a PSD forcing tree cannot
have a level of size k or greater without admitting a forbidden subgraph. Putting
the two bounds together gives

tb(3k − 2)(k − 1)2 ≥ (n− b)2.

For the sake of contradiction, suppose that b ≤ n/2. Recall that tb ≤ n − 1, so
we have

n(3k − 3)(k − 1)2 ≥ n2/4.

This is a contradiction, when we consider the fact that k < (n/12)1/3. Therefore,
b ≥ n/2.

Since b ≥ n/2, it must follow that t = 1. Finally, th∗
+(G) = k+(G, 1) > |V (G)|−k

because at most k − 1 vertices can be forced in one time step.

The key insight in the proof of Theorem 3.2 is that long PSD zero forcing chains
will induce graphs in the forbidden family. The proof of this fact used specific
knowledge about the PSD zero forcing color change rule. In particular, we know
that PSD forces must occur on edges, and therefore, PSD forcing chains that realize
the propagation time induce paths.

It does not seem like using long forcing changes to find forbidden graphs will work
for all well-behaved color change rules. To see this, suppose that

x1 → x2 → · · · → x3k−1

is an X forcing chain for a well-behaved color change rule X, and define S and BS as
in the proof of Theorem 3.2. We can use the fact that X is well-behaved to conclude
that BS is an X forcing set of G[S]. However, it is not clear why BS will turn G[S]
blue in one time step without more information about X. In particular, even if X
forces only occur on edges (which might not be true), there is still no guarantee that
the forcing chain induces a path, and that G[S] is a matching. These difficulties will
be tackled in the next subsection.



J. CARLSON AND J. KRITSCHGAU/AUSTRALAS. J. COMBIN. 86 (3) (2023), 442–457 452

3.2 Product throttling for color change rules

The next theorem generalizes some of the implications of Theorem 3.1 to abstract
color change rules at the cost of some strength. In particular, high X product throt-
tling numbers for sufficiently large graphs are characterized by a finite family of
forbidden subgraphs (and this family is analogous to the family G above). Addi-
tionally, these high X product throttling numbers are realized by X forcing sets that
perform all their forces in one time step. The costs of the theorem are the restriction
to high product throttling numbers where we already know that the initial blue set
must have at least k

√
3n.

An X force x → y is independent of another vertex v if knowing the color of v is
not required for determining whether x can force y. For example, in standard zero
forcing, x → y is independent of all v /∈ N [x]. We say a forcing chain x0 → x1 →
· · · → xr is internally independent if we have xj → xj+1 is independent of xi for all
i 6= j − 1, j, j + 1.

An internally independent chain will let us identify forces that can happen simul-
taneously for an appropriate set of blue vertices. Therefore, if there exists a large
internally independent chain, then it should be relatively easy to find forcing sets
with controlled throttling behavior.

Definition 3.3. Let X be a color change rule.

• We say X is local if for all G and any v, w ∈ V (G), we have that v
X→ w is

independent of V (G) \N [v].

• We say a color change rule X is symmetric if v
X→ w is valid given blue set B

for some w ∈ (V (G) \ B) ∩ N [v] implies that v
X→ w′ is valid given B for all

w′ ∈ (V (G) \B) ∩N [v].

• We say a color change rule X is simple if whenever u
X→ v and x

X→ y are valid

given B (with v 6= y), then u
X→ v and x

X→ y can be performed simultaneously.

• We say that a color change rule X is an infection rule (or an infectious color

change rule), if u
X→ v is valid at time step t implies that u is blue at time t−1.

Observation 3.4. Suppose X is a color change rule. If X is local, then v → w
for non-adjacent v and w is not valid (and impossible). Furthermore, if v → w is
possible for non-adjacent v and w, then X is not local.

Essentially, a color change rule X is local and symmetric when a vertex v can force
a white neighbor if and only if v can force any of its white neighbors. Standard zero
forcing, skew forcing, and k-forcing are local, symmetric, and simple color change
rules. On the other hand, PSD zero forcing is not even local. To see this, let C4 have

vertices labeled 1, 2, 3, 4 clockwise with B = {1, 3} and B′ = {1}. In this case, 1
+→ 2

is valid for blue set B, but not B′. In particular, the validity of 1
+→ 2 depends on the
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color of vertex 3 which is not a neighbor of 1. This highlights the shortcomings of the
PSD color change rule. The PSD color change rule requires that white vertices which
are simultaneously forced by the same blue vertex v are not in the same component
(which is not a property determined by the neighborhood of v).

Any example we have of a color change rule that is local but not symmetric is
contrived, and does not arise from a natural application (unlike most zero forcing
rules). For example, we could insist that the vertices of G are ordered, and that a
blue vertex v can only force its smallest white neighbor. Furthermore, color change
rules defined on ordered graphs are beyond the purview of this discussion.

Finally, we want to point out that simple and symmetric do not imply each other.
To see this consider zero forcing with hopping (also known as the minor monotone
floor of zero forcing ⌊Z⌋). In zero forcing with hopping, a blue vertex v without
white neighbors such that v has not performed a force may force any white vertex in
the graph. The zero forcing with hopping color change rule is vacuously symmetric
since it follows the standard zero forcing color change rule when vertices are adjacent.
However, it is possible that an isolated blue vertex has two white non-neighbors which
cannot be forced simultaneously. For work on the throttling of the minor monotone
floor of the standard zero forcing rule, see [9]. For throttling where hopping is the
only allowed color change rule, see [13].

Notice that the minor monotone floor of standard zero forcing is not a simple
color change rule. In particular, if G = K3 with vertex set {1, 2, 3} and blue set
B = {1}, then 1 → 2 and 1 → 3 are both valid in the first time step. However, these
two forces cannot be performed simultaneously.

We can always find a set of forces which minimizes the time step at which a
particular vertex turns blue. However, under certain conditions, we can find a single
set of forces which minimizes the time step at which each vertex turns blue. To this
end, consider the following definition. We say a set of forces F∗ is uniformly as fast
as possible for a blue set B if for all vertices v ∈ V (G) \ B and all sets of forces F
we have that v ∈ F (i)

∗ ∩ F (j) implies that i ≤ j.

Lemma 3.5. Let X be simple and nearly well-behaved. If B is an X forcing set, then
there exists a set of forces which is uniformly as fast as possible.

Proof. For a set of forces F , let m(F) be the number of vertices v for which F
minimizes the time step at which v turns blue. Let F be the set of forces for which
m(F) is maximized. For the sake of contradiction, suppose m(F) < n − |B|. This

implies that there exists vertex v and set of forces Fv such that F (i)∩F (j)
v with i > j

which minimizes j. In particular, j is the first time step when F [j]
v 6⊆ F [j].

Let u be the vertex such that u → v ∈ Fv. Furthermore, let x be the vertex such
that x → v ∈ F . Since F [k]

v ⊆ F [k] for all k < j and X is well-behaved, we have that
u → v is valid at time k given F . We claim that F∗ = F ∪ {u → v} \ {x → v} is a
set of forces with m(F∗) > m(F).

First we will show that F∗ is a set of forces by constructing a chronological list
of forces from which F∗ can be derived. First, greedily order forces in F ∩ F∗ until
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F (j−1) is blue. Next, append u → v. Now, greedily add forces in F ∩ F∗ \ {x → v}
until F (i) is blue. Since v is already blue, the force x → v is not necessary. Finally,
use the remaining forces to finish coloring G blue.1

Next we will show that m(F∗) > m(F). Clearly, F (k)
∗ = F (k) for k < j. Since X

is simple, F (j)
∗ = F (j) ∪ {v}. Furthermore, F (k)

∗ ⊆ F (k) since X is simple for k > j.
Therefore, m(F∗) > m(F).

The next lemma takes a set of forces that is uniformly as fast as possible, and
shows that its forcing chains are internally independent and induce paths.

Lemma 3.6. Let X be a well-behaved, local, symmetric, and simple color change
rule. If B is an X forcing set of G, then there exists F such that every forcing
chain in F is an induced path in G. Furthermore, every chain in F is internally
independent.

Note that F can also be taken to be uniformly as fast as possible.

Proof. Let G be a graph with X forcing set B. By Lemma 3.5 there exists a set
of forces F which is uniformly as fast as possible. Let x0 → x1 → · · · → xr be an
X forcing chain of B in F . Without loss of generality, there is a time c such that
x0 → x1 is valid when the set of blue vertices in G is F [c]. We will show by induction
on j that xj → xj+1 is independent from the colors of xi for i 6= j − 1, j, j + 1.

For the sake of contradiction, suppose that x0 and xi are adjacent for some i ≥ 2.
Since x0 → x1 is valid given blue set F [c] and X is symmetric, it follows that x0 → xi

is valid at time c. This contradicts the fact that F is uniformly as fast as possible.
Therefore, x0 is not adjacent to xi for any i ≥ 2. Furthermore, since X is local,
the validity of x0 → x1 does not depend on the non-neighbors of x0. In particular,
x0 → x1 does not depend on the color of xi for i ≥ 2.

As the strong induction hypothesis, assume that for all k < j we have xk → xk+1

is independent of xi for all i 6= k − 1, k, k + 1 and xk is not adjacent to xi for all
i 6= k − 1, k, k + 1.

We now prove the claim for index j. By the induction hypothesis, xj is not
adjacent to xi for all i < j − 1. For the sake of contradiction, suppose that xj is
adjacent to xi for some i ≥ j + 2. Since xj → xj+1 is valid when F [j] is the blue set
and X is symmetric, it follows that xj → xi is valid when F [j] is the blue set of G.
This contradicts the fact that F is uniformly as fast as possible.

Notice that the only neighbors of xi are xi−1 and xi+1 for 0 ≤ i ≤ r (where the
index makes sense). This implies that x0 6= xr if r ≥ 3. Finally, if x2 = x0, then the
chain still induces a path (this needs to be considered for skew forcing).

Recall that in Subsection 3.1, we were able to show that forcing chains of a PSD
zero forcing set induce paths and are internally independent. The work done in

1A similar method of transitioning from one set of forces to another is used in [2], but proven in
less generality and with significantly different notation.
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Lemma 3.6 draws the same conclusions for abstract local, symmetric, and simple
color change rules. Interestingly, the PSD color change rule is not local, suggesting
that the property of being local as defined in Definition 3.3 is too narrow. Regardless,
Definition 3.3 is still worth considering since it captures standard zero forcing, skew
forcing, and k-forcing for all k ≥ 1.

Theorem 3.7. Suppose X is a well-behaved, local, symmetric, simple, and infectious
color change rule. For a positive integer k, let GX,k be the set of graphs G with at
most 2k vertices such that there exists an X forcing set B and set of forces F with
ptX(G;B) = ptX(G;F) = 1 and |F (1)| = k.

1. If G contains a graph in GX,k, then |V (G)| − k ≥ th∗
X(G).

2. Suppose G is a non-empty graph on n vertices that does not contain a graph in
GX,k as an induced subgraph. If 1 < k < (n/12)1/3, then th∗

X(G) = kX(G, 1) >
|V (G)| − k.

Proof of 1. Suppose G contains a graph in GX,k as an induced subgraph on vertex
set S ⊆ V (G). Since G[S] ∈ GX,k, there exists an X forcing set BS such that
ptX(G[S];BS) = 1 and |S| − |BS| = k. Therefore, th∗

X(G[S]) ≤ |S| − k. Since X is
well-behaved, this implies that th∗

X(G) ≤ |V (G)| − k.

Proof of 2. Suppose that B is an X forcing set of G with propagation time t that
achieves the X product throttling number of G. Let |B| = b. By Lemma 3.6, there
exists a set of forces F which realizes the propagation time, is uniformly as fast as
possible, and has internally independent chains.

Since G does not contain a graph in GX,k, all forcing chains of B given F have at
most 3k − 2 vertices. To prove this claim, suppose that

x1 → x2 → · · · → x3k−1

is an X forcing chain of B given F . Let S = {xi : i 6≡ 0 mod 3} and notice that
G[S] is a graph on 2k vertices such that BS = {xi : i ≡ 1 mod 3} is an X forcing set
with ptX(G[S], BS) = 1 and |S| − |BS| = k. In particular, ptX(G[S], BS) = 1 since
chains in X are internally independent. This contradicts the fact that G does not
contain a graph in GX,k.

Furthermore, since G does not contain a graph in GX,k, each time step of forcing
has at most k − 1 forces.

Therefore,

t(k − 1) ≥ n− b and b(3k − 3)(k − 1) ≥ n− b.

Putting the two bounds together gives

tb(3k − 2)(k − 1)2 ≥ (n− b)2.
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For the sake of contradiction, suppose that b ≤ n/2. Recall that tb ≤ n − 1, so
we have

n(3k − 3)(k − 1)2 ≥ n2/4.

This is also a contradiction when we consider the fact that k < (n/12)1/3. Therefore,
b ≥ n/2.

Since b ≥ n/2, it must follow that t = 1. Finally, th∗
+(G) = k+(G, 1) > |V (G)|−k

because at most k − 1 vertices can be forced in one time step.

4 Concluding remarks

A general idea within zero forcing research is to add constraints to parameters so
that the parameter becomes minor monotone. An example of this idea is the minor
monotone floor of the zero forcing number, denoted ⌊Z⌋ (see [4, 9]). The motivation
for finding minor monotone analogs of zero forcing parameters is that they allow an
application of the Graph Minor Theorem. In short, the Graph Minor Theorem states
that the set of all graphs ordered by minor containment is a well-quasi-ordering, and
in particular, any infinite family F of graphs upwardly closed under the minor relation
is characterized by a finite set of minor minimal graphs. For example, the set of all
graphs containing a cycle C is an infinite family of graphs which is characterized
by the single minor minimal graph K3 (any cycle contains K3 as a minor). An
application of the Graph Minor Theorem is useful as it immediately motivates the
search for sets of minor minimal graphs that characterize an infinite set.

In contrast, the set of graphs ordered by induced subgraph inclusion does not
lend itself nicely to characterizations by finite families of minimal graphs. Here
again, C is instructive because there is no finite family which characterizes C under
induced subgraph inclusion, since each cycle length must be forbidden individually.
In particular, the set of cycles is an infinite anti-chain in the induced subgraph partial
order on graphs.

The result of our two theorems shows that some infinite families of graphs char-
acterized by a particular throttling behavior are also characterized by finite families
under induced subgraph inclusion. This fact is remarkable in part because the there
is no a priori guarantee that infinite families should have a characterization by a
finite family of minimal graphs.
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