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Abstract

Let σ be a permutation on n letters. We say that a permutation τ is
an even (respectively, odd) kth root of σ if τk = σ and τ is an even
(respectively, odd) permutation. In this article, we obtain generating
functions for the number of even and odd kth roots of a permutation, in
terms of its cycle type. Our result implies known generating functions of
Moser and Wyman and also some generating functions for sequences in
the On-line Encyclopedia of Integer Sequences (OEIS).

1 Introduction

A classical problem in group theory and combinatorics is the study of problems
related to the solution of the equation xk = σ over groups, where k is a fixed positive
integer (see, e.g., [6, 8, 14, 15, 16, 21, 24, 25, 30]). One of the most studied situations
is the case of the symmetric group Sn. For example, there is a characterization that
determines when a given permutation has a kth root in Sn (see, e.g., [1, 3, 7]) and
there are several results about the probability that a randomly selected permutation
of degree n has a kth root (see, e.g., [2, 5, 16, 17, 22]). In addition, Pavlov [19]
gives an explicit formula for the number of solutions in Sn of the equation xk = σ,
and Leaños et al., [13] give a multivariable exponential generating function. Finally,
Roichman [23] gives a formula for such a number expressed as an alternating sum
of μ-unimodal kth roots of the identity permutation. For more similar problems, we
refer the reader to [9, 10, 12, 20, 27, 28, 29].
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In this article, we are interested in the number of even permutations which are kth
roots of a given permutation. To our knowledge1, there are only a few results in this
direction and only for the case of the identity permutation. Moser and Wyman [16]
study the case of k = 2. In OEIS [18] there are only a few sequences for the number
of even kth roots of the identity permutation: A000704 (k = 2), A061129 (k = 4),
A061130 (k = 6), A061131 (k = 8) and A061132 (k = 10). For the odd kth roots
of the identity permutation, in OEIS we find sequences A001465 (k = 2), A061136
(k = 4) and A061137 (k = 6).

1.1 Basic definitions and main result

In order to formulate our main result, we need some definitions and notation. Let
[n] denote the set {1, . . . , n}. The cycle type of an n-permutation σ is a vector
c = (c1, . . . , cn) such that for every i ∈ [n], σ has ci cycles of length i. Sometimes, in
order to avoid the cases when ci = 0, we use the following definition: a permutation
σ is of type (�1)

a1 . . . (�m)
am , with ai > 0, if σ has exactly ai cycles of length �i in its

disjoint cycle factorization and does not have any cycles of any other length. We use
N (respectively N0) to denote the set of positive (respectively, non-negative) integers.
Let k, � ∈ N. Let

Gk(�) = {g ∈ N : gcd(g�, k) = g}.
It is easy to see that if k = pa11 · · · pajj , where p1, . . . , pj are distinct primes and ai > 0
for i ∈ [j], then

Gk(�) =
{
pb11 · · · pbjj : bi = ai if pi|� and bi ∈ {0, 1, . . . , ai} if pi � |�

}
.

The main result of this paper is the following.

Theorem 1.1. Let k, n be positive integers. Let c1, . . . , cn be non-negative integers

such that n = c1 +2c2+ · · ·+ncn. Then the coefficient of
t
c1
1 ···tcnn
c1!···cn! in the expansion of

1

2
exp

⎛
⎝∑

�≥1

∑
g∈Gk(�)

�g−1

g
tg�

⎞
⎠+

1

2
exp

⎛
⎝∑

�≥1

∑
g∈Gk(�)

(−1)�g+1 �
g−1

g
tg�

⎞
⎠

is the number of even kth roots of a permutation of cycle type c = (c1, . . . , cn), and
in the expansion of

1

2
exp

⎛
⎝∑

�≥1

∑
g∈Gk(�)

�g−1

g
tg�

⎞
⎠− 1

2
exp

⎛
⎝∑

�≥1

∑
g∈Gk(�)

(−1)�g+1 �
g−1

g
tg�

⎞
⎠ .

is the number of odd kth roots of a permutation of cycle type c.

1After finishing this work, we were aware of the existence of a polynomial generating function
which enumerates the even permutations which are kth roots of a given permutation, given in terms
of the cycle index of the symmetric group Sn, due to Chernoff [4].
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The known result for the identity permutation (see e.g. [11, 16]) is a consequence
of this theorem. Another interesting problem, which is out of the scope of this work,
is about the asymptotic behavior of the proportion of permutations in An that have
a k root. Also, it would be interesting to obtain a result similar to Theorem 2 in [19].

The outline of this paper is as follows. In Section 2, we will prove several propo-
sitions and lemmas that we use in the proof of our main result. The proof of The-
orem 1.1 is at the end of this section. In Section 3, we show a few special cases of
Theorem 1.1, which allow some nice simplifications.

2 Auxiliary results and proof of Theorem 1.1

First, we present two known results, which will be used in the proof or our main
result.

Proposition 2.1 ([13, Proposition 5]). A permutation of type (�)c has a kth root if
and only if the equation

g1x1 + · · ·+ ghxh = c

has non-negative integer solutions, where Gk(�) = {g1, . . . , gh}.

The following result gives a generating function for the number of kth roots of a
permutation.

Theorem 2.2 ([13, Theorem 2]). Let k, n be positive integers. Let c1, . . . , cn be non-

negative integers such that n = c1 + 2c2 + · · ·+ ncn. Then the coefficient of
t
c1
1 ···tcnn
c1!···cn!

in the expansion of

exp

⎛
⎝∑

�≥1

∑
g∈Gm(�)

�g−1

g
tg�

⎞
⎠

is the number of kth roots of a permutation of cycle type c = (c1, . . . , cn).

The outline of the proof is as follows. First, we work with the difference between
the number of even kth roots and the number of odd kth roots of a permutation
(Lemma 2.5). The next step is to obtain a multivariable exponential generating
function for such a difference (Lemma 2.11). In order to achieve this, first we assign
a sign to the number of kth roots, of certain type of permutations all of whose
cycles have the same length (Proposition 2.7). Using this, we obtain an exponential
generating function for the difference between the number of even kth roots and odd
kth roots of permutations all of whose cycles have the same length (Lemma 2.10).
Finally, the proof of Theorem 1.1 is obtained as a consequence of Theorem 2.2 and
Lemma 2.11.

We need the following easy proposition about groups in general.
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Proposition 2.3. Let G be a group and K be a field. Let φ : G → (K, ·) (g �→ gφ)
be a homomorphism to the multiplicative group of K and X, Y ⊆ G be finite. Then(∑

g∈X
gφ

)(∑
h∈Y

hφ

)
=
∑
g∈X
h∈Y

(gh)φ.

Let rek(σ) (respectively rok(σ)) denote the number of even (respectively odd) kth
roots of permutation σ. The support of an n-permutation σ is defined as supp(σ) =
{a ∈ [n] : σ(a) �= a}.
Proposition 2.4. Let σ be a permutation such that σ = σ1σ2 and supp(σ1) ∩
supp(σ2) = ∅. Let re′k(σ) (respectively ro′k(σ)) be the number of even (respectively
odd) kth roots τ of σ such that τ = τ1τ2 with τk1 = σ1 and τk2 = σ2. Then

re′k(σ)− ro′k(σ) = (rek(σ1)− rok(σ1)) (rek(σ2)− rok(σ2)) .

Proof. Consider the parity of permutations as a homomorphism sgn : Sn → {−1, 1}.
Let X = {τ1 ∈ Sn : τ

k
1 = σ1} and Y = {τ2 ∈ Sn : τ

k
2 = σ2}. Then

∑
τ1∈X τ sgn1 =

rek(σ1)− rok(σ1) and
∑

τ2∈Y τ sgn2 = rek(σ2)− rok(σ2). Therefore, by Proposition 2.3
we have that ∑

τ1∈X
τ2∈Y

(τ1τ2)
sgn = re′k(σ)− ro′k(σ).

The following result shows that for a given permutation σ we can obtain the
difference rek(σ) − rok(σ) by working with the different lengths in the cycles of σ
separately.

Lemma 2.5. Let σ be an n-permutation that has kth roots. Suppose that the disjoint
cycle factorization of σ can be expressed as the product σ1σ2 · · ·σm where σi is the
product of all the disjoint cycles of length �i in σ, for every i, with �i �= �j, for i �= j.
Then

rek(σ)− rok(σ) =
m∏
i=1

(rek(σi)− rok(σi)) .

Proof. It is well-known that every kth root of σ can be written as τ1 · · · τm with
τki = σi, for every i (see, e.g., [13, §3]). The result follows by Proposition 2.4 and
induction.

Sometimes, we use the following fact: if α is an �-cycle, then αm is a product of
exactly gcd(m, �) disjoint �/gcd(m, �)-cycles. Let g, k, � be fixed positive integers and
s be a fixed non-negative integer. We let fk,�,g,s(c) denote the number of permutations
of type (g�)s that are kth roots of a permutation of type (�)c, c ∈ N0. The following
proposition has been proven, in essence, by Moreno et al. [13, Proposition 7].
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Proposition 2.6. Let g, k, � be fixed positive integers and s be a fixed non-negative
integer. Let c ∈ N0. If g ∈ Gk(�) and c = gs, then

fk,�,g,s(c) =
(gs)!�s(g−1)

gss!
,

and fk,�,g,s(c) = 0 in any other case.

In view of the previous proposition, for g ∈ Gk(�) we define

fk,�,g(c) =

{
fk,�,g,s(c) c = gs

0 otherwise.

Now, we assign a sign to the number fk,�,g(c), which helps to know whether the
roots of type (g�)s of a permutation of type (�)c are even.

Proposition 2.7. Let k, � be fixed positive integers. Let g ∈ Gk(�), c ∈ N0 and

a(c) = (−1)c(�g+1)/gfk,�,g(c).

If σ is a permutation of type (�)c and c = gs, then a(c) �= 0. In addition, the kth
roots of type (g�)s of σ are even permutations if and only if a(c) > 0.

Proof. As c = gs, we have that a(c) = (−1)s(�g+1)fk,�,g,s(c), and Proposition 2.6
implies that a(c) �= 0. The result follows because the sign of a q-cycle is (−1)q+1 and
hence the sign of the product of s cycles of length (�g) is (−1)s(�g+1).

The exponential generating function, in the variable t�, for the number a(c) in
the previous proposition is given in the following result.

Proposition 2.8. Let �, k ∈ N. Let g ∈ Gk(�) fixed. Then

∑
c≥0

(−1)c/g(�g+1)fk,�,g(c)
tc�
c!

= exp

(
(−1)�g+1 �

(g−1)

g
tg�

)
.

Proof. From Proposition 2.6 we have that fk,�,g(c) �= 0 if and only if c = gs, for some
s ∈ N0. Therefore

∑
c≥0

(−1)c/g(�g+1)fk,�,g(c)
tc�
c!

=
∑
s≥0

(−1)s(�g+1) (gs)!�
s(g−1)

gss!

tgs�
(gs)!

=
∑
s≥0

(
(−1)(�g+1) �

(g−1)

g
tg�

)s
1

s!

= exp

(
(−1)�g+1 �

(g−1)

g
tg�

)
.
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Let rek(�, c) (respectively rok(�, c)) denote the number of even (respectively odd)
kth roots of any permutation of type (�)c.

In the proof of Lemma 2.10 we need the following result that is Proposition 5.1.3
in Stanley’s book [26].

Proposition 2.9. Let K be a field of characteristic zero. Fix m ∈ N and functions
φi : N → K, 1 ≤ i ≤ m. Define a new function ϕ : N0 → K by

ϕ(|A|) =
∑

φ1(|A1|)φ2(|A2|) · · ·φm(|Am|),

where the sum ranges over all weak partitions (A1, . . . , Am) of A into m blocks,
i.e., A1, . . . , Am are subsets of A satisfying: (i) Ai ∩ Aj = ∅ if i �= j, and (ii)
A1 ∪ · · · ∪ Am = A. Let Fi(x) and H(x) be the exponential generating functions for
the series φi(n) and ϕ(n), respectively. Then

H(x) = F1(x) . . . Fm(x).

Lemma 2.10. Let � ∈ N. Then

∑
c≥0

(rek(�, c)− rok(�, c))
tc�
c!

= exp

⎛
⎝ ∑

g∈Gk(�)

(−1)�g+1 �
g−1

g
tg�

⎞
⎠ .

Proof. Let σ be any permutation of type (�)c and let A be the set of all disjoint
cycles in σ. Let Gk(�) = {g1, . . . , gm}, with g1 < · · · < gm. By Proposition 2.1, σ
has kth roots if and only if the equation

g1x1 + · · ·+ gmxm = c

has non-negative integer solutions, where a solution (s1, . . . , sm) of the previous equa-
tion means that σ has kth roots of type (g1�)

s1 . . . (gm�)
sm . We can obtain all these

roots by running over all the weak ordered partitions (A1, . . . , Am) of A. Indeed, if
(A1, . . . , Am) is such a partition, the number of kth roots associated to this partition
is given by fk,�,g1(|A1|) · · ·fk,�,gm(|Am|), where this product is different from 0 if |Ai|
is a multiple of gi, for every i. Let A be the set of all weak ordered partitions of A
into m blocks. The number of kth roots of σ is equal to∑

(A1,...,Am)∈A
fk,�,g1(|A1|) · · ·fk,�,gm(|Am|).

Now, for a given partition (A1, . . . , Am) with

fk,�,g1(|A1|) · · ·fk,�,gm(|Am|) �= 0,

the sign of

(−1)|A1|/g1(�g1+1)fk,�,g1(|A1|) · · · (−1)|Am|/gm(�gm+1)fk,�,gm(|Am|),
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determines the parity of the kth roots of σ of type (g1�)
s1 . . . (gm�)

sm , where si =
|Ai|/gi. Therefore, the number rek (�, c)− rok (�, c) is equal to∑

(A1,...,Am)∈A
(−1)|A1|/g1(�g1+1)fk,�,g1(|A1|) · · · (−1)|Am|/gm(�gm+1)fk,�,gm(|Am|),

and the desired exponential generating function is obtained by Propositions 2.8
and 2.9.

Let rek(c) (respectively rok(c)) denote the number of even (respectively odd)
kth roots of a permutation of cycle type c. The following multivariable exponential
generating function, in the variables t1, t2, . . . , for the difference between the number
of even kth roots and the number of odd kth roots of permutations of any cycle type
follows from Lemmas 2.5 and 2.10.

Lemma 2.11. Let n, k be positive integers and let c1, . . . , cn be non-negative integers.

For n = c1 + 2c2 + · · ·+ ncn, the coefficient of
t
c1
1 ...tcnn
c1!...cn!

in the expansion of

exp

⎛
⎝∑

�≥1

∑
g∈Gk(�)

(−1)�g+1 �
g−1

g
tg�

⎞
⎠

is equal to the number rek(c)− rok(c), with c = (c1, . . . , cn).

Proof of Theorem 1.1. Let rk(σ) denote the number of kth roots of the permutation
σ. We have that

2 rek(σ) = rek(σ) + rok(σ) + rek(σ)− rok(σ) = rk(σ) + (rek(σ)− rok(σ)).

Similarly 2 rok(σ) = rk(σ)− (rek(σ)− rok(σ)). Therefore, the result follows immedi-
ately from Theorem 2.2 and Lemma 2.11.

3 Particular cases

If k is odd, then any solution of the equation xk = σ has the same parity as σ, so
the generating function is the same as the one given in Theorem 2.2. Therefore, in
this section k is a fixed even integer.

In some examples, we use, without explicit mention, the following observation.

Observation 3.1. Let k be an even integer. If � is even, then Gk(�) is a set of even
integers.
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3.1 Permutations of type (�)c

For a fixed positive integer �, we have that

∑
c≥0

rek(�, c)
tc

c!
=

1

2
exp

⎛
⎝ ∑

g∈Gk(�)

�g−1

g
tg

⎞
⎠+

1

2
exp

⎛
⎝ ∑

g∈Gk(�)

(−1)�g+1 �
g−1

g
tg

⎞
⎠ , (1)

and

∑
c≥0

rok(�, c)
tc

c!
=

1

2
exp

⎛
⎝ ∑

g∈Gk(�)

�g−1

g
tg

⎞
⎠− 1

2
exp

⎛
⎝ ∑

g∈Gk(�)

(−1)�g+1 �
g−1

g
tg

⎞
⎠ . (2)

With these expressions, we can obtain the generating functions of the follow-
ing sequences in OEIS: A000704, A061129, A061130, A061131, A061132, A001465,
A061136 and A061137. For example, sequence A061131 corresponds to the number of
even 8th roots of the identity permutation. In this case � = 1 and G8(1) = {1, 2, 4, 8}.
Therefore∑

c≥0

re8(1, c)
tc

c!
=

1

2
exp

(
t+

1

2
t2 +

1

4
t4 +

1

8
t8
)
+

1

2
exp

(
t− 1

2
t2 − 1

4
t4 − 1

8
t8
)

= exp (t) cosh

(
1

2
t2 +

1

4
t4 +

1

8
t8
)
.

We can make further simplifications of equations (1) and (2). First, we consider
the case when � is even. By Observation 3.1 we have that

∑
c≥0

rek(�, c)
tc

c!
= cosh

⎛
⎝ ∑

g∈Gk(�)

�g−1

g
tg

⎞
⎠

and

∑
c≥0

rok(�, c)
tc

c!
= sinh

⎛
⎝ ∑

g∈Gk(�)

�g−1

g
tg

⎞
⎠ .

For � odd, let GOk(�) = {g ∈ Gk(�) : g is odd } and let GEk(�) = Gk(�)−GOk(�).
Then

∑
c≥0

rek(�, c)
tc

c!
=

1

2
exp

⎛
⎝ ∑

g∈Gk(�)

�g−1

g
tg

⎞
⎠+

1

2
exp

⎛
⎝ ∑

g∈GOk(�)

�g−1

g
tg −

∑
g∈GEk(�)

�g−1

g
tg

⎞
⎠ ,

= exp

⎛
⎝ ∑

g∈GOk(�)

�g−1

g
tg

⎞
⎠ cosh

⎛
⎝ ∑

g∈GEk(�)

�g−1

g
tg

⎞
⎠ .
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Similarly, for the case of odd kth roots we have

∑
c≥0

rok(�, c)
tc

c!
= exp

⎛
⎝ ∑

g∈GOk(�)

�g−1

g
tg

⎞
⎠ sinh

⎛
⎝ ∑

g∈GEk(1)

�g−1

g
tg

⎞
⎠ .

For the case of the identity permutation (� = 1) we have that Gk(1) = {m : m|k}.
Therefore,

∑
c≥0

rek(1, c)
tc

c!
= exp

⎛
⎜⎜⎝∑

g|k
g odd

1

g
tg

⎞
⎟⎟⎠ cosh

⎛
⎜⎝ ∑

g|k
g even

1

g
tg

⎞
⎟⎠ ,

and

∑
c≥0

rok(1, c)
tc

c!
= exp

⎛
⎜⎜⎝∑

g|k
g odd

1

g
tg

⎞
⎟⎟⎠ sinh

⎛
⎜⎝ ∑

g|k
g even

1

g
tg

⎞
⎟⎠ .

In particular, for the case k = 2m, we have

∑
c≥0

re2m(1, c)
xc

c!
=

1

2
exp

(
m∑
i=0

1

2i
x2i

)
+

1

2
exp

(
x−

m∑
i=1

1

2i
x2i

)

= exp(x)cosh

(
1

2
x2 + · · ·+ 1

2m
x2m
)
.

This generating function was used in the work of Koda, Sato and Tskegahara [11].
For the case of odd roots we have∑

c≥0

ro2m(1, c)
xc

c!
= exp(x)sinh

(
1

2
x2 + · · ·+ 1

2m
x2m
)
.

3.2 Square roots of permutations

For the case of even square roots we have the following consequence of Theorem 1.1.

Corollary 3.2. The coefficient of tc11 . . . tcnn /(c1! . . . cn!) in the expansion of

∏
j≥1

exp (t2j−1) cosh

(∑
j≥1

(
2j − 1

2
t22j−1 + jt22j

))

is the number of even square roots of a permutation of cycle type c = (c1, . . . , cn),
and in the expansion of

∏
j≥1

exp (t2j−1) sinh

(∑
j≥1

(
2j − 1

2
t22j−1 + jt22j

))

is the number of odd square roots of a permutation of cycle type c.
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Proof. We rewrite Theorem 1.1 for the case of even square roots. When k = 2,
G2(�) ⊆ {1, 2}. We have two cases depending on the parity of �. If � = 2j − 1, with
j ∈ N, then G2(2j − 1) = {1, 2}. Thus

∑
g∈Gk(�)

(−1)�g+1 �
g−1

g
tg� = t2j−1 − 2j − 1

2
t22j−1

and ∑
g∈Gk(�)

�g−1

g
tg� = t2j−1 +

2j − 1

2
t22j−1.

If � = 2j, with j ∈ N, then G2(2j) = {2}. Therefore,
∑

g∈Gk(�)

(−1)�g+1 �
g−1

g
tg� = −jt22j

and ∑
g∈Gk(�)

�g−1

g
tg� = jt22j .

Therefore, the exponential generating function in Theorem 1.1 becomes

1

2

⎛
⎝exp

⎛
⎝∑

j≥1

(
t2j−1 +

2j−1

2
t22j−1+jt22j

)⎞⎠+ exp

⎛
⎝∑

j≥1

(
t2j−1 − 2j−1

2
t22j−1−jt22j

)⎞⎠
⎞
⎠ .

From this we obtain

1

2

∏
j≥1

exp (t2j−1)

⎛
⎝∏

j≥1

exp

(
2j − 1

2
t22j−1 + jt22j

)
+
∏
j≥1

exp

(
−2j − 1

2
t22j−1 − jt22j

)⎞⎠ ,

which is equal to

∏
j≥1

exp (t2j−1) cosh

(∑
j≥1

(
2j − 1

2
t22j−1 + jt22j

))
.

The proof for the case of odd square roots is similar.
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