On the number of orthomorphisms of the cyclic group of order nine

Anthony B. Evans
Wright State University
Dayton, Ohio
U.S.A.
anthony.evans@wright.edu

Abstract

It is well-known that the number of normalized orthomorphisms of \mathbb{Z}_{9} is 225. However, this number has not been determined theoretically. We will give a theoretical proof of this result. We will also indicate how the classification and analysis used can be applied to other groups.

1 Introduction

An orthomorphism of a group G is a permutation θ of G for which the mapping $x \mapsto x^{-1} \theta(x)$ is also a permutation: the mapping $x \mapsto x^{-1} \theta(x)$ is a complete mapping of G. An orthomorphism θ of G is normalized if $\theta(1)=1$. Note that, if θ is an orthomorphism of G, then the mapping $x \mapsto \theta(x) \theta(1)^{-1}$ is a normalized orthomorphism of G and that, if G has m normalized orthomorphisms, then G has $m|G|$ orthomorphisms. Orthomorphisms of a group G correspond to transversals of the Cayley table of G, a Latin square. See [12] and [17] for the enumeration of transversals of small Latin squares, which includes the enumeration of orthomorphisms of small groups.

The number of orthomorphisms of small groups is known, mainly as the result of computer searches: see Table 13.1 in [5], Table 1 in [12], or Table 4 in [17]. Groups with non-trivial, cyclic Sylow 2-subgroups have no orthomorphisms by the HallPaige theorem [7]. Groups of order five or less are easily dealt with by hand, and, by enumerating the transversals of the cyclic Latin square of order seven, Euler [4] implicitly showed that \mathbb{Z}_{7} has 19 normalized orthomorphisms. Each of the noncyclic groups of order eight has 48 normalized orthomorphisms. A theoretical proof of this was given in [1]. For the group $G F(8)^{+}$, all of its orthomorphisms can be constructed using permutation polynomials, as described in Section 9.2 of [5]; or by solving systems of linear equations, as described in Sections 10.3 and 10.4 of [5].

The cyclic group of order nine is the smallest group for which the number of orthomorphisms has not been determined theoretically. In [2], using the "method of exhaustion," \mathbb{Z}_{9} was found to have 225 normalized orthomorphisms. This same
result has been found many times using computer searches: see [10], [11], [15], and [16]. A complete list of these orthomorphisms can be found in [9] and, as presentation functions of neofields, in [8].

In Section 2 we will discuss collapsed permutation matrices, in Section 3 we will present a theoretical proof that \mathbb{Z}_{9} has 225 normalized orthomorphisms, and in Section 4 we will indicate how the methods used in Section 3 might be applied to other groups, and, in particular, how these methods can be used to show that $G F(9)^{+}$, the additive group of the field of order 9 , has 249 normalized orthomorphisms.

2 Collapsed permutation matrices

In this section, all groups considered will be abelian and written additively. We will introduce the concept of a collapsed permutation matrix, a concept that will prove crucial in counting the number of normalized orthomorphisms of \mathbb{Z}_{9}.

Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be an abelian group. Any permutation θ of G can be represented by a permutation matrix $M_{\theta}=\left(m_{i j}\right)$, where

$$
m_{i j}= \begin{cases}1 & \text { if } \theta\left(g_{j}\right)=g_{i}, \\ 0 & \text { otherwise }\end{cases}
$$

The g_{k} th diagonal of M_{θ} is the set of cells $\left\{(i, j) \mid g_{i}-g_{j}=g_{k}\right\}$.
Permutation matrices corresponding to orthomorphisms are easily characterized.
Lemma 2.1 Let θ be a permutation of an abelian group $G=\left\{g_{1}, \ldots, g_{n}\right\}$. Then θ is an orthomorphism of G if and only if each row, column, and diagonal of M_{θ} contains exactly one 1.

Proof: Suppose that θ is an orthomorphism of G. Then, for all $j=1, \ldots, n, \theta\left(g_{j}\right)$ is uniquely determined and so every column of M_{θ} contains exactly one 1 . Also, for all $i=1, \ldots, n$, there is a unique $j \in\{1, \ldots, n\}$ for which $\theta\left(g_{j}\right)=g_{i}$ and so every row of M_{θ} contains exactly one 1 . Further, for all $k=1, \ldots, n$, there is a uniquely determined $j \in\{1, \ldots, n\}$ for which $g_{k}=\theta\left(g_{j}\right)-g_{j}=g_{i}-g_{j}$ and so every diagonal of M_{θ} contains exactly one 1 .

The converse is straightforward.
If θ is an orthomorphism of G, then M_{θ} is an orthomorphism matrix of G, and a $(0,1)$-matrix in which each row, column, and diagonal of M contains at most one 1 is a partial orthomorphism matrix of G.

If a permutation matrix M can be written as a block matrix $M=\left(A_{i j}\right)$, then the corresponding collapsed permutation matrix is $C M\left(a_{i j}\right)$, where $a_{i j}$ is the number of 1 s in $A_{i j}$. In particular, let G be an abelian group, $|G|=m t$, let $H=\left\{h_{1}, \ldots, h_{m}\right\}$ be a subgroup of G, and let $D=\left\{d_{1}, \ldots, d_{t}\right\}$ be a system of distinct coset representatives for H in G. Then

$$
G=\left\{h_{1}+d_{1}, \ldots, h_{m}+d_{1} ; h_{1}+d_{2}, \ldots, h_{m}+d_{2} ; \ldots ; h_{1}+d_{t}, \ldots, h_{m}+d_{t}\right\}
$$

and any permutation θ of G has a corresponding permutation matrix $M_{\theta}=\left(A_{i j}\right)$, where $A_{i j}$ is formed from the rows $h_{1}+d_{i}, \ldots, h_{m}+d_{i}$ and columns $h_{1}+d_{j}, \ldots, h_{m}+d_{j}$ of M_{θ}. The corresponding collapsed permutation matrix is $C M_{\theta}=\left(a_{i j}\right)$, where $a_{i j}=\left|\left\{g_{k} \mid g_{k} \in H+d_{j}, \theta\left(g_{k}\right) \in H+d_{i}\right\}\right|$: we will call $C M_{\theta}$ the collapsed permutation matrix of θ with respect to H (and D).

When $t=3$ the collapsed permutation matrix of θ has a simple form.
Lemma 2.2 If H is a subgroup of an abelian group G of index $3,|H|=m, D a$ system of distinct coset representatives for H in G, and θ is an orthomorphism of G, then the collapsed permutation matrix of θ with respect to H (and D) is

$$
C M_{\theta}=\left(\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right)
$$

for some $a, b, c, a+b+c=m$.
Proof: Let the collapsed permutation matrix of θ with respect to H be $C M_{\theta}=\left(a_{i j}\right)$, $i, j=1,2,3$. As M_{θ} is a permutation matrix,

$$
a_{i 1}+a_{i 2}+a_{i 3}=m \quad \text { for } i=1,2,3,
$$

and

$$
a_{1 j}+a_{2 j}+a_{3 j}=m \quad \text { for } j=1,2,3 .
$$

As each diagonal of M_{θ} contains exactly one 1 ,

$$
\begin{aligned}
& a_{11}+a_{22}+a_{33}=m, \\
& a_{12}+a_{23}+a_{31}=m,
\end{aligned}
$$

and

$$
a_{13}+a_{21}+a_{32}=m
$$

Solving this system of linear equations we find that

$$
\begin{aligned}
& a_{11}=a_{23}=a_{32}=a, \\
& a_{12}=a_{21}=a_{33}=b,
\end{aligned}
$$

and

$$
a_{13}=a_{22}=a_{31}=c,
$$

for some $a, b, c, a+b+c=m$.
If θ is an orthomorphism of an abelian group G, H a subgroup of G of index $3, D$ a system of distinct coset representatives for H in G, and the collapsed permutation matrix of θ with respect to H (and D) is

$$
C M_{\theta}=\left(\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right),
$$

then we will say that θ is in the class $a b c$, and $|a b c|$ will denote the number of normalized orthomorphisms in the class $a b c$.

3 The group \mathbb{Z}_{9}

In this section we will only consider the group $G=\mathbb{Z}_{9}=\{0, \ldots, 8\}$. Now $H=$ $\{0,3,6\}$ is a subgroup of G of index 3 , and $\left(d_{1}, d_{2}, d_{3}\right)=(0,1,2)$ is a system of distinct coset representatives for H in G. Let us order the elements of G as $\{0,3,6 ; 1,4,7 ; 2,5,8\}$. Each normalized orthomorphism of G belongs to one of the classes $300,210,201,120,102$, or 111, and can be represented by an orthomorphism matrix of the form

$$
M_{\theta}=\left(A_{i j}\right)=\left(\begin{array}{ccc}
A_{0} & B_{2} & C_{1} \\
B_{1} & C_{0} & A_{2} \\
C_{2} & A_{1} & B_{0}
\end{array}\right)
$$

$i, j=0,1,2$. For X one of A, B, C, it is easy to see that each cell of X_{k} is on the $(h+k)$ th diagonal for some $h \in H$. Let us form a matrix X_{k}^{\prime} from X_{k} by making each entry in a cell of X_{k}^{\prime} the diagonal the corresponding cell of X_{k} is on. Thus

$$
X_{k}^{\prime}=\left(\begin{array}{lll}
0+k^{\prime} & 2+k^{\prime} & 1+k^{\prime} \\
1+k^{\prime} & 0+k^{\prime} & 2+k^{\prime} \\
2+k^{\prime} & 1+k^{\prime} & 0+k^{\prime}
\end{array}\right)=X_{0}^{\prime}+k^{\prime} J
$$

where, if $X_{k}=A_{i j}$, then $k^{\prime}=i-j$ and $k^{\prime} \in H+k: J$ is the all 1s matrix. We will say that the corresponding entry of $C M_{\theta}$ is on the k th diagonal of $C M_{\theta}$. Each row, column, and diagonal of X_{k} contains at most one 1 , and, as X_{0} is a partial orthomorphism matrix of H, by abuse of terminology we will refer to each matrix X_{k} as a partial orthomorphism matrix of H.

Among the class of mappings that permute the set of normalized orthomorphisms of a group G are the homologies $H_{\alpha}, \alpha \in \operatorname{Aut}(G)$, defined by $H_{\alpha}[\theta]=\alpha \theta \alpha^{-1}$, the translations $T_{g}, g \in G$, defined by $T_{g}[\theta](x)=\theta(x+g)-\theta(g)$, and the reflection defined by $R[\theta](x)=x+\theta(-x)$: these mappings are discussed in Section 8.1.3 of [5]. The reflection and homologies prove useful in reducing the number of classes that we need to enumerate as demonstrated in the following lemma.

Lemma $3.1|210|=|201|$ and $|120|=|102|$.
Proof: Let $\alpha \in \operatorname{Aut}(G)$ be defined by $\alpha(g)=2 g$. Note that $\alpha(h)=\alpha^{-1}(h)=-h$ for all $h \in H$.

If θ is a normalized orthomorphism in the class 210, then, for some $h_{1}, h_{2} \in$ $H, h_{1} \neq 0, \theta(0)=0, \theta\left(h_{1}\right)=-h_{1}$, and $\theta\left(-h_{1}\right)=h_{2}+1$. Now $H_{\alpha}[\theta](0)=0$, $H_{\alpha}[\theta]\left(h_{1}\right)=-h_{2}+2$, and $H_{\alpha}[\theta]\left(-h_{1}\right)=h_{1}$. Hence $H_{\alpha}[\theta]$ is in the class 201 and thus $|210| \leq|201|$. If θ is a normalized orthomorphism in the class 201, then, for some $h_{1}, h_{2} \in H, h_{1} \neq 0, \theta(0)=0, \theta\left(h_{1}\right)=-h_{1}$, and $\theta\left(-h_{1}\right)=h_{2}+2$. Now $H_{\alpha}[\theta](0)=0$, $H_{\alpha}[\theta]\left(h_{1}\right)=\left(-h_{2}+3\right)+1$, and $H_{\alpha}[\theta]\left(-h_{1}\right)=h_{1}$. Hence $H_{\alpha}[\theta]$ is in the class 210 and thus $|201| \leq|210|$. Hence $|210|=|201|$.

If θ is a normalized orthomorphism in the class 120 , then, for some $h_{1}, h_{2}, h_{3} \in H$, $h_{1} \neq 0, \theta(0)=0, \theta\left(h_{1}\right)=h_{2}+1$, and $\theta\left(-h_{1}\right)=h_{3}+1$. Now $H_{\alpha}[\theta](0)=0$,
$H_{\alpha}[\theta]\left(h_{1}\right)=-h_{3}+2$, and $H_{\alpha}[\theta]\left(-h_{1}\right)=-h_{2}+2$. Hence $H_{\alpha}[\theta]$ is in the class 102 and thus $|120| \leq|102|$. If θ is a normalized orthomorphism in the class 102, then, for some $h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0, \theta(0)=0, \theta\left(h_{1}\right)=h_{2}+2$, and $\theta\left(-h_{1}\right)=h_{3}+2$. Now $H_{\alpha}[\theta](0)=0, H_{\alpha}[\theta]\left(h_{1}\right)=\left(-h_{3}+3\right)+1$, and $H_{\alpha}[\theta]\left(-h_{1}\right)=\left(-h_{2}+3\right)+1$. Hence $H_{\alpha}[\theta]$ is in the class 120 and thus $|102| \leq|120|$. Hence $|120|=|102|$.

For the class 111, set $C\left(h_{1}, h_{2}, h_{3}\right)=\left\{\theta \in\right.$ class $111 \mid \theta(0)=0, \theta\left(h_{1}\right)=$ $\left.h_{2}+1, \theta\left(-h_{1}\right)=h_{3}+2\right\}, h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0$. Homologies, translations, and the reflection can be used to reduce the problem of determining |111| to that of determining $|C(3,0,0)|$.

Lemma $3.2|111|=18 \times|C(3,0,0)|$.
Proof: The sets $C\left(h_{1}, h_{2}, h_{3}\right), h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0$, partition the set of normalized orthomorphisms in the class 111.
We will show that $\left|C\left(h_{1}, h_{2}, h_{3}\right)\right|=|C(3,0,0)|$, for all $h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0$. To do this we will first show that $\left|C\left(3, h_{2}, h_{3}\right)\right|=|C(3,0,0)|$, for all $h_{2}, h_{3} \in H$.
Let $\alpha \in \operatorname{Aut}(G)$ be defined by $\alpha(x)=2 x$. Simple computation shows that:

$$
\begin{array}{ll}
H_{\alpha}[C(3,0,3)]=C(3,0,0), & T_{6}[C(3,0,6)]=C(3,0,0), \\
H_{\alpha^{-1}}[C(3,3,0)]=C(3,0,0), & T_{6} H_{\alpha}[C(3,3,3)]=C(3,0,0), \\
T_{3} H_{\alpha}[C(3,3,6)]=C(3,0,0), & T_{6} H_{\alpha^{-1}}[C(3,6,0)]=C(3,0,0), \\
H_{\alpha^{-1}} T_{6}[C(3,6,3)]=C(3,0,0), & \text { and } T_{3}[C(3,6,6)]=C(3,0,0) .
\end{array}
$$

Hence $\left|C\left(3, h_{2}, h_{3}\right)\right|=|C(3,0,0)|$, for all $h_{2}, h_{3} \in H$.
Computation also shows that $R\left[C\left(6, h_{2}, h_{3}\right)\right]=C\left(3, h_{2}+3, h_{3}+6\right)$, for all $h_{2}, h_{3} \in$ H, from which the result follows.

The following elementary observation will prove useful.
Lemma 3.3 For $a, b, c \in G F(3), a+b+c=0$ if and only if either $a=b=c$ or a, b, and c are distinct.

Theorem 3.1 \mathbb{Z}_{9} has 225 normalized orthomorphisms.
Proof: We will compute $|a b c|$ for each class $a b c$, using Lemmas 3.1 and 3.2 to reduce the amount of computation.

The class 300. If θ is a normalized orthomorphism in the class 300 , then A_{0}, A_{1}, and A_{2} are orthomorphism matrices of $H . A_{0}$ is uniquely determined as θ is normalized, and there are three choices for each of A_{1} and A_{2}. Hence $|300|=1 \times 3 \times 3=9$.

The classes 210 and 201. If θ is a normalized orthomorphism in the class 210, then, for some $h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0, \theta(0)=0, \theta\left(h_{1}\right)=-h_{1}, \theta\left(-h_{1}\right)=h_{2}+1$, and $\theta\left(h_{3}+1\right)=h_{1}$. We will show that, for each choice of $h_{1}, h_{2}, h_{3}, \theta$, equivalently M_{θ}, is uniquely determined. We have specified the partial orthomorphism matrices A_{0},
B_{1}, and B_{2}, and $C_{0}=C_{1}=C_{2}=O$, the all 0 s matrix. It remains to determine A_{1}, A_{2}, and B_{0}. By Lemma 2.1, each row, column, and diagonal of M_{θ} contains exactly one 1. So far we have determined the positions of 1 s in rows $0,-h_{1}, h_{2}+1$, and h_{1}; columns $0, h_{1},-h_{1}$, and $h_{3}+1$; and diagonals $0, h_{1}, h_{2}+h_{1}+1$, and $h_{1}-h_{3}+6+2$. All other entries in these rows, columns, and diagonals must be 0 .

In Figures 1 and 2 we depict A_{1}^{\prime} and A_{2}^{\prime} with row and column headings: the cells that are marked with $\times \mathrm{s}$ are the cells that we know have entry 0 in A_{1} and A_{2}. The two cells, containing 1 s , in A_{1} cannot be on the $\left(h_{2}+h_{1}+1\right)$ th diagonal, and $h_{2}+h_{1}=-h_{3}+u$ for some $u \in H$. It is easy to see from Figure 1 that, for each u, the cells in A_{1} containing 1 s , are the cell in row $u+h_{1}+2$ and column $u+h_{1}-h_{2}+1$ on diagonal $h_{2}+1$, and the cell in row $u-h_{1}+2$ and column $u-h_{2}+1$ on diagonal $-h_{1}+h_{2}+1$.

	$h_{3}-h_{1}+1$	$h_{3}+h_{1}+1$	$h_{3}+1$
2	$-h_{3}+h_{1}+1$	$-h_{3}-h_{1}+1$	\times
$-h_{1}+2$	$-h_{3}+1$	$-h_{3}+h_{1}+1$	\times
$h_{1}+2$	$-h_{3}-h_{1}+1$	$-h_{3}+1$	\times

Figure 1: A_{1}^{\prime} for the class 210

	2	$-h_{1}+2$	$h_{1}+2$
$h_{2}-h_{1}+1$	$h_{2}-h_{1}+6+2$	$h_{2}+6+2$	$h_{2}+h_{1}+6+2$
$h_{2}+h_{1}+1$	$h_{2}+h_{1}+6+2$	$h_{2}-h_{1}+6+2$	$h_{2}+6+2$
$h_{2}+1$	\times	\times	\times

Figure 2: A_{2}^{\prime} for the class 210

Similarly, the two cells, containing 1s, in A_{2} cannot be on the $\left(h_{1}-h_{3}+6+2\right)$ th diagonal and $h_{1}-h_{3}=h_{2}+v$ for some $v \in H$. It is easy to see from Figure 2 that, for each v, the cells in A_{2} containing 1s, are the cell in row $-v-h_{3}+1$ and column $-v+h_{1}+2$ on diagonal $-h_{3}-h_{1}+6+2$, and the cell in row $-v-h_{3}-h_{1}+1$ and column $-v-h_{1}+2$ on diagonal $-h_{3}+6+2$.

All cells of B_{0} have entry 0 except one cell that has entry $1 . M_{\theta}$ is an orthomorphism matrix if and only if the cell in row $u+2$ and column $-v+2$ is not on diagonal 0 or h_{1}. But this cell is on the diagonal $u+v=\left(h_{1}+h_{2}+h_{3}\right)+\left(h_{1}-h_{2}-h_{3}\right)=-h_{1}$, and so M_{θ} is an orthomorphism matrix uniquely determined by h_{1}, h_{2}, h_{3}. Thus $|210|=2 \times 3 \times 3=18$ and, hence, by Lemma 3.1, $|201|=18$.

The classes 120 and 102. If θ is a normalized orthomorphism in the class 120 , then, for some $h_{1}, h_{2} \in H, \theta(0)=0, \theta\left(h_{1}+1\right)=3$, and $\theta(3)=h_{2}+1$. We will
show that, for each choice of h_{1}, h_{2}, θ, equivalently M_{θ}, is uniquely determined. By Lemma 2.1, each row, column, and diagonal of M_{θ} contains exactly one 1. So far we have determined the positions of 1 s in rows 0,3 , and $h_{2}+1$; columns 0,3 , and $h_{1}+1$; and diagonals $0,-h_{1}+2$, and $h_{2}+6+1$. All other entries in these rows, columns, and diagonals must be 0 .

There must be a second 1 in B_{1} in column 6 and row $1+x$ and on diagonal $x+3+1$, for some $x \in H$. As this cell cannot be in row $h_{2}+1$ or on diagonal $h_{2}+6+1$, it must be that $x=h_{2}+6$, placing the second 1 in B_{1} in row $h_{2}+6+1$, column 6 and on diagonal $h_{2}+1$. Similarly, the second 1 in B_{2} is in row 6 , column $h_{1}+6+1$, and on diagonal $-h_{1}+6+2$.

The 1 in A_{1} must be in column $h_{1}+3+1$, row $y+2$, and on diagonal $y-h_{1}+6+1$, for some $y \in H$. As this cell cannot be on diagonals $h_{2}+6+1$ or $h_{2}+1$, it must be that $y=h_{1}+h_{2}+6$, placing the 1 in A_{1} in row $h_{1}+h_{2}+6+2$, column $h_{1}+3+1$, and on diagonal $h_{2}+3+1$. Similarly, the 1 in A_{2} is in row $h_{2}+3+1$, column $h_{1}+h_{2}+6+2$, and on diagonal $-h_{1}+3+2$.

In Figure 3 we depict B_{0}^{\prime} with row and column headings: the cells that are marked with $\times s$ are the cells that we know have entry 0 . As no cell in B_{0} can be on diagonal 0 , the 1 s in B_{0} must be in row $h_{2}+h_{1}+2$, column $h_{2}+h_{1}+3+2$, and on diagonal 6 ; and in row $h_{2}+h_{1}+3+2$, column $h_{2}+h_{1}+2$, and on diagonal 3. Hence M_{θ} is an orthomorphism matrix uniquely determined by h_{1}, h_{2}. Thus $|120|=3 \times 3=9$ and, hence, by Lemma 3.1, $|102|=9$.

	$h_{2}+h_{1}+2$	$h_{2}+h_{1}+3+2$	$h_{2}+h_{1}+6+2$
$h_{2}+h_{1}+2$	0	6	\times
$h_{2}+h_{1}+3+2$	3	0	\times
$h_{2}+h_{1}+6+2$	\times	\times	\times

Figure 3: B_{0}^{\prime} for the class 120

The class 111. If $\theta \in C(3,0,0)$, then, for some $h_{1}, h_{2}, h_{3} \in H, h_{1} \neq 0, \theta(0)=0$, $\theta(3)=1, \theta(6)=2, \theta\left(h_{2}+1\right)=h_{1}$, and $\theta\left(h_{3}+2\right)=-h_{1}$. We will see that the choice of h_{1}, h_{2}, h_{3} need not uniquely determine θ, equivalently M_{θ}. We have specified the partial orthomorphism matrices $A_{0}, B_{1}, B_{2}, C_{1}$, and C_{2}. It remains to determine A_{1}, A_{2}, B_{0}, and C_{0}. By Lemma 2.1, each row, column, and diagonal of M_{θ} contains exactly one 1 . So far we have determined the positions of 1 s in rows $0,1,2, h_{1}$, and $-h_{1}$; columns $0,3,6, h_{2}+1$, and $h_{3}+2$; and diagonals $0,6+1,3+2, h_{1}-h_{2}+6+2$, and $-h_{1}-h_{3}+6+1$. All other entries in these rows, columns, and diagonals must be 0 . As there can only be one 1 on a diagonal $h_{1}-h_{2}+6 \neq 3$ and $-h_{1}-h_{3}+6 \neq 6$. Thus $h_{2}=h_{1}+3+k_{1}$ and $h_{3}=-h_{1}+k_{2}$ for some $k_{1}, k_{2} \in H, k_{1}, k_{2} \neq 0$.

Figure 4 shows $A_{1}^{\prime}, A_{2}^{\prime}, B_{0}^{\prime}$, and C_{0}^{\prime} with row and column headings, and rows and columns, for which the matrices A_{1}, A_{2}, B_{0}, and C_{0} have only 0 entries, removed.

	$h_{2}+3+1$	$h_{2}+6+1$	$h_{3}+3+2$	$h_{3}+6+2$
$3+1$	$\left(-h_{2}\right)$	$\left(-h_{2}\right)+6$	$\left(-h_{3}+6+2\right)$	$\left(-h_{3}+6+2\right)+6$
$6+1$	$\left(-h_{2}\right)+3$	$\left(-h_{2}\right)$	$\left(-h_{3}+6+2\right)+3$	$\left(-h_{3}+6+2\right)$
$3+2$	$\left(-h_{2}+1\right)$	$\left(-h_{2}+1\right)+6$	$\left(-h_{3}\right)$	$\left(-h_{3}\right)+6$
$6+2$	$\left(-h_{2}+1\right)+3$	$\left(-h_{2}+1\right)$	$\left(-h_{3}\right)+3$	$\left(-h_{3}\right)$

Figure 4: The matrices $A_{1}^{\prime}, A_{2}^{\prime}, B_{0}^{\prime}$, and C_{0}^{\prime}

For some $c_{0}, c_{1}, c_{2}, c_{3} \in H$, there is an entry 1 in a cell of C_{0} on the diagonal $\left(-h_{2}\right)+c_{0}$, an entry 1 in a cell of A_{2} on the diagonal $\left(-h_{3}+6+2\right)+c_{1}$, an entry 1 in a cell of B_{0} on the diagonal $\left(-h_{3}\right)+c_{2}$, and an entry 1 in a cell of A_{1} on the diagonal $\left(-h_{2}+1\right)+c_{3}$.

The entries on diagonal 0 of $C M_{\theta}$ sum to three and, as the corresponding cells in M_{θ} are on distinct diagonals, by Lemma 3.3

$$
\begin{equation*}
0+\left(-h_{2}+c_{0}\right)+\left(-h_{3}+c_{2}\right)=0 \tag{1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
3+\left(h_{1}-h_{2}+6\right)+\left(-h_{3}+6+c_{1}\right)=0, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
6+\left(-h_{1}-h_{3}+6\right)+\left(-h_{2}+c_{3}\right)=0 \tag{3}
\end{equation*}
$$

If the equations (1), (2), and (3) are satisfied, then, by Lemma 3.3, all cells of M_{θ} are on distinct diagonals if and only if

$$
\begin{gather*}
h_{2}=h_{1}+3+k_{1} \tag{4}\\
h_{3}=-h_{1}+k_{2} \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
-h_{2}+c_{0}=-h_{3}+c_{2}+k_{3}, \tag{6}
\end{equation*}
$$

for some $k_{3} \in H, k_{3} \neq 0$.
From equations (1), .., (6) we derive the following four equations

$$
\begin{gather*}
c_{0}=h_{1}+3+\left(k_{1}-k_{3}\right), \tag{7}\\
c_{1}=-h_{1}+6+\left(k_{1}+k_{2}\right), \tag{8}\\
c_{2}=-h_{1}+\left(k_{2}+k_{3}\right), \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{3}=h_{1}+\left(k_{1}+k_{2}\right) \tag{10}
\end{equation*}
$$

Note that $c_{0}+c_{1}+c_{2}+c_{3}=0$.

If we specify h_{1}, k_{1}, k_{2}, and k_{3}, then c_{0}, c_{1}, c_{2}, and c_{3} are determined by equations (7), $\ldots,(10), h_{2}$ is determined by equation (4), and h_{3} by equation (5). It is easy to then verify that equations (1), (2), and (3) are satisfied. To determine whether these solutions yield orthomorphisms or not, we need to check that no row or column of M_{θ} contains more than one 1 . We will see that, in $C(3,0,0)$, the solution $c_{0}=c_{1}=$ $c_{2}=c_{3}=0$ will never occur. If, for some $i \in\{0,1,2,3\}, c_{i}=c_{i+1} \neq 0$, subscripts added modulo 4 , then some row or column of M_{θ} must contain two 1 s , and hence this solution yields no orthomorphisms. Any other solution yields exactly one normalized orthomorphism in $C(3,0,0)$. We will determine $|C(3,0,0)|$ case by case. There are two cases, $h_{1}=6$ and $h_{1}=3$.

Case 1: $h_{1}=6$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=0, c_{1}=-k_{1}, c_{2}=3-k_{1}$, and $c_{3}=6-k_{1}$. If $k_{1}=3$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,6,0,3)$, and if $k_{1}=6$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,3,6,0)$. This yields two normalized orthomorphisms in $C(3,0,0)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=-k_{1}=c_{1}$. This yields no normalized orthomorphisms in $C(3,0,0)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=0, c_{1}=0, c_{2}=3$, and $c_{3}=6$. This yields one normalized orthomorphism in $C(3,0,0)$ for each value of k_{1}.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=-k_{1}, c_{1}=0, c_{2}=3+k_{1}$, and $c_{3}=6$. If $k_{1}=3$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(6,0,6,6)$, and if $k_{1}=6$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(3,0,0,6)$ yielding one normalized orthomorphism in $C(3,0,0)$.

Case 1 yields five normalized orthomorphisms in $C(3,0,0)$.
Case 2: $h_{1}=3$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=6, c_{1}=3-k_{1}, c_{2}=6-k_{1}$, and $c_{3}=3-k_{1}$. If $k_{1}=3$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(6,0,3,0)$, and if $k_{1}=6$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(6,6,0,6)$ yielding one normalized orthomorphism in $C(3,0,0)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=6-k_{1}, c_{1}=3-k_{1}, c_{2}=6$, and $c_{3}=3-k_{1}$. If $k_{1}=3$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(3,0,6,0)$, and if $k_{1}=6$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,6,6,6)$ yielding one normalized orthomorphism in $C(3,0,0)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=6, c_{1}=3, c_{2}=6$, and $c_{3}=3$ yielding one normalized orthomorphism in $C(3,0,0)$ for each value of k_{1}.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=6-k_{1}, c_{1}=3, c_{2}=6+k_{1}$, and $c_{3}=3$. If $k_{1}=3$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(3,3,0,3)$, and if $k_{1}=6$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,3,3,3)$ yielding no normalized orthomorphisms in $C(3,0,0)$.

Case 2 yields four normalized orthomorphisms in $C(3,0,0)$.
Hence, $|C(3,0,0)|=9$. By Lemma 3.2, $|111|=18 \times|C(3,0,0)|=18 \times 9=162$. It follows that the number of normalized orthomorphisms of \mathbb{Z}_{9} is $|300|+2 \times|210|+$ $2 \times|120|+|111|=9+2 \times 18+2 \times 9+162=225$.

4 Applications to other groups

The group $G F(9)^{+}$, the additive group of the field of order 9 , has 249 normalized orthomorphisms. This was shown in [2] using the "method of exhaustion". This number has been confirmed by computer searches: see. [11], [15], and [16]. The normalized orthomorphisms of $G F(9)^{+}$have been determined theoretically using permutation polynomials. Each mapping $G F(9) \rightarrow G F(9)$ can be represented by a polynomial of reduced degree at most 8 , a permutation polynomial if the mapping is a permutation, and an orthomorphism polynomial if the mapping is an orthomorphism. Each orthomorphism polynomial of $G F(9)^{+}$has reduced degree at most 6 . Orthomorphism polynomials of degree at most 5 were described in [13], and the orthomorphism polynomials of $G F(9)^{+}$of degree 6 were described in [14]. There are 81 normalized orthomorphisms of $G F(9)^{+}$represented by orthomorphism polynomials of degree at most 5, and 168 normalized orthomorphisms of $G F(9)^{+}$represented by orthomorphism polynomials of degree 6, yielding a total of 249 normalized orthomorphisms: see Sections 9.2 .2 and 13.3.1 in [5]. The methods of Section 3 are easily adapted to give another theoretical proof that $G F(9)^{+}$has 249 normalized orthomorphisms.

Let $G=G F(9)^{+}=\left\{i j \mid i, j \in \mathbb{Z}_{3}\right\}$, and let $H=\{00,01,02\}$ be a subgroup of index 3. The set $D=\{00,10,20\}$ is a system of distinct coset representatives for H in G. We will order the elements of G as $\{00,01,02 ; 10,11,12 ; 20,21,22\}$. As in the case $G=\mathbb{Z}_{9}$, each normalized orthomorphism of G belongs to one of the classes 300, $210,201,120,102$, or 111 , and can be represented by an orthomorphism matrix of the form

$$
M_{\theta}=\left(A_{i 0, j 0}\right)=\left(\begin{array}{ccc}
A_{00} & B_{20} & C_{10} \\
B_{10} & C_{00} & A_{20} \\
C_{20} & A_{10} & B_{00}
\end{array}\right),
$$

$i, j=0,1,2$. As in the case $G=\mathbb{Z}_{9}$, for X one of A, B, C, let us form a matrix $X_{k 0}^{\prime}$ from $X_{k 0}$ by making each entry in a cell of $X_{k 0}^{\prime}$ the diagonal the corresponding cell of $X_{k 0}$ is on.

As in Lemma 3.1, we can reduce the number of classes that we need to deal with.

Lemma $4.1|210|=|201|$ and $|120|=|102|$.
Proof: Let $\alpha \in \operatorname{Aut}(G)$ be defined by $\alpha(i j)=(-i) j$. Then, as in Lemma 3.1, H_{α} acts as a bijection between the set of normalized orthomorphisms in the class 210 and the set of normalized orthomorphisms in the class 201, and also acts as a bijection between the set of normalized orthomorphisms in the class 120 and the set of normalized orthomorphisms in the class 102.

For the class 111, set $C\left(h_{1}\right)=\left\{\theta \in\right.$ class $111 \mid \theta(00)=00, \theta\left(0 h_{1}\right)=1 h_{2}$, $\theta\left(0\left(-h_{1}\right)\right)=2 h_{3}$ for some $\left.h_{2}, h_{3} \in \mathbb{Z}_{3}\right\}, h_{1} \in \mathbb{Z}_{3}, h_{1} \neq 0$. The reflection can be used to reduce the problem of determining $|111|$ to that of determining $|C(1)|$.

Lemma $4.2|111|=2 \times|C(1)|$.
Proof: The reflection R acts as a bijection between $C(1)$ and $C(2)$.
Theorem 4.1 $G F(9)^{+}$has 249 normalized orthomorphisms.
Proof: As in the proof of Theorem 3.1, we will compute $|a b c|$ for each class $a b c$, using Lemmas 4.1 and 4.2 to reduce the amount of computation.

The class 300. The proof that $|300|=9$ is identical to the proof in the proof of Theorem 3.1.
The classes 210 and 201. If θ is a normalized orthomorphism in the class 210, then, for some $h_{1}, h_{2}, h_{3} \in \mathbb{Z}_{3}, h_{1} \neq 0, \theta(00)=00, \theta\left(0 h_{1}\right)=0\left(-h_{1}\right), \theta\left(0\left(-h_{1}\right)\right)=1 h_{2}$, and $\theta\left(1 h_{3}\right)=0 h_{1}$. For each choice of $h_{1}, h_{2}, h_{3}, \theta$, equivalently M_{θ}, is uniquely determined: the proof of this is identical to the proof in the proof of Theorem 3.1. Thus $|210|=2 \times 3 \times 3=18$ and, hence, by Lemma 4.1, $|201|=18$.

The classes 120 and 102. If θ is a normalized orthomorphism in the class 120 , then, for some $h_{1}, h_{2} \in \mathbb{Z}_{3}, \theta(00)=00, \theta\left(1 h_{1}\right)=01$, and $\theta(01)=1 h_{2}$. For each choice of h_{1}, h_{2}, θ, equivalently M_{θ}, is uniquely determined: the proof of this is very similar to the proof in the proof of Theorem 3.1. Thus $|120|=3 \times 3=9$ and, hence, by Lemma 4.1, $|102|=9$.

The class 111. If $\theta \in C(1)$, then, for some $h_{1}, h_{2}, h_{3}, h_{4}, h_{5} \in \mathbb{Z}_{3}, h_{5} \neq 0, \theta(00)=00$, $\theta(01)=1 h_{1}, \theta(02)=2 h_{2}, \theta\left(1 h_{3}\right)=0 h_{5}$, and $\theta\left(2 h_{4}\right)=0\left(-h_{5}\right)$.

We will see that the choice of h_{1}, h_{2}, h_{3} need not uniquely determine θ, equivalently M_{θ}. We have specified the partial orthomorphism matrices $A_{00}, B_{10}, B_{20}, C_{10}$, and C_{20}. It remains to determine A_{10}, A_{20}, B_{00}, and C_{00}. By Lemma 2.1, each row, column, and diagonal of M_{θ} contains exactly one 1 . So far we have determined the positions of 1 s in rows $00,1 h_{1}, 2 h_{2}, 0 h_{5}$, and $0\left(-h_{5}\right)$; columns $00,01,02,1 h_{3}$, and $2 h_{4}$; and diagonals $00,2\left(h_{5}-h_{3}\right), 1\left(-h_{5}-h_{4}\right), 1\left(h_{1}-1\right)$, and $2\left(h_{2}+1\right)$. All other entries in these rows, columns, and diagonals must be 0 . Note that, as there can only be one 1 on a diagonal $h_{1}-1 \neq-h_{5}-h_{4}$ and $h_{2}+1 \neq h_{5}-h_{3}$.

Figure 5 shows $A_{10}^{\prime}, A_{20}^{\prime}, B_{00}^{\prime}$, and C_{00}^{\prime} with row and column headings, where the rows and columns, for which the matrices A_{10}, A_{20}, B_{00}, and C_{00} have only 0 entries, removed.

For some $c_{0}, c_{1}, c_{2}, c_{3} \in \mathbb{Z}_{3}$, there is an entry 1 in a cell of C_{00} on the diagonal $0\left(h_{1}-h_{3}+c_{0}\right)$, an entry 1 in a cell of A_{20} on the diagonal $2\left(h_{1}-h_{4}+c_{1}\right)$, an entry 1 in a cell of B_{00} on the diagonal $0\left(h_{2}-h_{4}+c_{2}\right)$, and an entry 1 in a cell of A_{10} on the diagonal $1\left(h_{2}-h_{3}+c_{3}\right)$.

The entries on diagonal 0 of $C M_{\theta}$ sum to three and, as the corresponding cells in M_{θ} are on distinct diagonals, by Lemma 3.3

$$
\begin{equation*}
0+\left(h_{1}-h_{3}+c_{0}\right)+\left(h_{2}-h_{4}+c_{2}\right)=0 \tag{11}
\end{equation*}
$$

	$1\left(h_{3}+h_{5}\right)$	$1\left(h_{3}-h_{5}\right)$	$2\left(h_{4}+h_{5}\right)$	$2\left(h_{4}-h_{5}\right)$
$1\left(h_{1}+h_{5}\right)$	$0\left(h_{1}-h_{3}\right)$	$0\left(h_{1}-h_{3}-h_{5}\right)$	$2\left(h_{1}-h_{4}\right)$	$2\left(h_{1}-h_{4}-h_{5}\right)$
$1\left(h_{1}-h_{5}\right)$	$0\left(h_{1}-h_{3}+h_{5}\right)$	$0\left(h_{1}-h_{3}\right)$	$2\left(h_{1}-h_{4}+h_{5}\right)$	$2\left(h_{1}-h_{4}\right)$
$2\left(h_{2}+h_{5}\right)$	$1\left(h_{2}-h_{3}\right)$	$1\left(h_{2}-h_{3}-h_{5}\right)$	$0\left(h_{2}-h_{4}\right)$	$0\left(h_{2}-h_{4}-h_{5}\right)$
$2\left(h_{2}-h_{5}\right)$	$1\left(h_{2}-h_{3}+h_{5}\right)$	$1\left(h_{2}-h_{3}\right)$	$0\left(h_{2}-h_{4}+h_{5}\right) 3$	$0\left(h_{2}-h_{4}\right)$

Figure 5: The matrices $A_{10}^{\prime}, A_{20}^{\prime}, B_{00}^{\prime}$, and C_{00}^{\prime}

Similarly

$$
\begin{equation*}
\left(h_{2}+1\right)+\left(h_{5}-h_{3}\right)+\left(h_{1}-h_{4}+c_{1}\right)=0, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{1}-1\right)+\left(-h_{5}-h_{4}\right)+\left(h_{2}-h_{3}+c_{3}\right)=0 . \tag{13}
\end{equation*}
$$

If the equations (11), (12), and (13) are satisfied, then, by Lemma 3.3, all cells of M_{θ} are on distinct diagonals if and only if

$$
\begin{gather*}
h_{1}-h_{3}+c_{0}=k_{1}, \tag{14}\\
h_{5}-h_{3}=h_{2}+1+k_{2}, \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
-h_{5}-h_{4}=h_{1}-1+k_{3}, \tag{16}
\end{equation*}
$$

for some $k_{1}, k_{2}, k_{3} \in \mathbb{Z}_{3} \backslash\{0\}$.
From equations (11),..., (16) we derive the following four equations

$$
\begin{gather*}
c_{0}=-k+h_{5}-1+\left(k_{1}-k_{2}\right), \tag{17}\\
c_{1}=k-h_{5}-1-\left(k_{2}+k_{3}\right), \tag{18}\\
c_{2}=-k-h_{5}+1-\left(k_{1}+k_{3}\right), \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{3}=k+h_{5}+1-\left(k_{2}+k_{3}\right), \tag{20}
\end{equation*}
$$

where $k=h_{1}+h_{2}$. Note that, as in Theorem 3.1, $c_{0}+c_{1}+c_{2}+c_{3}=0$.
As in the proof of Theorem 3.1, if we specify $h_{1}, h_{2}, h_{5}, k_{1}, k_{2}$, and k_{3}, then c_{0}, c_{1}, c_{2}, and c_{3} are determined by equations (17), $\ldots,(20), h_{3}$ is determined by equation (15), and h_{4} by equation (16). It is easy to then verify that equations (11), (12), and (13) are satisfied. In what follows we will specify k, h_{5}, k_{1}, k_{2}, and k_{3} instead. Note that each value of k determines three values of $\left(h_{1}, h_{2}\right)$. Thus, as in the proof of Theorem 3.1, to determine whether these solutions yield orthomorphisms or not, we need to check that no row or column of M_{θ} contains more than one 1 . In particular, we obtain six normalized orthomorphisms in $C(1)$ when $c_{0}=c_{1}=c_{2}=c_{3}=0$: no orthomorphisms if, for some $i \in\{0,1,2,3\}, c_{i}=c_{i+1} \neq 0$, subscripts added modulo

4; and three normalized orthomorphisms in $C(1)$ for any other solution. We will determine $|C(1)|$ case by case. There are three cases, $k=0, k=1$, and $k=2$.

Case 1: $k=0$.
Subcase 1i: $h_{5}=1$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=0, c_{1}=1+k_{1}, c_{2}=k_{1}$, and $c_{3}=2+k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,1,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,2,1)$. This yields six normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=0, c_{1}=1, c_{2}=0$, and $c_{3}=2$. This yields three normalized orthomorphisms in $C(1)$ for each choice of k_{1}.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=-k_{1}, c_{1}=1, c_{2}=k_{1}$, and $c_{3}=2$. This yields no normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=-k_{1}, c_{1}=1-k_{1}, c_{2}=0$, and $c_{3}=2-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,0,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,0,0)$ yielding six normalized orthomorphisms in $C(1)$.

Subcase 1i yields eighteen normalized orthomorphisms in $C(1)$.
Subcase 1ii: $h_{5}=2$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=1, c_{1}=k_{1}, c_{2}=2+k_{1}$, and $c_{3}=k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,1,0,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,1,2)$. This yields three normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=1, c_{1}=0, c_{2}=2$, and $c_{3}=0$. This yields three normalized orthomorphisms in $C(1)$ for each choice of k_{1}.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=1-k_{1}, c_{1}=0, c_{2}=2+k_{1}$, and $c_{3}=0$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,0,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,1,0)$. This yields nine normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=1-k_{1}, c_{1}=-k_{1}, c_{2}=2$, and $c_{3}=-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,2,2)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,1,2,1)$ yielding three normalized orthomorphisms in $C(1)$.

Subcase 1ii yields twenty one normalized orthomorphisms in $C(1)$.
Case 2: $k=1$.
Subcase 2i: $h_{5}=1$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=2, c_{1}=2+k_{1}, c_{2}=2+k_{1}$, and $c_{3}=k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,0,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,1,1,2)$. This yields three normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=2, c_{1}=2, c_{2}=2$, and $c_{3}=0$. This yields no normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=2-k_{1}, c_{1}=2, c_{2}=2+k_{1}$, and $c_{3}=0$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,0,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,1,0)$ yielding six normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=2-k_{1}, c_{1}=2-k_{1}, c_{2}=2$, and $c_{3}=-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,1,2,2)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,2,1)$ yielding three normalized orthomorphisms in $C(1)$.

Subcase 2i yields twelve normalized orthomorphisms in $C(1)$.
Subcase 2ii: $h_{5}=2$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=0, c_{1}=1+k_{1}, c_{2}=1+k_{1}$, and $c_{3}=1+k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,2,2)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,0,0)$. This yields six normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=0, c_{1}=1, c_{2}=1$, and $c_{3}=1$. This yields no normalized orthomorphisms in $C(1)$.

0 If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=-k_{1}, c_{1}=1, c_{2}=1+k_{1}$, and $c_{3}=1$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,1,2,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,1,0,1)$. This yields three normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=-k_{1}, c_{1}=1-k_{1}, c_{2}=1$, and $c_{3}=1-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,1,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,1,2)$ yielding six normalized orthomorphisms in $C(1)$.

Subcase 2ii yields fifteen normalized orthomorphisms in $C(1)$.
Case 3: $k=2$.
Subcase 3i: $h_{5}=1$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=1, c_{1}=k_{1}, c_{2}=1+k_{1}$, and $c_{3}=1+k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,1,2,2)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,0,0)$. This yields three normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=1, c_{1}=0, c_{2}=1$, and $c_{3}=1$. This yields three no orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=1-k_{1}, c_{1}=0, c_{2}=1+k_{1}$, and $c_{3}=1$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,2,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,0,1)$ yielding six normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=1-k_{1}, c_{1}=-k_{1}, c_{2}=1$, and $c_{3}=1-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,1,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,1,1,2)$ yielding three normalized orthomorphisms in $C(1)$.

Subcase 3i yields twelve normalized orthomorphisms in $C(1)$.
Subcase 3ii: $h_{5}=2$.
If $\left(k_{2}, k_{3}\right)=\left(k_{1}, k_{1}\right), c_{0}=2, c_{1}=2+k_{1}, c_{2}=k_{1}$, and $c_{3}=2+k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,0,1,0)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(2,1,2,1)$. This yields six normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(k_{1},-k_{1}\right), c_{0}=2, c_{1}=2, c_{2}=0$, and $c_{3}=2$. This yields no normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1}, k_{1}\right), c_{0}=2-k_{1}, c_{1}=2, c_{2}=k_{1}$, and $c_{3}=2$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,2,1,2)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,2,2,2)$. This yields three normalized orthomorphisms in $C(1)$.

If $\left(k_{2}, k_{3}\right)=\left(-k_{1},-k_{1}\right), c_{0}=2-k_{1}, c_{1}=2-k_{1}, c_{2}=0$, and $c_{3}=2-k_{1}$. If $k_{1}=1$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(1,1,0,1)$, and if $k_{1}=2$, then $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=(0,0,0,0)$ yielding six normalized orthomorphisms in $C(1)$.

Subcase 3ii yields fifteen normalized orthomorphisms in $C(1)$.
Thus $|C(1)|=18+21+12+15+12+15=93$. It follows that the number of normalized orthomorphisms of $G F(9)$ is $|300|+2 \times|210|+2 \times|120|+2 \times|C(1)|=$ $9+2 \times 18+2 \times 9+2 \times 93=249$.

The classification and methods of Sections 2 and 3 can, in principle, be applied to any group of order $3 n$ with a normal subgroup of index 3 . Each normalized orthomorphism of such a group is in a class $a b c$, for some $a, b, c \geq 0, a \neq 0$. The number of such classes is $\binom{n+1}{2}$, the coefficient of x^{n} in $\left(x+x^{2}+x^{3}+\ldots\right)(1+x+$ $\left.x^{2}+\ldots\right)^{2}$.

The next smallest groups, with normal subgroups of index 3 , for which the number of normalized orthomorphisms has not been explained theoretically are of orders 12 and 15. There are two groups of order 12 that have non-cyclic Sylow 2-subgroups and normal subgroups of index $3, \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ and A_{4}, and there is one group of order $15, \mathbb{Z}_{15}$. In [3], using the "method of exhaustion", A_{4} was found to have 3,776 normalized orthomorphisms, whereas subsequent computer searches found the number to be 3, 840: see [6], [12], and [17]. Computer searches reported in [10], [11], [16], and [17] found $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ to have 16,512 normalized orthomorphisms, and computer searches reported in [12], [15], and [16] found \mathbb{Z}_{15} to have 2, 424, 195 normalized orthomorphisms.

Acknowledgements

I would like to thank the referees for their comments that have improved this paper.

References

[1] D. Bedford and R.xi M. Whitaker, Enumeration of transversals in the Cayley tables of the non-cyclic groups of order 8, Discrete. Math. 197/198 (1999), 77-81.
[2] L. Q. Chang, K. Hsiang and S. Tai, Congruent mappings and congruence classes of orthomorphisms of groups, Acta Math. Sinica 14 (1964), 747-756, Chinese: translated as Chinese Math. Acta 6 (1965), 141-152.
[3] L. Q. Chang and S. Tai, On the orthogonal relations among orthomorphisms of non-commutative groups of small orders, Chinese Math. Acta 5 (1964), 506-515, Chinese: translated as Chinese Math. Acta 5 (1965), 506-515.
[4] L. Euler, Recherche sur une nouvelle espèce de quarrès magiques. Leonardi Euleri Opera Omnia 7, 291-392 (1923), Memoir presented to the Academy of Sciences of St. Petersburg on 8th. March, 1779.
[5] A. B. Evans, Orthogonal Latin squares based on groups, Springer, Cham, 2018.
[6] M. Hall and D. E. Knuth, Combinatorial analysis and computing, Amer. Math. Monthly 72 (1965), 21-28.
[7] M.Hall and L. J. Paige, Complete mappings of finite groups, Pacific J. Math. 5 (1955), 541-549.
[8] D.F. Hsu, Cyclic neofields and combinatorial designs, Lec. Notes in Math. 824, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[9] D.F. Hsu, Orthomorphisms and near orthomorphisms, In: "Graph Theory, Combinatorics, and Applications", (Eds.: Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk), 667-679, 1991.
[10] D. M. Johnson, A. L. Dulmage and N. S. Mendelsohn, Orthomorphisms of groups and orthogonal latin squares I, Canad. J. Math. 13 (1961), 356-372.
[11] F. Lazebnik and A. Thomason, Orthomorphisms and the construction of projective planes, Math. Comp. 73 (2004), 1547-1557.
[12] B. D. McKay, J. C. McLeod and I. M. Wanless, The number of transversals in a Latin square, Des. Codes Crytogr. 40 (2006), 269-284.
[13] H. Niederreiter and K. H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33 (1982), 197-212.
[14] C. J. Shallue and I. M. Wanless, Permutation polynomials and orthomorphism polynomials of degree six, Finite Fields Appl. 20 (2013), 84-92.
[15] Y. P. Shieh, Partition strategies for \# P-complete problem with applications to enumerative combinatorics, PhD Thesis, National Taiwan University, 2001.
[16] Y. P. Shieh, J. Hsiang and D. F. Hsu, On the enumeration of abelian K-complete mappings, Congr. Numer. 144 (2000), 67-88.
[17] I. M. Wanless, Transversals in Latin squares: a survey, In: Surveys in Combinatorics 2011, pp. 403-437, London Math. Soc. Lec. Note Ser. 392, Cambridge Univ. Press, Cambridge, 2011.

