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Abstract

The complete 4-uniform hypergraph of order v has a set V of size v
as its vertex set and the set of all 4-element subsets of V as its edge
set. A 4-uniform loose 3-cycle is a hypergraph of order 9 with vertex set
{a, b, c, d, e, f, g, h, i} and edge set

{{a, b, c, d}, {d, e, f, g}, {g, h, i, a}}.
We give necessary and sufficient conditions for the existence of a decom-
position of the complete 4-uniform hypergraph of order v into subgraphs
isomorphic to a loose 3-cycle.
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1 Introduction

A hypergraph H consists of a finite set V of vertices and a finite collection (possibly
multiset) E = {e1, e2, . . . , em} of nonempty subsets of V called hyperedges or simply
edges. If no edge in E is repeated, then H is simple. For a given hypergraph H , we
use V (H) and E(H) to denote the vertex set and the edge set (or multiset) of H ,
respectively. We call |V (H)| and |E(H)| the order and size ofH , respectively. IfH is
not simple, the hypergraph with vertex set V (H) and edge set the set of distinct edges
in E(H) is referred to as the simple hypergraph underlying H . If for each e ∈ E(H)
we have |e| = t, then H is said to be t-uniform. Thus t-uniform hypergraphs are
generalizations of the concept of a graph (where t = 2). The hypergraph with vertex
set V and with edge set the set of all t-element subsets of V is called the complete
t-uniform hypergraph on V and is denoted by K

(t)
V . If v = |V |, then K

(t)
v is called

the complete t-uniform hypergraph of order v and is used to denote any hypergraph
isomorphic to K

(t)
V . When t = 2, we may use Kv in place of K

(2)
v . If H ′ is a subgraph

of H , then H \H ′ denotes the hypergraph obtained from H by deleting the edges of
H ′. We may refer to H \H ′ as the hypergraph H with a hole H ′. The vertices in H ′

may be referred to as the vertices in the hole.

A commonly studied problem in combinatorics concerns decompositions of graphs
into edge-disjoint subgraphs. A decomposition of a graphK is a set Δ = {G1, G2, . . . ,
Gs} of subgraphs of K such that {E(G1), E(G2), . . . , E(Gs)} is a partition of E(K).
If each element of Δ is isomorphic to a fixed graph G, then Δ is called a G-
decomposition of K. A G-decomposition of Kv is also known as a G-design of order
v. A Kk-design of order v is usually known as a 2-(v, k, 1) design or as a balanced
incomplete block design of index 1 or a (v, k, 1)-BIBD. The problem of determining
all v for which there exists a G-design of order v is of special interest (see [1] for a
survey).

The notion of decompositions of graphs naturally extends to hypergraphs. A
decomposition of a hypergraph K is a set Δ = {H1, H2, . . . , Hs} of subgraphs of
K such that {E(H1), E(H2), . . . , E(Hs)} is a partition of E(K). Any element of
Δ isomorphic to a fixed hypergraph H is called an H-block. If all elements of Δ
are H-blocks, then Δ is called an H-decomposition of K, and we may also say H
decomposes K. An H-decomposition of K

(t)
v is called an H-design of order v. The

problem of determining all v for which there exists an H-design of order v is called
the spectrum problem for H-designs.

A K
(t)
k -design of order v is a generalization of 2-(v, k, 1) designs and is known

as a t-(v, k, 1) design or simply as a t-design. A summary of results on t-designs
appears in [20]. A t-(v, k, 1) design is also known as a Steiner system and is denoted
by S(t, v, k) (see [13] for a summary of results on Steiner systems). Keevash [19]
has recently shown that for all t and k the obvious necessary conditions for the
existence of an S(t, k, v)-design are sufficient for sufficiently large values of v. Similar
results were obtained by Glock, Kühn, Lo, and Osthus [14, 15] and extended to
include the corresponding asymptotic results for H-designs of order v for all uniform
hypergraphs H . These results for t-uniform hypergraphs mirror the celebrated results
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of Wilson [25] for graphs. Although these asymptotic results assure the existence
of H-designs for sufficiently large values of v for any uniform hypergraph H , the
spectrum problem has been settled for very few hypergraphs of uniformity larger
than 2.

In the study of graph decompositions, a fair amount of the focus has been on
G-decompositions of Kv where G is a graph with a relatively small number of edges
(see [1] and [7] for known results). Some authors have investigated the corresponding
problem for 3-uniform hypergraphs. For example, in [5], the spectrum problem is
settled for all 3-uniform hypergraphs on 4 or fewer vertices. More recently, the spec-
trum problem was settled in [6] for all 3-uniform hypergraphs with at most 6 vertices
and at most 3 edges. In [6], they also settle the spectrum problem for the 3-uniform
hypergraph of order 6 whose edges form the lines of the Pasch configuration. Authors
have also considered H-designs where H is a 3-uniform hypergraph whose edge set
is defined by the faces of a regular polyhedron. Let T , O, and I denote the tetrahe-
dron, octahedron, and icosahedron hypergraphs, respectively. The hypergraph T is
the same as K

(3)
4 , and its spectrum was settled in 1960 by Hanani [16]. In another

paper [17], Hanani settled the spectrum problem for O-designs and gave necessary
conditions for the existence of I-designs.

Using the approach in [6], the spectrum problem has recently been settled for
several individual 3-uniform hypergraphs H . These include when H is a loose m-
cycle for 3 ≤ m ≤ 5 (see [8], [10], [12]) and when H is a tight 6-cycle [2] or a tight
9-cycle [9].

There are also several articles on decompositions of complete t-uniform hyper-
graphs (see [4] and [23]) and of t-uniform t-partite hypergraphs (see [21] and [24])
into variations on the concept of a Hamilton cycle. There are also several results on
decompositions of 3-uniform hypergraphs into structures known as Berge cycles with
a given number of edges (see for example [18] and [22]). We note however that the
Berge cycles in these decompositions are not required to be isomorphic.

Perhaps the best known result on decompositions of complete t-uniform hyper-
graphs is a result by Baranyai [3] on the existence of 1-factorizations of K

(t)
mt for

all positive integers m. A more general result of Baranyai [3] subsumes the 1-
factorization result and represents the only known spectrum problem type result
for all t-uniform hypergraphs.

Theorem 1.1. Let H be a t-uniform matching of size m. There exists an H-
decomposition of K

(t)
n if and only if m | (n

t

)
and n ≥ mt.

In this work, we settle the spectrum problem for H-designs where H is the 4-
uniform hypergraph known as a loose 3-cycle. A 4-uniform loose m-cycle, denoted
LC

(4)
m , is a hypergraph of order 3m and size m with vertex set {v1, v2, . . . , v3m} and

edge set
{{v3i−2, v3i−1, v3i, v3i+1} : 1 ≤ i ≤ m − 1

} ∪ {v3m−2, v3m−1, v3m, v1}. In

general, for t > 2 and m ≥ 3, a t-uniform loose m-cycle, denoted LC
(t)
m , can be

viewed as the t-uniform hypergraph obtained by appending t − 2 degree 1 (loose)

vertices to each edge in a 2-uniform m-cycle. An illustration of LC
(4)
3 is shown in

Figure 1.



R.C. BUNGE ET AL. /AUSTRALAS. J. COMBIN. 86 (2) (2023), 336–350 339

Additional Notation and Terminology

Let Zn denote the group of integers modulo n. If a and b are integers, we define [a, b]
to be {r ∈ Z : a ≤ r ≤ b}.

For any edge-disjoint t-uniform hypergraphs H1 and H2, we use H1 ∪ H2 to
indicate the hypergraph with vertex set V (H1)∪V (H2) and edge set E(H1)∪E(H2).
Similarly, if H is a hypergraph and r is a nonnegative integer, then an edge-disjoint
union of r copies of H is denoted with rH .

We next define some notation for certain types of multipartite-like 4-uniform
hypergraphs. Let A,B,C,D be pairwise disjoint sets. The hypergraph with vertex
set A ∪ B ∪ C ∪ D and edge set consisting of all 4-element sets having exactly one
vertex in each of A,B,C,D is denoted by K

(4)
A,B,C,D. The hypergraph with vertex

set A ∪ B and edge set consisting of all 4-element sets having at least one vertex in
each of A and B is denoted by L

(4)
A,B. Furthermore, if t1 and t2 are positive integers

with t1 + t2 = 4, we use L
(t1,t2)
A,B to denote the subgraph of L

(4)
A,B where each edge

consists of t1 elements from A and t2 elements from B. The hypergraph with vertex
set A∪B ∪C and edge set consisting of all 4-element sets having at least one vertex
in each of A,B,C is denoted by L

(4)
A,B,C . Moreover, if t1, t2, and t3 are positive

integers with t1+ t2+ t3 = 4, we use L
(t1,t2,t3)
A,B,C to denote the subgraph of L

(4)
A,B,C where

each edge consists of t1 elements from A, t2 elements from B, and t3 from C. If
|A| = a, |B| = b, |C| = c, and |D| = d, we may use K

(4)
a,b,c,d to denote any hypergraph

that is isomorphic to K
(4)
A,B,C,D, L

(4)
a,b to denote any hypergraph that is isomorphic

to L
(4)
A,B, and L

(4)
a,b,c to denote any hypergraph that is isomorphic to L

(4)
A,B,C . We use

K
(4)

a,b,c,d
∪L

(4)

b,c,d
to denote any hypergraph isomorphic to K

(4)
A,B,C,D ∪L

(4)
B,C,D. Similarly,

we use L
(4)

a,b,c
∪ L

(4)

b,c
to denote any hypergraph isomorphic to L

(4)
A,B,C ∪ L

(4)
B,C .

It is simple to observe that if A, B, C, D, and D′ are pairwise-disjoint, then
K

(4)
A,B,C,D∪D′ = K

(4)
A,B,C,D ∪K

(4)
A,B,C,D′. Thus we have the following lemma.

Lemma 1.2. If a, b, c, d, w, x, y, and z are positive integers, then there is a
decomposition of K

(4)
wa,xb,yc,zd into wxyz copies of K

(4)
a,b,c,d.

Similarly, we observe that if A, B, C, and C ′ are pairwise-disjoint, then L
(4)
A,B,C∪C′ =

L
(4)
A,B,C ∪ L

(4)
A,B,C′ ∪K

(4)
A,B,C,C′ . Thus we have the following lemma.

Lemma 1.3. If a, b, c, x, y, and z are positive integers, then there is a decomposition
of L

(4)
xa,yb,zc into xyz copies of L

(4)
a,b,c,

(
x
2

)
yz copies of K

(4)
a,a,b,c, x

(
y
2

)
z copies of K

(4)
a,b,b,c,

and xy
(
z
2

)
copies of K

(4)
a,b,c,c.

Now, consider a subgraph H of a hypergraph K with A ⊆ V (K). The restriction
of H to A is the hypergraph with vertex set A ∩ V (H) and edge multiset {e ∩ A :

e ∈ E(H)}. We note that if H is a subgraph of L
(t1,t2,...,tm)
A1,A2,...,Am

, then the restriction of
H to Ai, for i ∈ [1, m], is ti-uniform.
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Figure 1: The 4-uniform loose 3-cycle, LC
(4)
3 , denoted by

[v1, v2, v3, v4, v5, v6, v7, v8, v9].

Finally, let A and B be sets of t1-element sets and t2-element sets, respectively,
such that A ∩ B = ∅ for all A ∈ A and all B ∈ B, and let A∗ =

⋃
A∈AA and

B∗ =
⋃

B∈B B. We use UA,B to denote the (t1 + t2)-uniform hypergraph with vertex
set A∗ ∪ B∗ and edge set {A ∪ B : A ∈ A, B ∈ B}. Thus, for example, if C and D

are disjoint sets, then U
E
(
K

(t1)
C

)
, E

(
K

(t2)
D

) is isomorphic to L
(t1,t2)
C,D .

2 Some Small Examples

As illustrated in Figure 1, we will use [v1, v2, v3, v4, v5, v6, v7, v8, v9] to denote any

hypergraph isomorphic to the LC
(4)
3 with vertex set

{
v1, v2, v3, v4, v5, v6, v7, v8, v9

}
and edge set

{{v1, v2, v3, v4}, {v4, v5, v6, v7}, {v7, v8, v9, v1}
}
.

Next, we give some examples of LC
(4)
3 -decompositions that are used in proving

our main result. For the most part, these decompositions, as well as the ones found
in the Appendix, are either cyclic or r-pyramidal as defined in [11]. They were found
either by hand or by computer searches.

Example 2.1. Let V
(
K

(4)
9

)
= Z7 ∪

{∞1,∞2

}
and let

B =
{
[∞2, 0, 1,∞1, 5, 2, 4, 3, 6], [∞2, 0, 2,∞1, 5, 4, 1, 3, 6], [3,∞1,∞2, 0, 1, 2, 4, 5, 6],

[4,∞2, 6, 0, 1, 2, 5, 3,∞1], [6,∞1, 2, 0, 1, 3, 4, 5,∞2], [2,∞1, 4, 0, 1, 3, 5, 6,∞2]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
9 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 7).

Decompositions ofK
(4)
10 , K

(4)
11 , K

(4)
12 , andK

(4)
15 are accomplished in a similar fashion

to that seen in the above example. For the sake of brevity, these larger LC
(4)
3 -designs

(Examples 2.6–2.9) are found in the Appendix.

Example 2.2. Let V
(
L
(4)
3,3,3

)
= Z9 with vertex partition

{{0, 3, 6}, {1, 4, 7}, {2, 5, 8}}
and let

B =
{
[0, 1, 2, 3, 4, 6, 8, 5, 7], [0, 1, 2, 5, 3, 7, 4, 6, 8], [0, 1, 5, 6, 3, 8, 7, 2, 4]

}
.
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Then an LC
(4)
3 -decomposition of L

(4)
3,3,3 consists of the LC

(4)
3 -blocks in B under the

action of the map j 	→ j + 1 (mod 9).

Example 2.3. Let V
(
K

(4)

1,3,3,3
∪ L

(4)

3,3,3

)
= Z9 ∪ {∞} with vertex partition

{{∞},
{0, 3, 6}, {1, 4, 7}, {2, 5, 8}} and let

B =
{
[0, 1, 2, 3, 4, 5, 7, 8,∞], [0, 1, 2, 5, 3, 6, 7, 4, 8],

[0, 1, 4, 5, 3, 8, 7, 2, 6], [0, 1, 5,∞, 6, 8, 4, 2, 7]
}
.

Then an LC
(4)
3 -decomposition of K

(4)

1,3,3,3
∪ L

(4)

3,3,3
consists of the LC

(4)
3 -blocks in B

under the action of the map ∞ 	→ ∞ and j 	→ j + 1 (mod 9).

Example 2.4. Let V
(
K

(4)
2,3,3,3

)
= Z9 ∪ {∞1,∞2} with vertex partition

{{∞1,∞2},
{0, 3, 6}, {1, 4, 7}, {2, 5, 8}} and let

B =
{
[∞1, 0, 1, 2,∞2, 3, 4, 6, 8], [∞2, 2, 6, 1,∞1, 0, 5, 7, 3]

}
.

Then an LC
(4)
3 -decomposition of K

(4)
2,3,3,3 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 9).

Example 2.5. Let V
(
K

(4)
3,3,3,3

)
= Z9 ∪ {∞1,∞2,∞3} with the vertex partition{{∞1,∞2,∞3 }, {0, 3, 6}, {1, 4, 7}, {2, 5, 8}

}
and let

B=
{
[0, 1, 2,∞1, 3, 4, 8, 7,∞2], [0, 1, 2,∞3, 3, 7, 5, 4,∞2], [0, 1,∞3, 5, 3,∞1, 7, 2,∞2]

}
.

Then an LC
(4)
3 -decomposition of K

(4)
3,3,3,3 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 9).

3 Main Constructions

We begin with a lemma that allows us to derive some LC
(4)
3 -decompositions from

known 3- and 2-uniform decompositions.

Lemma 3.1. Let t1 and t2 be positive integers and let A and B be disjoint sets.
Let H be a (t1 + t2)-uniform subgraph of L

(t1,t2)
A,B and let H ′ and H ′′ denote the re-

strictions of H to A and to B, respectively, such that H ′ is simple and such that
the simple hypergraph underlying H ′′ is a subgraph of a matching M . If there ex-
ists an H ′-decomposition of some t1-uniform hypergraph K, then there exists an
H-decomposition of UE(K), E(M).

Proof. Let n = |E(M)| and let E(M) = {Wi : i ∈ Zn}. For each i ∈ Zn, let
Ei = {e ∈ E(H) : Wi ⊂ e} and let E ′

i = {e ∩ A : e ∈ Ei}. Note that for any
Wi �∈ E(H ′′) we have Ei = E ′

i = ∅. Furthermore, the multiplicity of Wi in E(H ′′) is
the cardinality of both Ei and E ′

i. Thus, each Ei represents the (possibly empty) set
of edges of H that contain Wi while the set of nonempty E ′

i’s is a partition of E(H ′).
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Without loss of generality, we may assume there exists some s ∈ Zn such that
W0,W1, . . . ,Ws have positive multiplicty in E(H ′′) and, if s �= n− 1, that Ws+1, . . . ,
Wn−1 are not in E(H ′′). Hence, E ′

i is empty if only if s < i ≤ n− 1.

Let Δ′ = {H ′
1, H

′
2, . . .} be an H ′-decomposition of K. For each H ′

j in Δ′, we
construct the (t1 + t2)-uniform hypergraph Hj,0 by appending the elements of Wi,
for i ∈ [0, s], to each edge in the copy of E ′

i in H ′
j. Hence, each copy of E ′

i in
H ′

j becomes a copy of Ei, and Hj,0 is isomorphic to H . We repeat this process to
construct Hj,k for each k ∈ [1, n − 1] by appending the elements of Wi+k (mod n),
for i ∈ [0, s], to each edge in the copy of E ′

i. Thus we arrive at the set Δ =
{H1,0, H1,1, . . . , H1, n−1, H2,0, H2,1, . . . , H2, n−1, . . .}, and Δ is an H-decomposition of
UE(K), E(M).

Corollary 3.2. There exists an LC
(4)
3 -decomposition of L

(3,1)
m,n for m ≡ 0, 1, or 2

(mod 9) and n ≥ 3.

Proof. Let H denote the LC
(4)
3 illustrated in Figure 1. Let A = {v1, v3, v4, v6, v7, v9}

and B = {v2, v5, v8}. Then H is a subgraph of L
(3,1)
A,B . The restriction of H to A is

a 3-uniform loose 3-cycle LC
(3)
3 . Moreover, the restriction of H to B is a 1-uniform

matching. It is shown in [6] that there exists a nontrivial LC
(3)
3 -decomposition of

K
(3)
m if and only if m ≡ 0, 1, or 2 (mod 9), m ≥ 9. Hence, by Lemma 3.1, if m ≡ 0,

1, or 2 (mod 9), m ≥ 9, and if n ≥ 3, then there exists an LC
(4)
3 -decomposition of

U
E
(
K

(3)
m

)
, E

(
K

(1)
n

). But here, U
E
(
K

(3)
m

)
, E

(
K

(1)
n

) is isomorphic to L
(3,1)
m,n .

Corollary 3.3. There exists an LC
(4)
3 -decomposition of L

(2,2)
m,n for m ≡ 1 or 3

(mod 6) and n ≥ 6.

Proof. Let H denote the LC
(4)
3 illustrated in Figure 1. Let A = {v1, v4, v7} and

B = {v2, v3, v5, v6, v8, v9}. Then H is a subgraph of L
(2,2)
A,B . The restriction of H to

A is the 2-uniform complete graph K3. Moreover, the restriction of H to B is a
2-uniform matching with 3 edges.

Let n ≥ 6 be an integer and let n′ = �n/2� ≥ 3. It is well-known that there
is a nontrivial K3-decomposition of Km (i.e., a Steiner triple system of order m) if
and only if m ≡ 1 or 3 (mod 6), m ≥ 3. It is also simple to see that Kn has a
decomposition Δ into matchings with n′ edges.

For each matching M ∈ Δ, we apply Lemma 3.1 with K = Km to get an LC
(4)
3 -

decomposition of UE(Km), E(M). Since
⋃

M∈Δ UE(Km), E(M) = UE(Km), E(Kn) = L
(2,2)
m,n ,

the result follows.

Corollary 3.4. There exists an LC
(4)
3 -decomposition of L

(4)
9,9.

Proof. First, we note that L
(4)
9,9 = L

(2,2)
9,9 ∪ L

(3,1)
9,9 ∪ L

(1,3)
9,9 . By Corollary 3.2, LC

(4)
3

decomposes L
(3,1)
9,9 , which is isomorphic to L

(1,3)
9,9 . By Corollary 3.3, LC

(4)
3 decomposes

L
(2,2)
9,9 . Thus the result follows.
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For the next two lemmas, it is helpful to recall that we use K
(4)

a,b,c,d
∪ L

(4)

b,c,d
and

L
(4)

a,b,c
∪L(4)

b,c
to denote hypergraphs isomorphic to K

(4)
A,B,C,D∪L(4)

B,C,D and L
(4)
A,B,C∪L(4)

B,C ,

respectively, where A, B, C, and D are pairwise disjoint sets of cardinality a, b, c,
and d, respectively.

Lemma 3.5. There exists an LC
(4)
3 -decomposition of K

(4)

1,9,9,9
∪ L

(4)

9,9,9
.

Proof. By Lemma 1.2, K
(4)
1,9,9,9 can be decomposed into 27 copies ofK

(4)
1,3,3,3. Similarly,

by Lemma 1.3, L
(4)
9,9,9 can be decomposed into 27 copies of L

(4)
3,3,3 and 81 copies of

K
(4)
3,3,3,3. Thus, K

(4)

1,9,9,9
∪ L

(4)

9,9,9
can be decomposed into 27 copies of K

(4)

1,3,3,3
∪ L

(4)

3,3,3

and 81 copies of K
(4)
3,3,3,3. An LC

(4)
3 -decomposition of K

(4)

1,3,3,3
∪ L

(4)

3,3,3
is given in

Example 2.3, and an LC
(4)
3 -decomposition of K

(4)
3,3,3,3 is given in Example 2.5. The

result now follows.

We proceed by proving a lemma that is fundamental to our constructions.

Lemma 3.6. Let n ≥ 1, x ≥ 1, and r ≥ 0 be integers and let v = nx + r. There
exists a decomposition of K

(4)
v into the following:

• 1 copy of K
(4)
n+r,

• x− 1 copies of K
(4)
n+r \K(4)

r if x ≥ 2 (these are isomorphic to K
(4)
n+r if r ≤ 3),

• (
x
2

)
copies of L

(4)
r,n,n ∪ L

(4)
n,n if x ≥ 2 (here L

(4)
r,n,n is empty if r = 0),

• (
x
3

)
copies of K

(4)
r,n,n,n ∪ L

(4)
n,n,n if x ≥ 3 (here K

(4)
r,n,n,n is empty if r = 0), and

• (
x
4

)
copies of K

(4)
n,n,n,n if x ≥ 4.

Proof. If x ∈ {0, 1}, the decomposition is trivial. Thus we may assume that x ≥ 2.
Let V0, V1, . . . , Vx be pairwise disjoint sets of vertices with |V0| = r and |V1| = |V2| =
· · · = |Vx| = n and let V = V0 ∪ V1 ∪ · · · ∪ Vx. Then, K

(4)
V can be viewed as the

(edge-disjoint) union

K
(4)
V1∪V0

∪
⋃

2≤i≤x

(
K

(4)
Vi∪V0

\K(4)
V0

)
∪

⋃
1≤i<j≤x

(
L
(4)
V0,Vi,Vj

∪ L
(4)
Vi,Vj

)

∪
⋃

1≤i<j<k≤x

(
K

(4)
V0,Vi,Vj ,Vk

∪ L
(4)
Vi,Vj ,Vk

)
∪

⋃
1≤i<j<k<�≤x

(
K

(4)
Vi,Vj ,Vk,V�

)

Thus the result follows.

We now have what we need to settle the spectrum problem for LC
(4)
3 -designs.

Theorem 3.7. There exists an LC
(4)
3 -decomposition of K

(4)
v if and only if v ≡ 0,

1, 2, 3, or 6 (mod 9) and v ≥ 9.
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Proof. If LC
(4)
3 with its 3 edges decomposes K

(4)
v , then we must have 3 | (v

4

)
. There-

fore we have v ≡ 0, 1, 2, 3, or 6 (mod 9). Since LC
(4)
3 has order 9, we must further

have v ≥ 9. We now show these conditions are sufficient.

Let v = 9x+ r, where r ∈ {0, 1, 2, 3, 6} and x ≥ 1. By Lemma 3.6, it suffices to

give LC
(4)
3 -decompositions of K

(4)
9+r, of K

(4)
9+r \K(4)

r , of L
(4)

r,9,9
∪L

(4)

9,9
, of K

(4)

r,9,9,9
∪ L

(4)

9,9,9
,

and of K
(4)
9,9,9,9.

We give LC
(4)
3 -decompositions of K

(4)
9 in Example 2.1, of K

(4)
10 in Example 2.6, of

K
(4)
11 in Example 2.7, of K

(4)
12 in Example 2.8, and of K

(4)
15 in Example 2.9. Thus we

may assume that x ≥ 2.

If r ∈ {0, 1, 2, 3}, then K
(4)
9+r \ K

(4)
r is isomorphic to K

(4)
9+r. We give an LC

(4)
3 -

decomposition of K
(4)
15 \K(4)

6 in Example 2.12.

The hypergraph L
(4)

r,9,9
∪L

(4)

9,9
is isomorphic to L

(4)

9,9
when r = 0. We give an LC

(4)
3 -

decomposition of L
(4)
9,9 in Corollary 3.4. An LC

(4)
3 -decomposition of L

(4)

1,9,9
∪ L

(4)

9,9
is

given in Example 2.10. An LC
(4)
3 -decomposition of L

(4)
2,9,9 is given in Example 2.11.

Thus LC
(4)
3 decomposes L

(4)

2,9,9
∪L(4)

9,9
. By Lemma 1.3, there is a decomposition of L

(4)
3,9,9

into 9 copies of L
(4)
3,3,3 and 18 copies of K

(4)
3,3,3,3. Similarly, there is a decomposition of

L
(4)
6,9,9 into copies of L

(4)
3,3,3 and of K

(4)
3,3,3,3. We give LC

(4)
3 -decompositions of L

(4)
3,3,3 and

K
(4)
3,3,3,3 in Examples 2.2 and 2.5, respectively. Thus we have that LC

(4)
3 decomposes

L
(4)

3,9,9
∪ L

(4)

9,9
and L

(4)

6,9,9
∪ L

(4)

9,9
.

Finally, only LC
(4)
3 -decompositions of K

(4)

r,9,9,9
∪ L

(4)

9,9,9
and of K

(4)
9,9,9,9 remain. We

prove an LC
(4)
3 -decomposition of K

(4)

1,9,9,9
∪L

(4)

9,9,9
in Lemma 3.5. By Lemma 1.3, there

is a decomposition of L
(4)
9,9,9 into 27 copies of L

(4)
3,3,3 and 81 copies of K

(4)
3,3,3,3. By

Lemma 1.2, there is a decomposition of K
(4)
2,9,9,9 into 27 copies of K

(4)
2,3,3,3. Similarly, if

r ∈ {3, 6, 9}, then there is a decomposition of K
(4)
r,9,9,9 into 27 · r/3 copies of K

(4)
3,3,3,3.

Since LC
(4)
3 decomposes each of L

(4)
3,3,3 (Example 2.2), K

(4)
2,3,3,3 (Example 2.4), and

K
(4)
3,3,3,3 (Example 2.5), we have that LC

(4)
3 decomposes each of L

(4)
9,9,9, K

(4)
2,9,9,9, K

(4)
3,9,9,9,

K
(4)
6,9,9,9, and K

(4)
9,9,9,9. This completes the proof.

Appendix

We give several additional examples of LC
(4)
3 -decompositions that are used in proving

our main result. This is a continuation of the list of examples seen in Section 2.

Example 2.6. Let V
(
K

(4)
10

)
= Z7 ∪ {∞1,∞2,∞3} and let

B =
{
[∞1,∞3, 2, 3, 4, 5, 0, 1,∞2], [∞1, 6, 4, 5, 2, 1, 0,∞3,∞2],

[∞2,∞3, 1, 3, 4, 6, 0, 2,∞1], [∞2, 1, 5, 4, 2,∞3, 0, 3,∞1],

[∞3,∞2, 3, 6, 5, 1, 0, 2,∞1], [∞3,∞2, 5, 4, 2, 6, 0, 3,∞1],
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[0,∞1, 1, 3,∞3, 4, 5, 6,∞2], [0,∞1, 1, 4,∞3, 5, 2, 6,∞2],

[0,∞1, 1, 5,∞3, 2, 6, 4,∞2], [0,∞1, 2, 4,∞3, 6, 3, 5,∞2]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
10 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 7).

Example 2.7. Let V
(
K

(4)
11

)
= Z11 and let

B =
{
[4, 6, 7, 3, 2, 1, 0, 10, 5], [5, 3, 10, 0, 1, 2, 4, 9, 7], [9, 8, 6, 0, 1, 2, 5, 4, 3],

[6, 4, 10, 0, 1, 2, 7, 3, 5], [5, 7, 10, 0, 1, 8, 2, 3, 9], [8, 7, 1, 0, 6, 4, 2, 3, 5],

[3, 8, 1, 0, 4, 7, 2, 6, 9], [7, 3, 10, 0, 2, 4, 8, 1, 5], [4, 3, 8, 0, 2, 5, 7, 6, 10],

[0, 2, 5, 8, 6, 3, 9, 7, 1]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
11 consists of the LC

(4)
3 -blocks in B under the

action of the map j 	→ j + 1 (mod 11).

Example 2.8. Let V
(
K

(4)
12

)
= Z11 ∪ {∞} and let

B =
{
[∞, 1, 2, 4, 5, 6, 7, 9, 10], [1, 2, 5, 4, 10, 8,∞, 7, 3], [0, 1, 5, 2, 4, 8, 6, 9, 10],

[0, 1, 3, 5, 2, 9, 6, 8, 10], [3, 0, 1, 8, 2, 5, 4, 9, 10], [1, 3, 0, 7, 9, 4, 2, 10, 6],

[1, 3, 6,∞, 5, 8, 10, 9, 7], [∞, 1, 5, 2, 3, 7, 6, 9, 10], [1, 2, 8,∞, 3, 9, 10, 7, 4],

[0, 1, 6, 4, 3, 8, 10, 7, 5], [0, 2, 8, 4,∞, 1, 9, 7, 3], [0, 1, 6, 3,∞, 7, 5, 8, 10],

[0, 4, 7, 1, 2, 9, 6, 5,∞], [0,∞, 1, 2, 3, 4, 8, 7, 9], [0, 1, 2, 9, 3, 8, 7,∞, 4]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
12 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞ 	→ ∞ and j 	→ j + 1 (mod 11).

Example 2.9. Let V
(
K

(4)
15

)
= Z13 ∪ {∞1,∞2} and let

B =
{
[0, 1, 2,∞2, 5, 6,∞1, 11, 12], [0, 1, 3,∞2, 5, 7,∞1, 10, 11], [0, 1, 4,∞2, 5, 8,∞1, 9, 10],

[0, 1, 5,∞2, 3, 7,∞1, 8, 9], [6, 0, 1,∞2, 3, 8,∞1, 12, 7], [0, 2,∞2, 3, 4, 9, 10,∞1 , 12],

[0, 3,∞2, 4, 5, 10, 9,∞1 , 12], [0, 4,∞2, 5, 6, 9, 8,∞1 , 12], [0, 5,∞2, 6, 8, 9, 7,∞1 , 12],

[0, 1, 7,∞2, 3, 9,∞1, 6, 12], [0, 2,∞2, 4, 5, 7, 9,∞1 , 11], [0, 2,∞2, 5, 6, 7, 10, 8,∞1 ],

[0, 2,∞2, 6, 12, 8, 7,∞1 , 9], [0, 5,∞2, 7, 8, 1, 6,∞1 , 11], [0,∞2, 8, 3,∞1, 6, 11, 10, 5],

[0,∞2, 7, 3, 12, 10, 9, 6,∞1 ], [0, 3,∞2, 6, 12, 9, 7,∞1 , 10], [0, 3,∞2, 5, 9, 10, 8,∞1 , 11],

[0, 4,∞2, 6, 5, 1, 7,∞1 , 11], [0, 4,∞2, 7, 9, 2, 6,∞1 , 10], [1, 4, 0, 9, 8, 12, 5, 3, 11],

[0, 1, 4, 11, 12, 3, 2, 5, 7], [0, 1, 5, 7, 8, 12, 2, 4, 11], [1, 0, 9, 5, 2, 6, 10, 4, 8],

[1, 0, 11, 5, 8, 12, 2, 7, 9], [1, 11, 6, 4, 2, 0, 5, 7, 12], [2, 5, 0, 6, 9, 11, 12, 7, 4],

[3, 0, 6, 7, 11, 2, 4, 10, 1], [6, 0, 1, 11, 2, 9, 3, 8, 12], [1, 0, 9, 6, 4, 10, 2, 7, 11],

[0, 4,∞2, 8, 3, 12, 9, 5,∞1 ], [0, 1, 2, 4, 6, 7, 8, 10, 3], [0, 2, 5, 11, 9, 8, 6, 3, 4],

[4, 0, 1, 6, 2, 10, 8, 5, 11], [0,∞2, 2, 7, 12, 5, 6,∞1 , 8]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
15 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 13).



R.C. BUNGE ET AL. /AUSTRALAS. J. COMBIN. 86 (2) (2023), 336–350 346

Example 2.10. Let V
(
L
(4)

1,9,9
∪L

(4)

9,9

)
= Z18∪{∞} with vertex partition

{{∞}, {0, 2,
4, 6, 8, 10, 12, 14, 16}, {1, 3, 5, 7, 9, 11, 13, 15, 17}} and let

B =
{
[∞1, 0, 1, 9, 16, 11, 8, 3, 2], [∞1, 0, 5, 9, 8, 1, 4, 15, 10], [∞1, 0, 11, 9, 14, 13, 16, 15, 4],

[∞1, 0, 7, 9, 4, 5, 2, 3, 14], [∞1, 0, 13, 9, 10, 17, 14, 3, 8], [∞1, 0, 17, 13, 3, 10, 12, 15, 16],

[∞1, 0, 17, 9, 2, 7, 10, 15, 16], [∞1, 0, 5, 7, 3, 4, 12, 15, 10], [∞1, 0, 11, 1, 3, 16, 12, 15, 4],

[∞1, 0, 7, 17, 15, 2, 6, 3, 14], [∞1, 0, 13, 11, 15, 14, 6, 3, 8], [∞1, 0, 1, 5, 15, 8, 6, 3, 2],

[0,∞1, 1, 3, 2, 6, 15, 4, 9], [0,∞1, 5, 15, 10, 12, 3, 2, 9], [0,∞1, 7, 3, 14, 6, 15, 10, 9],

[0,∞1, 11, 15, 4, 12, 3, 8, 9], [0,∞1, 13, 3, 8, 6, 15, 16, 9], [0,∞1, 17, 15, 16, 12, 3, 14, 9],

[0, 1, 3, 6, 4, 5, 13, 12, 11], [0, 5, 15, 12, 2, 7, 11, 6, 1], [0, 7, 3, 6, 10, 17, 1, 12, 5],

[0, 11, 15, 12, 8, 1, 17, 6, 13], [0, 13, 3, 6, 16, 11, 7, 12, 17], [0, 17, 15, 12, 14, 13, 5, 6, 7],

[0, 1, 2, 5, 4, 10, 14, 16, 9], [0, 5, 10, 7, 2, 14, 16, 8, 9], [0, 7, 14, 17, 10, 16, 8, 4, 9],

[0, 11, 4, 1, 8, 2, 10, 14, 9], [0, 13, 8, 11, 16, 4, 2, 10, 9], [0, 17, 16, 13, 14, 8, 4, 2, 9],

[0, 1, 5, 7, 6, 10, 16, 12, 13], [0, 5, 7, 17, 12, 14, 8, 6, 11], [0, 7, 17, 13, 6, 16, 4, 12, 1],

[0, 11, 1, 5, 12, 2, 14, 6, 17], [0, 13, 11, 1, 6, 4, 10, 12, 7], [0, 17, 13, 11, 12, 8, 2, 6, 5],

[0, 1, 3, 15, 14, 17, 7, 4, 16], [0, 5, 15, 3, 16, 13, 17, 2, 8], [0, 7, 3, 15, 8, 11, 13, 10, 4],

[0, 11, 15, 3, 10, 7, 5, 8, 14], [0, 13, 3, 15, 2, 5, 1, 16, 10], [0, 17, 15, 3, 4, 1, 11, 14, 2],

[0, 1, 3, 7, 6, 9, 11, 12, 10], [0, 5, 15, 17, 12, 9, 1, 6, 14], [0, 7, 3, 13, 6, 9, 5, 12, 16],

[0, 11, 15, 5, 12, 9, 13, 6, 2], [0, 13, 3, 1, 6, 9, 17, 12, 4], [0, 17, 15, 11, 12, 9, 7, 6, 8],

[0, 1, 2, 4, 5, 6, 14, 16, 17], [0, 5, 10, 2, 7, 12, 16, 8, 13], [0, 7, 14, 10, 17, 6, 8, 4, 11],

[0, 6, 2, 1, 5, 8, 12, 16, 17], [0, 12, 10, 5, 7, 4, 6, 8, 13], [0, 6, 14, 7, 17, 2, 12, 4, 11],

[0,∞1, 1, 2, 3, 7, 16, 11, 13], [0,∞1, 5, 10, 15, 17, 8, 1, 11], [0,∞1, 7, 14, 3, 13, 4, 5, 1],

[12,∞1, 9, 0, 2, 5, 15, 1, 4], [3,∞1, 6, 0, 1, 4, 15, 16, 2], [15,∞1, 9, 0, 3, 6, 12, 13, 16],

[0, 1, 7, 13, 10, 2, 5, 11, 12], [0, 1, 6, 12, 13, 15, 10, 11, 17]
}
,

B′ =
{
[0, 1, 9, 10, 16, 3, 5, 6, 17], [1, 2, 10, 11, 17, 4, 6, 7, 0], [2, 3, 11, 12, 0, 5, 7, 8, 1],

[3, 4, 12, 13, 1, 6, 8, 9, 2], [4, 5, 13, 14, 2, 7, 9, 10, 3], [5, 6, 14, 15, 3, 8, 10, 11, 4],

[6, 7, 15, 16, 4, 9, 11, 12, 5], [7, 8, 16, 17, 5, 10, 12, 13, 6], [8, 9, 17, 0, 6, 11, 13, 14, 7],

[9, 3, 0, 12, 7, 1, 14, 15, 8], [10, 4, 1, 13, 8, 2, 15, 16, 9], [11, 5, 2, 14, 9, 3, 16, 17, 10],

[12, 6, 3, 15, 10, 4, 17, 0, 11], [13, 7, 4, 16, 11, 5, 0, 1, 12], [14, 8, 5, 17, 12, 6, 1, 2, 13],

[15, 9, 6, 0, 13, 7, 2, 3, 14], [16, 10, 7, 1, 14, 8, 3, 4, 15], [17, 11, 8, 2, 15, 9, 4, 5, 16],

[0, 2, 11, 9, 15, 12, 6, 13, 1], [1, 3, 12, 10, 16, 13, 7, 14, 2], [2, 4, 13, 11, 17, 14, 8, 15, 3],

[3, 5, 14, 12, 0, 15, 9, 16, 4], [4, 6, 15, 13, 1, 16, 10, 17, 5], [5, 7, 16, 14, 2, 17, 11, 0, 6],

[6, 8, 17, 15, 3, 0, 12, 1, 7], [7, 9, 0, 16, 4, 1, 13, 2, 8], [8, 10, 1, 17, 5, 2, 14, 3, 9],

[9, 13, 4, 0, 6, 3, 15, 4, 10], [10, 14, 5, 1, 7, 4, 16, 5, 11], [11, 15, 6, 2, 8, 5, 17, 6, 12],

[12, 16, 7, 3, 9, 6, 0, 7, 13], [13, 17, 8, 4, 10, 7, 1, 8, 14], [14, 0, 9, 5, 11, 8, 2, 9, 15],

[15, 1, 10, 6, 12, 9, 3, 10, 16], [16, 2, 11, 7, 13, 10, 4, 11, 17], [17, 3, 12, 8, 14, 11, 5, 12, 0]
}
.

Then an LC
(4)
3 -decomposition of L

(4)

1,9,9
∪L

(4)

9,9
consists of the LC

(4)
3 -blocks in B under

the action of the map ∞ 	→ ∞ and j 	→ j +1 (mod 18) along with the LC
(4)
3 -blocks

in B′.
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Example 2.11. Let V
(
L
(4)
2,9,9

)
= Z18 ∪ {∞1,∞2} with vertex partition

{{∞1,∞2},
{0, 2, 4, 6, 8, 10, 12, 14, 16}, {1, 3, 5, 7, 9, 11, 13, 15, 17}} and let

B =
{
[∞1, 0, 1, 3,∞2, 7, 10, 6, 5], [∞1, 0, 5, 15,∞2, 17, 14, 12, 7],

[∞1, 0, 7, 3,∞2, 13, 16, 6, 17], [∞1, 0, 11, 15,∞2 , 5, 2, 12, 1],

[∞1, 0, 13, 3,∞2 , 1, 4, 6, 11], [∞1, 0, 17, 15,∞2 , 11, 8, 12, 13],

[∞2, 0, 5, 1,∞1, 13, 8, 3, 2], [∞2, 0, 7, 5,∞1, 11, 4, 15, 10],

[∞2, 0, 17, 7,∞1 , 1, 2, 3, 14], [∞2, 0, 1, 11,∞1 , 17, 16, 15, 4],

[∞2, 0, 11, 13,∞1 , 7, 14, 3, 8], [∞2, 0, 13, 17,∞1 , 5, 10, 15, 16],

[3, 11, 2,∞2 , 1, 0,∞1, 12, 4], [15, 1, 10,∞2 , 5, 0,∞1, 6, 2],

[3, 5, 14,∞2 , 7, 0,∞1, 12, 10], [12, 17, 4,∞2 , 0, 3,∞1, 6, 9],

[∞1, 0, 3, 9, 2,∞2 , 13, 4, 1], [∞1, 0, 10, 5,∞2, 12, 3, 16, 1],

[∞2, 0, 1, 4, 15,∞1 , 8, 5, 3], [∞1, 0, 1, 4,∞2, 13, 8, 5, 3],

[∞1, 0, 1, 15, 6,∞2 , 9, 7, 16], [∞2, 0, 3, 10,∞1 , 7, 17, 4, 2],

[∞2, 6, 3, 0, 9,∞1 , 13, 4, 1], [∞2, 0, 1, 15,∞1, 6, 14, 5, 4]
}
,

B′ =
{
[3, 4, 5,∞1 , 0, 9,∞2, 1, 2], [4, 5, 6,∞1, 1, 10,∞2, 2, 3],

[5, 6, 7,∞1 , 2, 11,∞2, 3, 4], [6, 7, 8,∞1, 3, 12,∞2, 4, 5],

[7, 8, 9,∞1 , 4, 13,∞2, 5, 6], [8, 9, 10,∞1 , 5, 14,∞2, 6, 7],

[9, 10, 11,∞1 , 6, 15,∞2, 7, 8], [10, 11, 12,∞1 , 7, 16,∞2, 8, 9],

[11, 12, 13,∞1 , 8, 17,∞2, 9, 10], [∞1, 1, 4, 12, 11,∞2 , 10, 13, 3],

[∞1, 2, 5, 13, 12,∞2 , 11, 14, 4], [∞1, 3, 6, 14, 13,∞2 , 12, 15, 5],

[∞1, 4, 7, 15, 14,∞2 , 13, 16, 6], [∞1, 5, 8, 16, 15,∞2 , 14, 17, 7],

[∞1, 6, 9, 17, 16,∞2 , 15, 0, 8], [∞1, 7, 10, 0, 17,∞2 , 16, 1, 9],

[∞1, 8, 11, 1, 0,∞2 , 17, 2, 10], [∞1, 9, 12, 2, 1,∞2 , 0, 3, 11],

[∞2, 3, 6, 14, 13,∞1 , 12, 15, 5], [∞2, 4, 7, 15, 14,∞1 , 13, 16, 6],

[∞2, 5, 8, 16, 15,∞1 , 14, 17, 7], [∞2, 6, 9, 17, 16,∞1 , 15, 0, 8],

[∞2, 7, 10, 0, 17,∞1 , 16, 1, 9], [∞2, 8, 11, 1, 0,∞1 , 17, 2, 10],

[∞2, 9, 12, 2, 1,∞1 , 0, 3, 11], [∞2, 10, 13, 3, 2,∞1 , 1, 4, 12],

[∞2, 11, 14, 4, 3,∞1 , 2, 5, 13]
}
.

Then an LC
(4)
3 -decomposition of L

(4)
2,9,9 consists of the LC

(4)
3 -blocks in B under the

action of the map ∞i 	→ ∞i and j 	→ j + 1 (mod 18) along with the LC
(4)
3 -blocks

in B′.

Example 2.12. Let V
(
K

(4)
15 \K(4)

6

)
= Z9∪{∞1,∞2,∞3,∞4,∞5,∞6} with ∞1, . . . ,

∞6 being the vertices in the hole and let

B =
{
[3,∞1, 1, 0,∞2, 4, 6,∞3, 2], [6,∞1, 2, 0,∞2, 8, 3,∞3, 4], [3,∞1, 4, 0,∞2, 7, 6,∞3, 8],

[6,∞1, 5, 0,∞2, 2, 3,∞3, 1], [3,∞1, 7, 0,∞2, 1, 6,∞3, 5], [6,∞1, 8, 0,∞2, 5, 3,∞3, 7],

[3,∞4, 1, 0,∞5, 4, 6,∞6, 2], [6,∞4, 2, 0,∞5, 8, 3,∞6, 4], [3,∞4, 4, 0,∞5, 7, 6,∞6, 8],

[6,∞4, 5, 0,∞5, 2, 3,∞6, 1], [3,∞4, 7, 0,∞5, 1, 6,∞6, 5], [6,∞4, 8, 0,∞5, 5, 3,∞6, 7],
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[1,∞2,∞1, 0,∞3,∞4, 5,∞5,∞6], [2,∞2,∞1, 0,∞3,∞4, 1,∞5,∞6],

[4,∞2,∞1, 0,∞3,∞4, 2,∞5,∞6], [1,∞3,∞2, 0,∞4,∞5, 5,∞1,∞6],

[2,∞3,∞2, 0,∞4,∞5, 1,∞1,∞6], [4,∞3,∞2, 0,∞4,∞5, 2,∞1,∞6],

[1,∞1,∞4, 0,∞2,∞6, 5,∞3,∞5], [2,∞1,∞4, 0,∞2,∞6, 1,∞3,∞5],

[4,∞1,∞4, 0,∞2,∞6, 2,∞3,∞5], [1,∞2,∞5, 0,∞4,∞6, 5,∞3,∞1],

[2,∞2,∞5, 0,∞4,∞6, 1,∞3,∞1], [4,∞2,∞5, 0,∞4,∞6, 2,∞3,∞1],

[1,∞3,∞6, 0,∞5,∞1, 5,∞4,∞2], [2,∞3,∞6, 0,∞5,∞1, 1,∞4,∞2],

[4,∞3,∞6, 0,∞5,∞1, 2,∞4,∞2], [0,∞2,∞1, 3,∞3,∞4, 6,∞5,∞6],

[0,∞3,∞2, 3,∞4,∞5, 6,∞1,∞6], [0,∞1,∞4, 3,∞2,∞6, 6,∞3,∞5],

[0,∞2,∞5, 3,∞4,∞6, 6,∞3,∞1], [0,∞3,∞6, 3,∞5,∞1, 6,∞4,∞2],

[∞5, 0, 1, 2,∞6, 6, 4, 8, 3], [∞6, 0, 1, 2,∞5, 6, 4, 8, 3], [∞1,∞2,∞6, 0, 1, 5,∞4 , 2,∞3],

[∞2,∞6, 0,∞3, 1, 3, 5,∞5,∞1], [∞3,∞6, 3,∞4, 0, 1, 2,∞1,∞2],

[∞4,∞5,∞6, 0, 1, 5,∞3, 2,∞2], [∞5,∞6, 2,∞1, 0, 1, 5,∞3,∞4],

[∞1,∞3,∞6, 2, 1, 0,∞2, 3,∞4], [∞2,∞4,∞6, 0, 1, 2, 7,∞3 ,∞5],

[∞5,∞3,∞6, 0, 2, 4,∞1,∞4, 1], [∞4,∞1,∞6, 0, 1, 5,∞2,∞5, 2],

[∞5,∞2,∞6, 0, 1, 2, 4,∞3 ,∞1], [0, 1, 3, 6, 7, 2, 5, 4, 8], [1, 0, 2, 3, 4, 6, 7, 8, 5],

[2, 4, 7, 0, 8, 5, 3, 6, 1], [1, 0, 4, 7, 3, 5, 2, 6, 8]
}
,

B′ =
{
[0,∞1, 3, 6,∞2, 4, 2, 1,∞3], [1,∞1, 4, 7,∞2, 5, 3, 2,∞3], [2,∞1, 5, 8,∞2, 6, 4, 3,∞3],

[3,∞4, 6, 0,∞2, 7, 5, 4,∞3], [4,∞4, 7, 1,∞2, 8, 6, 5,∞3], [5,∞4, 8, 2,∞2, 0, 7, 6,∞3],

[6,∞5, 0, 3,∞2, 1, 8, 7,∞3], [7,∞5, 1, 4,∞2, 2, 0, 8,∞3], [8,∞5, 2, 5,∞2, 3, 1, 0,∞3],

[3,∞3, 6, 0,∞4, 7, 5, 4,∞1], [4,∞3, 7, 1,∞4, 8, 6, 5,∞1], [5,∞3, 8, 2,∞4, 0, 7, 6,∞1],

[6,∞6, 0, 3,∞4, 1, 8, 7,∞1], [7,∞6, 1, 4,∞4, 2, 0, 8,∞1], [8,∞6, 2, 5,∞4, 3, 1, 0,∞1],

[0,∞2, 3, 6,∞4, 4, 2, 1,∞1], [1,∞2, 4, 7,∞4, 5, 3, 2,∞1], [2,∞2, 5, 8,∞4, 6, 4, 3,∞1]
}
.

Then an LC
(4)
3 -decomposition of K

(4)
15 \K(4)

6 consists of the LC
(4)
3 -blocks in B under

the action of the map ∞i 	→ ∞i and j 	→ j+1 (mod 9) along with the LC
(4)
3 -blocks

in B′.
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