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Abstract

The small cycle counts of a random feedback register are shown to be
binomially distributed and mutually independent. The proof uses strings
related to 2-coloured necklaces.

1 Introduction

Feedback shift registers are sequences xi ∈ {0, 1}, i ≥ 1, where 0 and 1 are the
elements of the finite field with two elements F, given by a recursion

xt+n = xt ⊕ f(xt+1, xt+2, . . . , xt+n−1), n ≥ 2,

for a Boolean function
f : Fn−1

2 → F2.

We will consider all 22
n−1

possible f to be equally likely. The map

πf : Fn
2 → F

n
2

(x0, x1, . . . , xn−1) 7→ (x1, . . . , xn−1, xn+1)

= (x1, . . . , xn−1, x0 ⊕ f(x1, x2, . . . , xn−1))

is easily shown to to be a permutation of the 2n objects in F
n
2 .

Let Si(n) be the number of cycles of length i in πf . The distributions of S1(n)
and S2(n) are straightforward to find. As is stated in [10], (0, 0, . . . , 0) ∈ F

n is a
fixed point of πf if and only if f(0, 0 . . . , 0) = 0, (0, 0, . . . , 0) ∈ F

n−1. Similarly,
(1, 1, . . . , 1) ∈ F

n is a fixed point of πf if and only if f(1, 1 . . . , 1) = 0. These are the
only two possible fixed points, as setting (x1, x2, . . . , xn) = (x2, x3, . . . , xn+1) shows.
Thus, S1(n) ∼ Binomial(2, 1/2) for all n ≥ 1. The only possible 2-cycle is given by

(1, 0, 1, 0, . . . , (1 + (−1)n+1)/2) 7→ (0, 1, 0, 1, . . . , (1 + (−1)n)/2)

(0, 1, 0, 1, . . . , (1 + (−1)n)/2) 7→ (1, 0, 1, 0, . . . , (1 + (−1)n+1)/2),
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for which
f(0, 1, 0, . . . , (1 + (−1)n+1)/2) = (1 + (−1)n+1)/2

and
f(1, 0, 1, . . . , (1 + (−1)n)/2) = (1 + (−1)n+1)/2)

are required. Therefore, S2(n) ∼ Binomial(1, 1/4) for n ≥ 2.

Define

ηk =
1

k

∑

d|k

2dµ(k/d), (1)

where µ is the Möbius function. It is stated in [10] that ηk is the number of possible
cycles of length k; we prove this fact at (11) in the proof of Theorem 1. We now
present our main result.

Theorem 1 For each 1 ≤ k ≤ (n−1)/3, Sk(n) ∼ Binomial(ηk, 2
−k) and the random

variables Sk(n), 1 ≤ k ≤ (n− 1)/3, are mutually independent.

2 Logarithmic combinatorial objects

Let N := 2n. The cycle structure (S1(n), S2(n) . . . , SN(n)) of πf was suggested to
be “flat”, meaning close to the cycle structure of a permutation chosen at random
from all N ! possibilities, in [10]. Theorem 1 implies that it is impossible that the
cycle structure is flat or even has the distribution of the cycle structure of any
random decomposable structure. To appreciate the significance of Theorem 1, we
will therefore review the theory of decomposable structures and especially that of
logarithmic combinatorial objects.

Let us consider the flat distribution on permutations. We denote the number of
cycles of size i in a permutation on n elements chosen at uniformly at random by
Ci(n). Using inclusion-exclusion, [11] proved

P(Ci(n) = k) =
i−k

k!

⌊n/i⌋−k
∑

j=0

(−1)j
i−j

j!
,

where, for any real x, ⌊x⌋ is the largest integer less than or equal to x. The case i = 1
gives the solution to the following problem. Suppose that n individuals exchange hats
randomly. What is the probability that none of the individuals get back their own
hat? We see that

lim
n→∞

P(Ci(n) = k) = e−1/i i
−k

k!
= P(Zi = k),

where Zi ∼ Poisson(1/i). Moreover, with the Zi mutually independent, it can be
shown, for example by the method of moments, that the finite dimensional distribu-
tions of the process of Ci(n) converges to those of the Zi:

lim
n→∞

P(C1(n) = k1, C2(n) = k2, . . . , Cs(n) = ks) = P(Z1 = k1, Z2 = k2, . . . , Zs = ks)
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for all fixed s ≥ 1 and kj ≥ 0 for all 1 ≤ j ≤ s.

The connection between the Ci(n) and the Zi becomes manifest through the
Conditioning Relation

(C1(n), C2(n) . . . , Cn(n))
d
= ((Z1, Z2, . . . , Zn)|Tn = n), (2)

where
d
= means equality in distribution and

Tn =
n

∑

i=1

iZi.

The Conditioning Relation (2) can be proved for permutations by Cauchy’s formula
for the number of permutations having a given cycle structure; see (1.2) of [1].

The effect of the conditioning in (2) on Zi for small i was was quantified in
Theorem 2 of [4]. Given 1 ≤ b ≤ n, Let db(n) be the total variation distance

db(n) =
1

2

∑

a∈Zb
+

|P((C1(n), C2(n) . . . , Cb(n)) = a)− P((Z1, Z2, . . . , Zb) = a)| . (3)

There is an (explicit) function satisfying logF (x) ∼ −x log x as x → ∞ such that
for all 1 ≤ b < n, the upper bound

db(n) ≤ F (n/b)

holds. Thus, the distance db(n) goes to 0 super-exponentially quickly as a function
of n/b when b = o(n).

The distribution of the sizes of the largest cycles is also well understood. Let

∆ =

{

(x1, x2, . . .) ∈ [0, 1]∞ :
∞
∑

i=1

xi = 1

}

and let σ1, σ2, . . . be the points of a Poisson process with intensity θe−x/x , x > 0. The
Poisson-Dirichlet distribution PD(θ) on ∆ was defined in [12] to be the distribution
of (σ1/σ, σ2/σ, . . .) on ∆, where σ = σ1 + σ2 + · · · . Let Li(n) be the size of the ith
largest cycle of a permutation of size n chosen uniformly at random, with Li(n) = 0
if the permutation has fewer than i cycles. It was shown in [13, 16] that

n−1(L1(n), L2(n), . . .)
d
→ Z with PD(1) distribution,

where
d
→ denotes convergence in distribution.

Theorem 1 shows that the distribution of cycles of πf cannot actually be flat,
because the small cycle counts are binomially distributed, not Poisson. Remarkably,
however, [2] proves that the large cycles of πf are asymptotically flat. Let L(n)
denote the process of large cycles of πf . Then,

N−1L(n)
d
→ Z with PD(1) distribution.
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The conditioning relation (2) holds for many other decomposable combinatorial
objects besides permutations, as is explained in [1, 5], which we follow below.

Decomposable combinatorial objects on a set of labelled elements are called as-
semblies. Examples include set partitions, graphs, 2-regular graphs, permutations,
mappings, and both unrooted and rooted forests. Mappings are functions from a
finite set to itself and have components which are cyles of rooted trees. Suppose that
for an assembly there are mi possible components that can be assembled from any
subset of vertices of size i. There are n! permutations on n elements and mi = (i−1)!
cycles; there are nn mappings on n elements and mi = (i − 1)!

∑i
k=0 i

k/k! cycles of
rooted trees. Let the number of components of a randomly chosen instance of an
assembly of size i be denoted by Ci(n) as was done above for permutations. Then,
the conditioning relation (2) holds with

Zi ∼ Poisson

(

mix
i

i!

)

independent, for any x > 0. The choice of x is arbitrary; however for permutations
it is natural to take x = 1.

Multisets have a universe of objects with positive integer weights and mi objects
of weight i. The integer n is partitioned into parts, and for every part of size i one of
the mi objects of weight i is assigned. Examples include integer partitions, mappings
patterns, forests of unlabeled rooted and unrooted trees, and monic polynomials
over finite fields. There are qn monic polynomials of degree n over a finite field
of size q. They can be factored into irreducible monic polynomials, of which there
are mi = 1

i

∑

d|i µ(i/d)q
d of degree i. Let the number of parts of weight i of a

randomly chosen instance of an assembly be denoted by Ci(n). Then, choosing from
all instances of a multiset of total weight n, the conditioning relation (2) holds with

Zi ∼ Negative Binomial
(

mi, x
i
)

independent, for any 0 < x < 1.

Selections are like multisets, except that each object can be assigned at most
once. In the case of monic polynomials over finite fields, the corresponding selection
is monic square free monic polynomials over finite fields. Choosing from all instances
of a selection of total weight n, the conditioning relation (2) holds with

Zi ∼ Binomial

(

mi,
xi

1 + xi

)

independent, for any x > 0.

If permutations on n letters are chosen proportionally to θK(n) where K(n) is
the number of cycles in the permutation, the resulting distribution on component
counts is called the Ewens sampling distribution, which arose originally in population
genetics [8]. The Ewens sampling formula satisfies the conditioning relation (2) with

Zi ∼ Poisson(θ/i). (4)
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In general, the distribution of component counts when an instance of a combinatorial
object is chosen proportionally to θK(n), where K(n) is the number of components,
is called tilted.

For many random combinatorial objects, which satisfy (2), x can be chosen such
that the Logarithmic Condition,

iP(Zi = 1) → θ, iEZi → θ as i → ∞, (5)

holds for some θ > 0. We call such an object logarithmic. The Ewens sampling
formula is logarithmic with Zi defined by (4) and mappings are logarithmic with
θ = 1/2 (taking x = e−1). Let db(n) be defined by (3) for a logarithmic combinatorial
object. Under certain auxiliary conditions,

db(n) = o(b/n)

if θ = 1, and
db(n) ∼ c(b)b/n

where

c(b) =
|1− θ|

2b
E|Tb − E(Tb)|

if θ 6= 1; see [1, 3, 15].

Results on the large components of logarithmic combinatorial objects may also
be shown. Let Li(n) be the size of the ith largest component of an instance of a
logarithmic combinatorial object of size n with Li(n) = 0 if the instance has fewer
than i cycles. Then,

n−1(L1(n), L2(n), . . .)
d
→ Z with PD(θ) distribution

assuming that a certain local limit theorem holds, which does hold for logarithmic
assemblies, multisets and selections.This and related results are contained in [1].

Theorem 1 shows that it is impossible for πf to have the distribution of any
random combinatorial object, for which any subset of the component counts are
dependent. We note, however, that if Zi are mutually independent, with Zi ∼
Binomial(ηk.2

−k) as in Theorem 1, then the resulting combinatorial object with dis-
tribution given by (2) is logarithmic with θ = 1. This observation follows from the
estimate ηk = k−12k +O(2k/2).

3 Basic strings

It will be convenient to use the notation of strings. A string of length k (sometimes
called a word) is defined to be a finite sequence a0a1 . . . ak−1, k ≥ 1, ai ∈ {0, 1} in
[9, 14], for example. We have a0a1 . . . ak−1 = b0b1 . . . bk′−1 if and only if k = k′ and
ai = bi for all 0 ≤ i ≤ k − 1.
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Definition 1 Given a string A = a0a1 . . . ak−1, for each 1 ≤ i ≤ k − 1 we say that
the string ai . . . ak−1a0 . . . ai−1 is a circular shift of A. A string not equal to any of its
circular shifts is called basic. The set of basic strings of length k is denoted by Ak.

Basic strings correspond to primitive necklaces [7]. In [6], basic strings are strings of
beads of two colours, length k, and period k. In that paper, it is shown that

|Ak| = kηk, (6)

with ηk given by (1), by Möbius inversion.

Lemma 1 If A is a basic string, then so is every circular shift of A.

Proof It is enough to observe that the inequalities a1 . . . ak−1a0 6= ai. . .ak−1a0 . . . ai−1

for all 2 ≤ i ≤ k follow immediately from a0 . . . ak−1 ∈ Ak and then use induction. �

Definition 2 An integer 0 ≤ p ≤ t − 1, is called a period of string x0 . . . xt−1 if
xi = xi+p for 0 ≤ i < t − p. The smallest non-zero period of a string is called its
basic period. If a string has no non-zero period, then its basic period is its length,

The significance of a string’s period is that the string shifted right by p positions,
and placed over the original copy, matches in the overlapping part.

Given y real and the set of integers Z, define ⌊y⌋ = sup{m ∈ Z : m ≤ y}.
If X = x0 . . . xt−1 has period p, then it is easily shown that X can be written
as the concatenation X = AlA∗, where A = x0x1 . . . xp−1, l = ⌊t/p⌋, and A∗ =
x0x1 . . . xt−lp−1 is a (possibly empty) prefix of A.

A connection between basic strings and basic period is contained in Lemma 2.

Lemma 2 Let X = AlA∗, where |A| = k, A∗ is a prefix of A, and either l ≥ 2 or

l = 1 and |A∗| = |A| − 1. The string X has basic period |A| if and only if A is basic.

Proof Let t = |X|, X = x0 . . . xt−1, A = a0 . . . ak−1 and note that xs = asmod k for
all 0 ≤ s < t. Suppose that A is basic. The string X has period k because |A| = k.
If X had period 0 < p < k, then asmod k = xs = xs+p = a(s+p)mod k for 0 ≤ s < t− p.
We have t−p > 2k−1−k = k−1 and so Definition 1 is violated for i = p. Therefore,
X has basic period k. If A is not basic, then a0a1 . . . ak−1 = ap . . . ak−1a0 . . . ap−1 for
some 1 ≤ p ≤ k−1 and so xi+p = a(i+p)mod k = aimod k = xi for 0 ≤ i < t−p, making
p a period of X. �

To illustrate Lemma 2, let A = 1100 and B = 1010. The string A is basic and
AA has basic period 4, but the string B is not basic and BB has basic period 2. The
string C = 101 is basic and CC has basic period 3, but C has basic period 2. The
string D = 1101 is basic, and the strings DD and 1101110 have basic period 4, but
the string 11011 has basic period 3. The author has not been able to find a basic
string A for which AA∗, |A∗| = |A| − 2, does not have basic period |A|.
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4 Binomially distributed and independent cycle counts

In this section we will prove Theorem 1.

Consider the set Sn,k of sequences of length k + 1, k ≤ n, of elements of Fn
2

(x0, x2, . . . , xn−1), (x1, x3, . . . , xn), . . . , (xk, xk+1, . . . , xk+n−1)

satisfying the conditions

(xi, xi+1, . . . , xi+n−1) 6= (x0, x1, . . . , xn−1) for all 1 ≤ i ≤ k − 1, (7)

and
(xk, xk+1, . . . , xk+n−1) = (x0, x2, . . . , xn−1). (8)

The conditions (7) and (8) are necessary for the sequence to be the vertices of a
k-cycle. Such a sequence actually are the vertices of a k-cycle if, in addition,

πf ((xi, xi+1, . . . , xi+n−1)) = (xi+1, xi+2, . . . , xi+n) for all 0 ≤ i ≤ k − 1. (9)

Consider the string X = x0x1 . . . xk+n−1 of length k+n with xi satisfying (7) and
(8). Condition (8) says that k is a period of X. It follows that (9) can be replaced
by

πf ((xi, xi+1, . . . , xi+n−1)) = (xi+1, xi+2, . . . , xi+n−1, xi+n−k) for all 0 ≤ i ≤ k − 1.
(10)

Moreover, X = AlA∗ for l = ⌊(n + k)/k⌋ ≥ 2 and A∗ = x0x1 . . . xn+k−lk−1. The
string A must be basic, because otherwise by Lemma 2, X would have basic period
p < k and (7) would not hold for i = p. On the other hand, given A ∈ Ak, the xi,
0 ≤ i ≤ k + n− 1, given by X = x0x2 . . . xk+n−1 = AlA∗ satisfy (7) and (8) because
n ≥ k. It follows that |Sn,k| = |Ak| = kηk.

For a string X = AlA∗ with A ∈ Ak obtained from (7) and (8), the string
corresponding to the first vertex is x0x1 . . . xn−1 = Al−1A∗. The string corresponding
to the second vertex is x1x2 . . . xn = Bl−1B∗, where B = a1 . . . ak−1a0 is a circular
shift of A and is basic by Lemma 1. Continuing in this way, the strings corresponding
to vertices in a possible k-cycle including the vertex Al−1A∗ are of the form Bl−1B∗

where either B is a circular shift of A or B = A. Define an equivalence relation R
on strings of the form Al−1A∗, A ∈ Ak, |A

l−1A∗| = n by Al−1A∗ ∼ Bl−1B∗ if either
B is a circular shift of A or B = A. Let Cn,k denote the set of equivalence classes of
such strings with respect to R. The number of equivalence classes is

|Cn,k| = |Sn,k|/k = ηk. (11)

A vertex can only be in a k-cycle with the other k − 1 vertices in their equivalence
class.

It remains to examine condition (10). Choose any c ∈ Cn,k, 1 ≤ k ≤ (n−1)/3, and
any string xi . . . xi+n−1 ∈ c, which corresponds to vertex (xi, . . . , xi+n−1). In order for
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(10) to be satisfied at this vertex, we must have xi⊕f(xi+1, xi+2, . . . , xi+n−1) = xi+n−k

or, equivalently,
f(xi+1, xi+2, . . . , xi+n−1) = xi ⊕ xi+n−k, (12)

which happens with probability 1/2. We will show that it is impossible that the
vertex

(xi, xi+1, . . . , xi+n−1) = (xi ⊕ 1, xi+1, . . . , xi+n−1) (13)

is in c′ ∈ Cn,k′ , for some 1 ≤ k′ ≤ (n − 1)/3. Note that the vertex (13) is the only
vertex besides (xi, xi+1, . . . , xi+n−1) for which f(xi+1, . . . , xi+n−1) is relevant.

The string B = xi+1xi+2 . . . xi+k is a circular shift of A = xi . . . xi+k−1 ∈ Ak and so
B ∈ Ak by Lemma 1. Thus, we have the decomposition xixi+1 . . . xi+n−1 = xiB

mB†,
where B ∈ Ak, m = ⌊(n− 1)/k⌋ ≥ 3 and |B†| = n− 1−mk. If xiB

mB† belongs to
c′ ∈ Sn,k′ , k

′ ≤ (n − 1)/3, then xiB
mB† = Dm′

D∗ for D ∈ Ak′ , m
′ = ⌊n/k′⌋ and so

k′ is a period of xiB
mB†. From B ∈ Ak and m ≥ 2, it follows that k is the basic

period of BmB†. However, xi = xi+k is the last letter of B and therefore, the basic
period of xiB

mB† is greater than (m− 1)k. We now obtain the contradiction

k′ > (m− 1)k ≥

(

n− 1

k
− 2

)

k = n− 2k − 1 ≥ n−
2(n− 1)

3
− 1 =

n− 1

3
,

where the last inequality follows from the restriction k ≤ (n− 1)/3.

We conclude that the events

{f(xi+1, xi+2, . . . , xi+n−1) = xi ⊕ xi+n−k}, xixi+1 . . . xi+n−1 ∈
⋃

c∈Cn,k

c

are mutually independent. Given c ∈ Cn,k, let {c ∈ πf} denote the event that the
vertices corresponding to the strings in c belong to a k-cycle in πf . We have shown
that the events {c ∈ πf} are mutually independent and that P(c ∈ πf ) = 2−k.
Moreover, in view of (11),

Sk(n) =
∑

c∈Cn,k

I[c ∈ πf ] ∼ Binomial(ηk, 2
−k),

where I[c ∈ πf ] is the indicator random variable for {c ∈ πf}, and the Sk(n),
1 ≤ k ≤ (n− 1)/3 are mutually independent.
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