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Abstract

The answer to the question in the title is contained in the following
conjecture by So [Discrete Math. 306 (2006), 153–158]:

There are exactly 2τ(n)−1 non-isospectral integral circulant graphs of
order n, where τ(n) is the number of divisors of n.

In this paper we review some background about this conjecture, which
is still open. Moreover, we affirm this conjecture for some special cases
of n, namely, n = pk, pqk, p2q with primes 2 ≤ p < q and integer k ≥ 1;
and n = pqr with primes 2 ≤ p < q < r. Our approach is basically a
case-by-case study, but a common technique used in the proofs of these
different cases is the notion of a super sequence: a positive sequence in
which each term is greater than the partial sum of all previous terms. An
immediate consequence of this conjecture is a result of Klin and Kovacs
[Electron. J. Combin. 19 (2012), #P35], which asserts that there are
exactly 2τ(n)−1 non-isomorphic integral circulant graphs of order n.

1 Background

All graphs considered in this paper are simple, i.e., undirected graphs without self
loops and multi-edges. A simple graph is called circulant if it has a circulant ad-
jacency matrix [3]. By definition, circulant matrices are determined by their first
rows, and so each circulant graph is uniquely determined by its so-called symbol S.
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Symbols for circulant graphs of order n can be derived by the first row of the respec-
tive n × n circulant adjacency matrices and can be characterized as those subsets
S ⊆ {1, 2, . . . , n−1} with the property that S = n−S, where n−S = {n−k : k ∈ S}.

Let CGn(S) denote a circulant graph of order n with symbol S. The spectrum
of CGn(S) [6] is the multiset

Sp(CGn(S)) = {λ0(S), λ1(S), . . . , λn−1(S)}

which can be computed as follows: for 0 ≤ t ≤ n− 1,

λt(S) =
∑
j∈S

(ωt)j

where ω = e
2πi
n is the n-th root of unity. Since S = n− S, each eigenvalue λt(S) is

a real number, and

λt(S) =
∑
j∈S

(ωt)j =
∑
j∈S

(ωt)n−j =
∑
j∈S

(ω−t)j =
∑
j∈S

(ωn−t)j = λn−t(S)

for 1 ≤ t ≤ n− 1. Note that CGn(S) is a regular graph of regularity

|S| =
∑
j∈S

1 =
∑
j∈S

(ω0)j = λ0(S),

which is the largest eigenvalue because, for any t,

λt(S) ≤ |λt(S)| ≤
∑
j∈S

|(ωt)j| =
∑
j∈S

1 = |S| = λ0(S).

By Perron-Frobenius Theory, the multiplicity of λ0(S) is 1 if and only if CGn(S) is
connected. Indeed, we can say more about the connectivity of a circulant graph [1].

Lemma 1.1 Let S be a symbol with gcd(S, n) = m. Then CGn(S) is a union of
m copies of the connected circulant graph CG n

m
( 1
m
S), where 1

m
S = { k

m
: k ∈ S} ⊆

{1, 2, . . . , n
m

− 1}. Moreover, Sp(CGn(S)) consists of m copies of Sp(CG n
m
( 1
m
S)),

and so λ0(S) has a multiplicity m in Sp(CGn(S)).

Corollary 1.2 If Sp(CGn(S)) = Sp(CGn(T )) has the largest eigenvalue λ0(S) =
λ0(T ) of a mulitplicity m then Sp(CG n

m
( 1
m
S)) = Sp(CG n

m
( 1
m
T )).

Lemma 1.3 If CG2h(S) is a connected graph then the eigenvalue λh(S) must have
an odd multiplicity.

Proof: For 1 ≤ t ≤ h− 1,
λt(S) = λ2h−t(S).
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Therefore all eigenvalues have an even multiplicity except λ0(S) (which has multi-
plicity 1 due to connectedness) and λh(S) (which must have an odd multiplicity due
to even order 2h). �

Integral circulant graphs (ICG) are circulant graphs with integer eigenvalues only.
Each integral circulant graph comes from a special type of symbol called integral
symbol. In [6], it is proved that there are a total of τ(n) − 1 basic integral symbols
{Gn(d) : d|n, d < n}, where Gn(d) = {k : gcd(n, k) = d} ⊆ {1, 2, . . . , n − 1}. Note
that the collection of basic integral symbols is a partition of the set {1, 2, . . . , n−1}.
The eigenvalues of CGn(Gn(d)) can be computed effectively using the Euler function
φ(·) and the Mobius function μ(·) as follows: for 0 ≤ t ≤ n− 1,

λt(Gn(d)) =
φ(n/d)

φ( n/d
gcd(t,n/d)

)
μ

(
n/d

gcd(t, n/d)

)
∈ Z.

In particular, λ0(Gn(d)) = |Gn(d)| = |Gn
d
(1)| = φ(n

d
). These basic integral symbols

are used to generate all 2τ(n)−1 integral symbols ∪d∈DGn(d) where D ⊆ {d : d|n, d <
n} is a subset of proper divisors of n. From now on, we denote by ICGn(D) the
integral circulant graph of order n with integral symbol ∪d∈DGn(d), i.e., ICGn(D) =
CGn(∪d∈DGn(d)), and its eigenvalues are given by, 0 ≤ t ≤ n− 1,

λt(D) = λt(∪d∈DGn(d)) =
∑
d∈D

φ(n/d)

φ( n/d
gcd(t,n/d)

)
μ

(
n/d

gcd(t, n/d)

)
∈ Z.

Complement graphs are useful tools; in particular, we use them heavily to simplify
the proof of Theorem 5.4. First, we notice that the complement graph of CGn(S)
is also circulant and indeed CGn(S) = CGn(S) where S denotes the complement of
S with respect to the set {1, 2, . . . , n − 1}. The complement graph of ICGn(D) is
also an integral circulant graph and indeed ICGn(D) = ICGn(D

∗) where D∗ is the
complement of D with respect to the set {d : d|n, d < n}. Moreover, we have the
following.

Lemma 1.4 (i) If Sp(CGn(S)) = Sp(CGn(T )) then Sp(CGn(S)) = Sp(CGn(T )).

(ii) If Sp(ICGn(DS)) = Sp(ICGn(DT )) then Sp(ICGn(D
∗
S)) = Sp(CGn(D

∗
T )).

Proof: (i) Since CGn(S) and CGn(T ) are regular graphs, Sp(CGn(S)) and
Sp(CGn(T )) are determined by Sp(CGn(S)) and Sp(CGn(T )) respectively. Hence
Sp(CGn(S)) = Sp(CGn(T )) implies that

Sp(CGn(S)) = Sp(CGn(T ))

and so
Sp(CGn(S)) = Sp(CGn(T )).
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(ii) Since ICGn(DS) and ICGn(DT ) are regular graphs, Sp(ICGn(DS)) and
Sp(ICGn(DT )) are determined by Sp(ICGn(DS)) and Sp(ICGn(DT )) respectively.
Hence Sp(ICGn(DS)) = Sp(ICGn(DT )) implies that

Sp(ICGn(DS)) = Sp(ICGn(DT ))

and so
Sp(ICGn(D

∗
S)) = Sp(ICGn(D

∗
T )).

�

We adopt the convention that ICGn(∅) is the empty graph with all eigenvalues
equal to 0. In theory, there should be 2τ(n)−1 integral circulant graphs, one from each
integral symbol. However, there is a catch: we need to make sure that it is impossi-
ble that two different integral symbols produce isomorphic integral circulant graphs.
Note that it is possible to have two different symbols producing isomorphic circu-
lant graphs; fortunately they are not integral symbols. Indeed, Klin and Kovacs [4]
proved that different integral symbols always produce non-isomorphic integral cir-
culant graphs by using the techniques from Schur ring and group theory. Hence we
know that there are exactly 2τ(n)−1 non-isomorphic integral circulant graphs of order
n. However, this result provides mere evidence but no affirmation for the conjecture
stated in the abstract because it is possible for non-isomorphic graphs to be isospec-
tral. Note that if we can confirm the conjecture by other means then we potentially
have an alternate proof for the result of Klin and Kovacs.

As far as we know, the conjecture is still open. In the rest of the paper, we affirm
the conjecture for the following special cases of n:

• n = pk with prime p and integer k ≥ 1;

• n = pqk with primes p < q and integer k ≥ 1;

• n = p2q with primes p < q;

• n = pqr with primes p < q < r.

To confirm the conjecture, we need to show that two different integral symbols
produce integral circulant graphs with different spectra (as multisets), or contrapos-
itively, two integral symbols producing the same spectrum must be identical. That
is,

Sp(ICGn(DS)) = Sp(ICGn(DT )) implies DS = DT

where DS and DT are subsets of {d : d|n, d < n} because the corresponding integral
symbols are equal:

⋃
d∈DS

Gn(d) =
⋃

d∈DT
Gn(d). A common technique employed in

our proofs is the notion of super sequences.

Definition 1.5 A finite sequence (x0, x1, x2, . . . , xJ) of nonnegative numbers is
called a super sequence if xt >

∑t−1
j=0 xj for any 1 ≤ t ≤ J .
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Lemma 1.6 Let p ≥ 2. Then the sequence (1, p, p2, . . . , pJ) is a super sequence, and
so is (p− 1, p2 − p, p3 − p2, . . . , pJ+1 − pJ).

The following lemma shows an interesting property that all partial sums of a
super sequence are distinct.

Lemma 1.7 Let (x0, x1, x2, . . . , xJ) be a super sequence. If aj, bj ∈ {0, 1} for all

0 ≤ j ≤ J such that
∑J

j=0 ajxj =
∑J

j=0 bjxj, then aj = bj for all 0 ≤ j ≤ J . In

other words, if xT = [x0, x1, x2, . . . , xJ ] is a vector such that xTa = xT b for some
(0, 1)-vectors a, b ∈ {0, 1}J+1, then a = b.

Proof: Assume that there exists j such that aj �= bj . Then the set R = {0 ≤ j ≤ J :
aj �= bj} is non-empty and let m be the largest element of R. Suppose without loss
of generality that am = 1 and bm = 0. Then we have the contradiction:

J∑
j=0

ajxj =
m∑
j=0

ajxj +
J∑

j=m+1

ajxj

=

m∑
j=0

ajxj +

J∑
j=m+1

bjxj (since m is the largest element of R)

≥ xm +

J∑
j=m+1

bjxj (since am = 1 and xj ≥ 0 )

>
m−1∑
j=0

xj +
J∑

j=m+1

bjxj (due to the hypothesis on xj)

≥
m∑
j=0

bjxj +
J∑

j=m+1

bjxj (since bm = 0, bj ≤ 1)

=

J∑
j=0

bjxj .

�

Lemma 1.8 Let d1 = 1, d2, . . . , dJ < n be all the proper divisiors of n such that

(
φ(

n

dJ
), φ(

n

dJ−1
), . . . , φ(

n

d1
)

)

is a super sequence. If DS and DT are subsets of {d1, . . . , dJ} such that

Sp(ICGn(DS)) = Sp(ICGn(DT ))

then DS = DT .
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Proof: Since Sp(ICGn(DS)) = Sp(ICGn(DT )), we have λ0(DS) = λ0(DT ). Hence

∑
d∈DS

φ(
n

d
) =

∑
d∈DS

|Gn(d)| =
∑
d∈DT

|Gn(d)| =
∑
d∈DT

φ(
n

d
).

Because of the super sequence hypothesis and Lemma 1.7, we conclude thatDS = ST .
�

The following lemma from [5] is needed in Sections 4 and 5.

Lemma 1.9 Let p be an odd prime which is a proper divisor of n. If

Sp(ICGn(DS)) = Sp(ICGn(DT ))

then n
p
�∈ (DS −DT ), where DS −DT = {k : k ∈ DS and k �∈ DT}.

2 The case n = pk with prime p and integer k ≥ 1

In [6], So not only proposed the conjecture for all n but also reported (without proof)
that the conjecture is true for a prime power n. In this section, we give the proof of
such assertion.

Theorem 2.1 Let DS and DT be two subsets of proper divisors of pk with prime p
and integer k ≥ 1. If Sp(ICGpk(DS)) = Sp(ICGpk(DT )) then DS = DT .

Proof: The proper divisors of n = pk are 1, p, p2, . . . , pk−1, and so

(
φ(

n

pk−1
), φ(

n

pk−2
), . . . , φ(

n

1
)

)
=

(
φ(p), φ(p2), . . . , φ(pk)

)
= (p− 1, p2 − p, . . . , pk − pk−1)

is a super sequence by Lemma 1.6. Hence DS = DT by Lemma 1.8. �

3 The case n = pqk with primes p < q and integer k ≥ 1

In [6], So also reported (without proof) that the conjecture is true for n being a
product of two distinct primes. In this section, we extend this result to n of the form
pqk where p < q are distinct primes and k ≥ 1 is an integer. We consider the cases
p > 2 and p = 2 in Theorems 3.2 and 3.3 respectively. Both theorems were originally
published in the Master’s thesis of Chris Cusanza [2]. However, we present different
proofs using super sequences.
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Lemma 3.1 For primes p, q such that 2 < p < q and integer k ≥ 1, define

xj =

⎧⎨
⎩

p− 1 if j = 0,

(q − 1)q
j+1
2

−1 if j = 1, 3, . . . , 2k − 1,

(p− 1)(q − 1)q
j
2
−1 if j = 2, 4, . . . , 2k.

Then the sequence (x0, x1, x2, . . . , x2k) =(
p− 1, q − 1, (p− 1)(q − 1), . . . , (p− 1)(q − 1)qk−1

)
is a super sequence.

Proof: We prove that xt >
∑t−1

j=0 xj for t = 1, . . . , 2k by induction on t.

For t = 1, x1 = q − 1 > p− 1 = x0 =
∑1−1

j=0 xj since p < q.

Consider t ≥ 2. If t is even, then

t∑
j=0

xj = xt + xt−1 +

t−2∑
j=0

xj

< xt + xt−1 + xt−1 (by induction hypothesis)

= (p− 1)(q − 1)q
t
2
−1 + 2(q − 1)q

t
2
−1

= (p+ 1)(q − 1)q
t
2
−1

≤ (q − 1)q
t+2
2

−1 (since p < q)

= xt+1.

Similarly, if t is odd, then

t∑
j=0

xj = xt +

t−1∑
j=0

xj

< xt + xt (by induction hypothesis)

= 2(q − 1)q
t+1
2

−1

≤ (p− 1)(q − 1)q
t+1
2

−1 (since 2 < p)

= xt+1. �

Theorem 3.2 Let DS and DT be two subsets of proper divisors of pqk with primes
p, q such that 2 < p < q and integer k ≥ 1. If Sp(ICGpqk(DS)) = Sp(ICGpqk(DT ))
then DS = DT .

Proof: The order pqk has 2k + 1 proper divisors {1, q, . . . , qk, p, pq, . . . , pqk−1}. Let
us label the proper divisors as follows:

dj =

⎧⎨
⎩

qk if j = 0,

pqk−
j+1
2 if j = 1, 3, . . . , 2k − 1,

qk−
j
2 if j = 2, 4, . . . , 2k.
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Consequently, for 0 ≤ j ≤ 2k, we have φ(pq
k

dj
) = xj , which is a member of the super

sequence defined in Lemma 3.1. Hence DS = DT by Lemma 1.8. �

Theorem 3.3 Let DS and DT be two subsets of proper divisors of order 2qk with
a prime q > 2 and an integer k ≥ 1. If Sp(ICG2qk(DS)) = Sp(ICG2qk(DT )) then
DS = DT .

Proof: Let m be the multiplicity of λ0(DS) = λ0(DT ). Then m|2qk and so we have
the following five cases.

Case 1: m = 1. That is, (i) λ0(DS) = λ0(DT ) has multiplicity 1. By Lemma 1.3,
both λqk(DS) and λqk(DT ) have odd multiplicity. From the hypothesis

Sp(ICG2qk(DS)) = Sp(ICG2qk(DT )),

we have (ii) λqk(DS) = λqk(DT ).

Now the order 2qk has 2k + 1 proper divisors {1, q, . . . , qk, 2, 2q, . . . , 2qk−1}. Let
us label the proper divisors as follows:

dj =

⎧⎨
⎩

qk if j = 0,
qk−j if j = 1, 2, . . . , k,
2q2k−j if j = k + 1, k + 2, . . . , 2k.

Since both DS, DT are subsets of {1, q, . . . , qk, 2, 2q, . . . , 2qk−1}, for 0 ≤ j ≤ 2k,
define aj = 1 if dj ∈ DS, aj = 0 otherwise. Similarly, define bj using DT . Note that
DS = DT if and only if aj = bj for all 0 ≤ j ≤ 2k.

Note that λ0(DS) =
∑2k

j=0 aj |Gpqk(dj)| =
∑2k

j=0 ajφ(
pqk

dj
) = a0 +Qxa +Qya where

Q = [q − 1 (q − 1)q · · · (q − 1)qk−1], xa = [a1, . . . , ak]
T and ya = [ak+1, . . . , a2k]

T .
Similarly, λ0(DT ) = b0+Qxb+Qyb where xb = [b1, . . . , bk]

T and yb = [bk+1, . . . , b2k]
T .

Hence, from (i),
a0 + Qxa +Qya = b0 +Qxb +Qyb.

Note that

λqk(DS) =
∑
d∈DS

∑
i∈G

2qk
(d)

(ωqk)i

=

2k∑
j=0

aj
∑

i∈G
2qk

(dj)

(−1)i

= −a0 −Qxa +Qya.

Similarly, λqk(DT ) = −b0 −Qxb +Qyb. Hence, from (ii),

−a0 −Qxa +Qya = −b0 −Qxb +Qyb.

Consequently, by adding the two equations and then simplifying, we have Qya =
Qyb. By Lemma 1.7 (because the sequence of entries from Q is a super sequence
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by Lemma 1.6), ya = yb. It follows that a0 + Qxa = b0 + Qxb. By Lemma 1.7
(because the sequence of entries from Q with an additional 1 in the beginning is a
super sequence by Lemma 1.6), a0 = b0 and xa = xb. Finally [a0 xa ya] = [b0 xb yb]
and so DS = DT .

Case 2: m = 2. By Corollary 1.2, Sp(ICGqk(
1
2
DS)) = Sp(ICGqk(

1
2
DT )). Now, by

Theorem 2.1, 1
2
DS = 1

2
DT , and so DS = DT .

Case 3: m = qr with k > r ≥ 1. By Corollary 1.2, Sp(ICG2qk−r( 1
qr
DS)) =

Sp(ICG2qk−r( 1
qr
DT )). Moreover the multiplicity of λ0(

1
qr
DS) = λ0(

1
qr
DT ) is 1. By

Case 1, 1
qr
DS = 1

qr
DT , and so DS = DT .

Case 4: m = qk. By Corollary 1.2, Sp(ICG2(
1
qk
DS)) = Sp(ICG2(

1
qk
DT )). Now, by

Theorem 2.1, 1
qk
DS = 1

qk
DT , and so DS = DT .

Case 5: m = 2qr with k > r ≥ 1. By Corollary 1.2, Sp(ICGqk−r( 1
2qr

DS)) =

Sp(ICGqk−r( 1
2qr

DT )). Now, by Theorem 2.1, 1
2qr

DS = 1
2qr

DT , and so DS = DT . �

4 The case n = p2q with primes p < q

The results in this section also appeared in [2] and [5], but both had different proofs
than ours. We consider three cases depending on the values of p and q: (i) p = 2
and q = 3, (ii) p = 2 and q > 3, (iii) 2 < p < q.

Theorem 4.1 Let DS and DT be two subsets of proper divisors of 22 · 3 = 12. If
Sp(ICG12(DS)) = Sp(ICG12(DT )) then DS = DT .

Proof: The order 12 has five proper divisors {1, 2, 3, 4, 6}. Hence there are five
basic integral symbols: G12(1), G12(2), G12(3), G12(4), G12(6), and so 25 = 32 integral
symbols. Using the formulas in Section 1, we can compute the spectra of all 32
integral circulant graphs explicitly and see that they are all different multisets. �

Theorem 4.2 Let DS and DT be two subsets of proper divisors of 22q = 4q with
odd prime q > 3. If Sp(ICG4q(DS)) = Sp(ICG4q(DT )) then DS = DT .

Proof: The order 4q has five proper divisors {1, 2, 4, q, 2q} with an odd prime q > 3.
Hence there are five basic integral symbols:

G4q(1), G4q(2), G4q(4), G4q(q), G4q(2q).

By Lemma 1.9, DS −DT ⊆ {1, 2, q, 2q} and so |⋃d∈DS−DT
G4q(d)| = a1x1 + a2x2 +

a3x3 + a4x4 for some ai ∈ {0, 1} and x1 = |G4q(2q)| = 1, x2 = |G4q(q)| = 2, x3 =
|G4q(2)| = q − 1, x4 = |G4q(1)| = 2(q − 1). Similarly, |⋃d∈DT−DS

G4q(d)| = b1x1 +
b2x2+ b3x3+ b4x4 for some bi ∈ {0, 1}. Since Sp(ICG4q(DS)) = Sp(ICG4q(DT )), we
have ∣∣ ⋃

d∈DS

G4q(d)
∣∣ = λ0(DS) = λ0(DT ) =

∣∣ ⋃
d∈DT

G4q(d)
∣∣,
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and so ∑
i

aixi =
∣∣ ⋃
d∈DS−DT

G4q(d)
∣∣ = ∣∣ ⋃

d∈DT−DS

G4q(d)
∣∣ = ∑

i

bixi.

Note that x1 < x2 < x3 < x4 is a super sequence because q ≥ 5. By Lemma 1.7,
ai = bi for all i , i.e., DS −DT = DT −DS. Since (DS −DT ) ∩ (DT −DS) = ∅, we
have DS −DT = DT −DS = ∅. Consequently, DS = DT . �

Theorem 4.3 Let DS and DT be two subsets of proper divisors of p2q with primes
p, q such that 2 < p < q. If Sp(ICGp2q(DS)) = Sp(ICGp2q(DT )) then DS = DT .

Proof: The order p2q has five proper divisors {1, p, p2, q, pq} with primes p, q such
that 2 < p < q. Hence there are five basic integral symbols:

Gp2q(1), Gp2q(p), Gp2q(p
2), Gp2q(q), Gp2q(pq).

By Lemma 1.9, DS −DT ⊆ {1, p, q} and so |⋃d∈DS−DT
Gp2q(d)| = a1x1+a2x2+a3x3

for some ai ∈ {0, 1} and x1 = |Gp2q(q)| = p(p − 1), x2 = |Gp2q(p)| = (p− 1)(q − 1),
x3 = |Gp2q(1)| = p(p− 1)(q− 1). Similarly, |⋃d∈DT−DS

Gp2q(d)| = b1x1 + b2x2 + b3x3

for some bi ∈ {0, 1}. Since Sp(ICGp2q(DS)) = Sp(ICGp2q(DT )), we have

∣∣ ⋃
d∈DS

Gp2q(d)
∣∣ = λ0(DS) = λ0(DT ) =

∣∣ ⋃
d∈DT

Gp2q(d)
∣∣,

and so ∑
i

aixi =
∣∣ ⋃
d∈DS−DT

Gp2q(d)
∣∣ = ∣∣ ⋃

d∈DT−DS

Gp2q(d)
∣∣ = ∑

i

bixi.

Note that x1 < x2 < x3 is a super sequence because 2 < p < q. By Lemma 1.7,
ai = bi for all i , i.e., DS −DT = DT −DS. Since (DS −DT ) ∩ (DT −DS) = ∅, we
have DS −DT = DT −DS = ∅. Consequently, DS = DT . �

5 The case n = pqr with primes p < q < r

The results in this section are new. We give the complete proof when n = pqr with
primes p, q, r such that 2 < p < q < r. Since the proof for n = pqr with primes
2 = p < q < r are similar except for some minor differences, we omit its inclusion.

The set of proper divisors of n = pqr is {1, p, q, r, pq, pr, qr}. Hence there are
seven basic integral symbols:

Gn(1), Gn(p), Gn(q), G(r), Gn(pq), Gn(pr), Gn(qr).

Let x1 = |Gn(r)| = (p − 1)(q − 1), x2 = |Gn(q)| = (p − 1)(r − 1), x3 = |Gn(p)| =
(q− 1)(r− 1), x4 = |Gn(1)| = (p− 1)(q− 1)(r− 1). Then x1 < x2 < x3 < x4 because
2 < p < q < r.

We prove our result in two cases according to the values of p, q, r:
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(i) (q − p)(r − p) > (p− 1)2, i.e., x1 + x2 < x3,

(ii) (q − p)(r − p) ≤ (p− 1)2, i.e., x1 + x2 ≥ x3.

Theorem 5.1 Let DS and DT be two subsets of proper divisors of pqr with primes
p, q, r such that 2 < p < q < r and (q − p)(r − p) > (p− 1)2. If Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )) then DS = DT .

Proof: Since Sp(ICGpqr(DS)) = Sp(ICGpqr(DT )), by Lemma 1.9, DS − DT ⊆
{1, p, q, r} and so |⋃d∈DS−DT

Gpqr(d)| = a1x1+a2x2+a3x3+a4x4 for some ai ∈ {0, 1}.
Similarly, |⋃d∈DT−DS

Gpqr(d)| = b1x1+ b2x2+ b3x3+ b4x4 for some bi ∈ {0, 1}. More-
over, we have

∣∣ ⋃
d∈DS

Gpqr(d)
∣∣ = λ0(DS) = λ0(DT ) = i

∣∣ ⋃
d∈DT

Gpqr(d)
∣∣,

and so ∑
i

aixi =
∣∣ ⋃
d∈DS−DT

Gpqr(d)
∣∣ = ∣∣ ⋃

d∈DT−DS

Gpqr(d)
∣∣ = ∑

i

bixi.

Note that x1 < x2 < x3 < x4 is a super sequence because 2 < p < q < r are primes
such that (q − p)(r − p) > (p − 1)2, i.e., x1 + x2 < x3. By Lemma 1.7, ai = bi
for all i, i.e., DS − DT = DT − DS. Since (DS − DT ) ∩ (DT − DS) = ∅, we have
DS −DT = DT −DS = ∅. Consequently, DS = DT . �

Lemma 5.2 Let DS and DT be two subsets of proper divisors of pqr with primes
p, q, r such that 2 < p < q < r and (q − p)(r − p) ≤ (p− 1)2. If Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )) and DS �= DT with |DS| ≤ |DT | then (q− p)(r− p) = (p− 1)2, and

DS −DT = {p}, DT −DS = {q, r}.

Proof: Since Sp(ICGpqr(DS)) = Sp(ICGpqr(DT )), by Lemma 1.9, DS − DT , DT −
DS ⊆ {1, p, q, r}. Moreover, let S =

⋃
d∈DS

Gpqr(d) and T =
⋃

d∈DT
Gpqr(d), then

|S| = ∣∣ ⋃
d∈DS

Gpqr(d)
∣∣ = λ0(DS) = λ0(DT ) =

∣∣ ⋃
d∈DT

Gpqr(d)
∣∣ = |T |,

and so
|S − T | = ∣∣ ⋃

d∈DS−DT

Gpqr(d)
∣∣ = ∣∣ ⋃

d∈DT−DS

Gpqr(d)
∣∣ = |T − S|.

Since DS �= DT , both S − T and T − S are not empty. Using |DS| ≤ |DT |, we
have the following cases to consider.

(i) |S − T | = xi and |T − S| = xj where i, j are distinct.

Hence xi = |S − T | = |T − S| = xj , which is impossible because x1 < x2 <
x3 < x4.
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(ii) |S − T | = xi and |T − S| = xj + xk where i, j, k are distinct.

(a) x4 = |S − T | = |T − S| = x1 + x2

Hence (p − 1)(q − 1)(r − 1) = (p − 1)(q − 1) + (p − 1)(r − 1), and so
(q− 1)(r− 1) = q− 1 + r− 1, i.e., (q− 2)(r− 2) = 1, which is impossible
because 2 < p < q < r.

(b) x4 = |S − T | = |T − S| = x1 + x3

Hence (p − 1)(q − 1)(r − 1) = (p − 1)(q − 1) + (q − 1)(r − 1), and so
(p− 1)(r− 1) = p− 1 + r− 1, i.e., (p− 2)(r− 2) = 1, which is impossible
because 2 < p < q < r.

(c) x4 = |S − T | = |T − S| = x2 + x3

Hence (p − 1)(q − 1)(r − 1) = (p − 1)(r − 1) + (q − 1)(r − 1), and so
(p− 1)(q− 1) = p− 1 + q− 1, i.e., (p− 2)(q− 2) = 1, which is impossible
because 2 < p < q < r.

(d) x3 = |S − T | = |T − S| = x1 + x2

This is the only remaining possible subcase, and (q−p)(r−p) = (p−1)2.
Hence S−T = Gpqr(p) and T−S = Gpqr(q)∪Gpqr(r), i.e., DS−DT = {p}
and DT −DS = {q, r}.

(iii) |S − T | = xi and |T − S| = xj + xk + xl where i, j, k, l are distinct.

Because |S−T | = |T−S| and x1 < x2 < x3 < x4, we must have x4 = |S−T | =
|T − S| = x1 + x2 + x3. Since (q − p)(r − p) ≤ (p− 1)2, i.e., x1 + x2 ≥ x3,

(p− 1)(q − 1)(r − 1) = x4 = x1 + x2 + x3 ≤ 2x1 + 2x2 = 2(p− 1)(q + r − 2)

and so (q−1)(r−1) ≤ 2(q+ r−2), i.e., 4 ≥ (q−3)(r−3), which is impossible
because 2 < p < q < r.

(iv) |S − T | = xi + xj and |T − S| = xk + xl where i, j, k, l are distinct.

Because |S − T | = |T − S| and x1 < x2 < x3 < x4, we must have x1 + x4 =
|S − T | = |T − S| = x2 + x3. Hence (r − 1)(p+ q − 2) = (p− 1)(r− 1) + (q −
1)(r− 1) = x2 + x3 = x1 + x4 > x4 = (p− 1)(q− 1)(r− 1) > (r− 1)(p+ q− 2),
which is impossible. �

Lemma 5.3 We list the spectra of several integral circulant graphs of order pqr.

• For ICGpqr({p}),

λi({p}) =

⎧⎪⎪⎨
⎪⎪⎩

(q − 1)(r − 1) if qr|i,
−(q − 1) if q|i and qr� |i,
−(r − 1) if r|i and qr� |i,
1 otherwise.
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• For ICGpqr({q, r}),

λi({q, r}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p− 1)(q + r − 2) if pqr|i, i.e. i = 0,
(p− 1)q if pq|i and i > 0,
(p− 1)r if pr|i and i > 0,
−(q − 1)(r − 1) if qr|i and i > 0,
−2(p− 1) if only p|i,
−(q − 1) + 1 = 2− q if only q|i,
−(r − 1) + 1 = 2− r if only r|i,
2, otherwise.

• For ICGpqr({1}),

λi({1}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p− 1)(q − 1)(r − 1) if pqr|i, i.e. i = 0,
−(p− 1)(q − 1) if pq|i and i > 0,
−(p− 1)(r − 1) if pr|i and i > 0,
−(q − 1)(r − 1) if qr|i and i > 0,
p− 1 if only p|i,
q − 1 if only q|i,
r − 1 if only r|i,
−1 otherwise.

• For ICGpqr({pq}),

λi({pq}) =
{

r − 1 if r|i,
−1 otherwise.

• For ICGpqr({pr}),

λi({pr}) =
{

q − 1 if q|i,
−1 otherwise.

• For ICGpqr({qr}),

λi({qr}) =
{

p− 1 if p|i,
−1 otherwise.

Theorem 5.4 Let DS and DT be two subsets of proper divisors of pqr with primes
p, q, r such that 2 < p < q < r and (q − p)(r − p) ≤ (p− 1)2. If Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )) then DS = DT .

Proof: Without loss of generality, let |DS| ≤ |DT |. Assume the contrary that DS �=
DT . Then, by Lemma 5.2, (q−p)(r−p) = (p−1)2, and DS −DT = {p}, DT −DS =
{q, r}. Hence, p ≥ 5 and

DS = {p} ∪D, DT = {q, r} ∪D

where D ⊆ {1, pq, pr, qr}. We have five cases to consider according to the cardinality
of D.
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Case 1: |D| = 0.

Then DS = {p} and DT = {q, r}. From Lemma 5.3, 1 ∈ Sp(ICGpqr(DS)),
but 1 �∈ Sp(ICGpqr(DT )) because 2 < p < q < r. Hence Sp(ICGpqr(DS)) �=
Sp(ICGpqr(DT )), a contradiction!

Case 2: |D| = 1.

Then DS = {p, y} and DT = {q, r, y} for some y ∈ {1, pq, pr, qr}. From Lemma
5.3, we have 1 = 2 + (−1) = λ1({q, r}) + λ1({y}) = λ1(DT ). However, again
by Lemma 5.3, 1 �= λi({p}) + λi({y}) for any i because 5 ≤ p < q < r. Hence
Sp(ICGpqr(DS)) �= Sp(ICGpqr(DT )), a contradiction!

Case 3: |D| = 2.

Subcase 3.1: D = {pq, pr}.
Then DS = {p, pq, pr} and DT = {q, r, pq, pr}. By Lemma 5.3, λp(DT ) =
λp({q, r}) + λp({pq}) + λp({pr}) = −2(p− 1) + (−1) + (−1) = −2p, but
λi(DS) = (q−1)(r−1)+(q−1)+(r−1) > 0 if qr|i, −1 otherwise. Hence
−2p �∈ Sp(ICGpqr(DS)), and so Sp(ICGpqr(DS)) �= Sp(ICGpqr(DT )), a
contradiction!

Subcase 3.2: D = {pq, qr}.
Then DS = {p, pq, qr} and DT = {q, r, pq, qr}. By Lemma 5.3, λ1(DT ) =
λ1({q, r}) + λ1({pq}) + λ1({qr}) = 2 + (−1) + (−1) = 0, but

λi(DS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(r − 1) + (p− 1) if pqr|i,
q(r − 1)− 1 if qr|i, p� |i,
p− 1 if q� |i, p|i,
−1 if q� |i, p� |i,
−q + (p− 1) if q|i, r� |i, p|i,
−q − 1 if q|i, r� |i, p� |i.

.

Hence 0 �∈ Sp(ICGpqr(DS)), and so Sp(ICGpqr(DS)) �= Sp(ICGpqr(DT )),
a contradiction!

Subcase 3.3: D = {pr, qr}.
Then DS = {p, pr, qr} and DT = {q, r, pr, qr}. By Lemma 5.3, λ1(DT ) =
λ1({q, r}) + λ1({pr}) + λ1({qr}) = 2 + (−1) + (−1) = 0, but

λi(DS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(q − 1)r + (p− 1) if pqr|i,
(q − 1)r − 1 if qr|i, p� |i,
p− 1 if r� |i, p|i,
−1 if r� |i, p� |i,
−r + (p− 1) if r|i, q� |i, p|i,
−r − 1 if r|i, q� |i, p� |i.

.

Hence 0 �∈ Sp(ICGpqr(DS)), and so Sp(ICGpqr(DS)) �= Sp(ICGpqr(DT )),
a contradiction!
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Subcase 3.4: D = {1, pq}.
Then DS = {p, 1, pq} and DT = {q, r, 1, pq}. Since Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )), by Lemma 1.4, Sp(ICGpqr(D

∗
S)) = Sp(ICGpqr(D

∗
T )),

and so

Sp(ICGpqr({q, r, pr, qr})) = Sp(ICGpqr({p, pr, qr}))
which leads to a contracdiction by Subcase 3.3.

Subcase 3.5: D = {1, pr}.
Then DS = {p, 1, pr} and DT = {q, r, 1, pr}. Since Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )), by Lemma 1.4, Sp(ICGpqr(D

∗
S)) = Sp(ICGpqr(D

∗
T )),

and so

Sp(ICGpqr({q, r, pq, qr})) = Sp(ICGpqr({p, pq, qr}))
which leads to a contracdiction by Subcase 3.2.

Subcase 3.6: D = {1, qr}.
Then DS = {p, 1, qr} and DT = {q, r, 1, qr}. Since Sp(ICGpqr(DS)) =
Sp(ICGpqr(DT )), by Lemma 1.4, Sp(ICGpqr(D

∗
S)) = Sp(ICGpqr(D

∗
T )),

and so

Sp(ICGpqr({q, r, pr, pq})) = Sp(ICGpqr({p, pr, pq}))
which leads to a contracdiction by Subcase 3.1.

Case 4: |D| = 3.

Then D∗
S = ({p} ∪ D)∗ = {q, r} ∪ E, and similarly D∗

T = {p} ∪ E where
E = {1, pq, pr, qr}−D. Since Sp(ICGpqr(DS)) = Sp(ICGpqr(DT )), by Lemma
1.4, Sp(ICGpqr(D

∗
S)) = Sp(ICGpqr(D

∗
T )) and so

Sp(ICGpqr({q, r} ∪ E)) = Sp(ICGpqr({p} ∪ E))

with |E| = 1. By Case 2, it leads to a contradiction.

Case 5: |D| = 4 i.e. D = {1, pq, pr, qr}.
Then D∗

S = ({p} ∪D)∗ = {q, r} , and similarly D∗
T = {p}.

Since Sp(ICGpqr(DS)) = Sp(ICGpqr(DT )), by Lemma 1.4, Sp(ICGpqr(D
∗
S)) =

Sp(ICGpqr(D
∗
T )) and so

Sp(ICGpqr({q, r})) = Sp(ICGpqr({p})).
By Case 1, it leads to a contradiction. �
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