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Abstract

It is well-known that the number of normalized orthomorphisms of Z9 is
225. However, this number has not been determined theoretically. We
will give a theoretical proof of this result. We will also indicate how the
classification and analysis used can be applied to other groups.

1 Introduction

An orthomorphism of a group G is a permutation θ of G for which the mapping
x �→ x−1θ(x) is also a permutation: the mapping x �→ x−1θ(x) is a complete mapping
of G. An orthomorphism θ of G is normalized if θ(1) = 1. Note that, if θ is an ortho-
morphism of G, then the mapping x �→ θ(x)θ(1)−1 is a normalized orthomorphism
of G and that, if G has m normalized orthomorphisms, then G has m|G| orthomor-
phisms. Orthomorphisms of a group G correspond to transversals of the Cayley table
of G, a Latin square. See [12] and [17] for the enumeration of transversals of small
Latin squares, which includes the enumeration of orthomorphisms of small groups.

The number of orthomorphisms of small groups is known, mainly as the result of
computer searches: see Table 13.1 in [5], Table 1 in [12], or Table 4 in [17]. Groups
with non-trivial, cyclic Sylow 2-subgroups have no orthomorphisms by the Hall-
Paige theorem [7]. Groups of order five or less are easily dealt with by hand, and,
by enumerating the transversals of the cyclic Latin square of order seven, Euler [4]
implicitly showed that Z7 has 19 normalized orthomorphisms. Each of the non-
cyclic groups of order eight has 48 normalized orthomorphisms. A theoretical proof
of this was given in [1]. For the group GF (8)+, all of its orthomorphisms can be
constructed using permutation polynomials, as described in Section 9.2 of [5]; or by
solving systems of linear equations, as described in Sections 10.3 and 10.4 of [5].

The cyclic group of order nine is the smallest group for which the number of
orthomorphisms has not been determined theoretically. In [2], using the “method
of exhaustion,” Z9 was found to have 225 normalized orthomorphisms. This same
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result has been found many times using computer searches: see [10], [11], [15], and
[16]. A complete list of these orthomorphisms can be found in [9] and, as presentation
functions of neofields, in [8].

In Section 2 we will discuss collapsed permutation matrices, in Section 3 we
will present a theoretical proof that Z9 has 225 normalized orthomorphisms, and in
Section 4 we will indicate how the methods used in Section 3 might be applied to other
groups, and, in particular, how these methods can be used to show that GF (9)+, the
additive group of the field of order 9, has 249 normalized orthomorphisms.

2 Collapsed permutation matrices

In this section, all groups considered will be abelian and written additively. We will
introduce the concept of a collapsed permutation matrix, a concept that will prove
crucial in counting the number of normalized orthomorphisms of Z9.

Let G = {g1, . . . , gn} be an abelian group. Any permutation θ of G can be
represented by a permutation matrix Mθ = (mij), where

mij =

{
1 if θ(gj) = gi,

0 otherwise.

The gkth diagonal of Mθ is the set of cells {(i, j) | gi − gj = gk}.
Permutation matrices corresponding to orthomorphisms are easily characterized.

Lemma 2.1 Let θ be a permutation of an abelian group G = {g1, . . . , gn}. Then θ is
an orthomorphism of G if and only if each row, column, and diagonal of Mθ contains
exactly one 1.

Proof: Suppose that θ is an orthomorphism of G. Then, for all j = 1, . . . , n, θ(gj)
is uniquely determined and so every column of Mθ contains exactly one 1. Also, for
all i = 1, . . . , n, there is a unique j ∈ {1, . . . , n} for which θ(gj) = gi and so every
row of Mθ contains exactly one 1. Further, for all k = 1, . . . , n, there is a uniquely
determined j ∈ {1, . . . , n} for which gk = θ(gj)− gj = gi − gj and so every diagonal
of Mθ contains exactly one 1.

The converse is straightforward. �

If θ is an orthomorphism of G, then Mθ is an orthomorphism matrix of G, and a
(0, 1)-matrix in which each row, column, and diagonal of M contains at most one 1
is a partial orthomorphism matrix of G.

If a permutation matrix M can be written as a block matrix M = (Aij), then the
corresponding collapsed permutation matrix is CM(aij), where aij is the number of 1s
in Aij . In particular, let G be an abelian group, |G| = mt, let H = {h1, . . . , hm} be a
subgroup of G, and let D = {d1, . . . , dt} be a system of distinct coset representatives
for H in G. Then

G = {h1 + d1, . . . , hm + d1; h1 + d2, . . . , hm + d2; . . . ; h1 + dt, . . . , hm + dt},
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and any permutation θ of G has a corresponding permutation matrix Mθ = (Aij),
where Aij is formed from the rows h1+di, . . . , hm+di and columns h1+dj, . . . , hm+dj
of Mθ. The corresponding collapsed permutation matrix is CMθ = (aij), where
aij = |{gk | gk ∈ H+dj, θ(gk) ∈ H+di}|: we will call CMθ the collapsed permutation
matrix of θ with respect to H (and D).

When t = 3 the collapsed permutation matrix of θ has a simple form.

Lemma 2.2 If H is a subgroup of an abelian group G of index 3, |H| = m, D a
system of distinct coset representatives for H in G, and θ is an orthomorphism of
G, then the collapsed permutation matrix of θ with respect to H (and D) is

CMθ =

⎛
⎝ a b c

b c a
c a b

⎞
⎠ ,

for some a, b, c, a+ b+ c = m.

Proof: Let the collapsed permutation matrix of θ with respect to H be CMθ = (aij),
i, j = 1, 2, 3. As Mθ is a permutation matrix,

ai1 + ai2 + ai3 = m for i = 1, 2, 3,

and
a1j + a2j + a3j = m for j = 1, 2, 3.

As each diagonal of Mθ contains exactly one 1,

a11 + a22 + a33 = m,

a12 + a23 + a31 = m,

and
a13 + a21 + a32 = m.

Solving this system of linear equations we find that

a11 = a23 = a32 = a,

a12 = a21 = a33 = b,

and
a13 = a22 = a31 = c,

for some a, b, c, a+ b+ c = m. �

If θ is an orthomorphism of an abelian group G, H a subgroup of G of index 3, D
a system of distinct coset representatives for H in G, and the collapsed permutation
matrix of θ with respect to H (and D) is

CMθ =

⎛
⎝ a b c

b c a
c a b

⎞
⎠ ,

then we will say that θ is in the class abc, and |abc| will denote the number of
normalized orthomorphisms in the class abc.
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3 The group Z9

In this section we will only consider the group G = Z9 = {0, . . . , 8}. Now H =
{0, 3, 6} is a subgroup of G of index 3, and (d1, d2, d3) = (0, 1, 2) is a system
of distinct coset representatives for H in G. Let us order the elements of G as
{0, 3, 6; 1, 4, 7; 2, 5, 8}. Each normalized orthomorphism of G belongs to one of the
classes 300, 210, 201, 120, 102, or 111, and can be represented by an orthomorphism
matrix of the form

Mθ = (Aij) =

⎛
⎝ A0 B2 C1

B1 C0 A2

C2 A1 B0

⎞
⎠ ,

i, j = 0, 1, 2. For X one of A, B, C, it is easy to see that each cell of Xk is on the
(h + k)th diagonal for some h ∈ H . Let us form a matrix X ′

k from Xk by making
each entry in a cell of X ′

k the diagonal the corresponding cell of Xk is on. Thus

X ′
k =

⎛
⎝ 0 + k′ 2 + k′ 1 + k′

1 + k′ 0 + k′ 2 + k′

2 + k′ 1 + k′ 0 + k′

⎞
⎠ = X ′

0 + k′J,

where, if Xk = Aij, then k′ = i − j and k′ ∈ H + k: J is the all 1s matrix. We
will say that the corresponding entry of CMθ is on the kth diagonal of CMθ. Each
row, column, and diagonal of Xk contains at most one 1, and, as X0 is a partial
orthomorphism matrix of H , by abuse of terminology we will refer to each matrix
Xk as a partial orthomorphism matrix of H .

Among the class of mappings that permute the set of normalized orthomorphisms
of a group G are the homologies Hα, α ∈ Aut(G), defined by Hα[θ] = αθα−1, the
translations Tg, g ∈ G, defined by Tg[θ](x) = θ(x + g) − θ(g), and the reflection
defined by R[θ](x) = x+ θ(−x): these mappings are discussed in Section 8.1.3 of [5].
The reflection and homologies prove useful in reducing the number of classes that
we need to enumerate as demonstrated in the following lemma.

Lemma 3.1 |210| = |201| and |120| = |102|.

Proof: Let α ∈ Aut(G) be defined by α(g) = 2g. Note that α(h) = α−1(h) = −h for
all h ∈ H .

If θ is a normalized orthomorphism in the class 210, then, for some h1, h2 ∈
H , h1 �= 0, θ(0) = 0, θ(h1) = −h1, and θ(−h1) = h2 + 1. Now Hα[θ](0) = 0,
Hα[θ](h1) = −h2+2, and Hα[θ](−h1) = h1. Hence Hα[θ] is in the class 201 and thus
|210| ≤ |201|. If θ is a normalized orthomorphism in the class 201, then, for some
h1, h2 ∈ H , h1 �= 0, θ(0) = 0, θ(h1) = −h1, and θ(−h1) = h2 + 2. Now Hα[θ](0) = 0,
Hα[θ](h1) = (−h2 + 3) + 1, and Hα[θ](−h1) = h1. Hence Hα[θ] is in the class 210
and thus |201| ≤ |210|. Hence |210| = |201|.
If θ is a normalized orthomorphism in the class 120, then, for some h1, h2, h3 ∈ H ,

h1 �= 0, θ(0) = 0, θ(h1) = h2 + 1, and θ(−h1) = h3 + 1. Now Hα[θ](0) = 0,
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Hα[θ](h1) = −h3 + 2, and Hα[θ](−h1) = −h2 + 2. Hence Hα[θ] is in the class 102
and thus |120| ≤ |102|. If θ is a normalized orthomorphism in the class 102, then,
for some h1, h2, h3 ∈ H , h1 �= 0, θ(0) = 0, θ(h1) = h2 +2, and θ(−h1) = h3 +2. Now
Hα[θ](0) = 0, Hα[θ](h1) = (−h3 + 3) + 1, and Hα[θ](−h1) = (−h2 + 3) + 1. Hence
Hα[θ] is in the class 120 and thus |102| ≤ |120|. Hence |120| = |102|. �

For the class 111, set C(h1, h2, h3) = {θ ∈ class 111 | θ(0) = 0, θ(h1) =
h2 + 1, θ(−h1) = h3 + 2}, h1, h2, h3 ∈ H , h1 �= 0. Homologies, translations, and
the reflection can be used to reduce the problem of determining |111| to that of
determining |C(3, 0, 0)|.

Lemma 3.2 |111| = 18× |C(3, 0, 0)|.

Proof: The sets C(h1, h2, h3), h1, h2, h3 ∈ H , h1 �= 0, partition the set of normalized
orthomorphisms in the class 111.

We will show that |C(h1, h2, h3)| = |C(3, 0, 0)|, for all h1, h2, h3 ∈ H , h1 �= 0. To do
this we will first show that |C(3, h2, h3)| = |C(3, 0, 0)|, for all h2, h3 ∈ H .

Let α ∈ Aut(G) be defined by α(x) = 2x. Simple computation shows that:

Hα[C(3, 0, 3)] = C(3, 0, 0), T6[C(3, 0, 6)] = C(3, 0, 0),
Hα−1 [C(3, 3, 0)] = C(3, 0, 0), T6Hα[C(3, 3, 3)] = C(3, 0, 0),
T3Hα[C(3, 3, 6)] = C(3, 0, 0), T6Hα−1 [C(3, 6, 0)] = C(3, 0, 0),
Hα−1T6[C(3, 6, 3)] = C(3, 0, 0), and T3[C(3, 6, 6)] = C(3, 0, 0).

Hence |C(3, h2, h3)| = |C(3, 0, 0)|, for all h2, h3 ∈ H .

Computation also shows that R[C(6, h2, h3)] = C(3, h2+3, h3+6), for all h2, h3 ∈
H , from which the result follows. �

The following elementary observation will prove useful.

Lemma 3.3 For a, b, c ∈ GF (3), a+ b+ c = 0 if and only if either a = b = c or a,
b, and c are distinct.

Theorem 3.1 Z9 has 225 normalized orthomorphisms.

Proof: We will compute |abc| for each class abc, using Lemmas 3.1 and 3.2 to reduce
the amount of computation.

The class 300. If θ is a normalized orthomorphism in the class 300, then A0, A1, and
A2 are orthomorphism matrices of H . A0 is uniquely determined as θ is normalized,
and there are three choices for each of A1 and A2. Hence |300| = 1× 3× 3 = 9.

The classes 210 and 201. If θ is a normalized orthomorphism in the class 210,
then, for some h1, h2, h3 ∈ H , h1 �= 0, θ(0) = 0, θ(h1) = −h1, θ(−h1) = h2 + 1, and
θ(h3 + 1) = h1. We will show that, for each choice of h1, h2, h3, θ, equivalently Mθ,
is uniquely determined. We have specified the partial orthomorphism matrices A0,
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B1, and B2, and C0 = C1 = C2 = O, the all 0s matrix. It remains to determine A1,
A2, and B0. By Lemma 2.1, each row, column, and diagonal of Mθ contains exactly
one 1. So far we have determined the positions of 1s in rows 0, −h1, h2 + 1, and h1;
columns 0, h1, −h1, and h3+1; and diagonals 0, h1, h2+h1+1, and h1−h3+6+2.
All other entries in these rows, columns, and diagonals must be 0.

In Figures 1 and 2 we depict A′
1 and A′

2 with row and column headings: the
cells that are marked with ×s are the cells that we know have entry 0 in A1 and A2.
The two cells, containing 1s, in A1 cannot be on the (h2 + h1 + 1)th diagonal, and
h2 + h1 = −h3 + u for some u ∈ H . It is easy to see from Figure 1 that, for each u,
the cells in A1 containing 1s, are the cell in row u+h1+2 and column u+h1−h2+1
on diagonal h2 +1, and the cell in row u− h1+2 and column u− h2+1 on diagonal
−h1 + h2 + 1.

h3 − h1 + 1 h3 + h1 + 1 h3 + 1
2 −h3 + h1 + 1 −h3 − h1 + 1 ×

−h1 + 2 −h3 + 1 −h3 + h1 + 1 ×
h1 + 2 −h3 − h1 + 1 −h3 + 1 ×

,

Figure 1: A′
1 for the class 210

2 −h1 + 2 h1 + 2
h2 − h1 + 1 h2 − h1 + 6 + 2 h2 + 6 + 2 h2 + h1 + 6 + 2
h2 + h1 + 1 h2 + h1 + 6 + 2 h2 − h1 + 6 + 2 h2 + 6 + 2

h2 + 1 × × ×
.

Figure 2: A′
2 for the class 210

Similarly, the two cells, containing 1s, in A2 cannot be on the (h1 − h3 + 6+ 2)th
diagonal and h1 − h3 = h2 + v for some v ∈ H . It is easy to see from Figure 2 that,
for each v, the cells in A2 containing 1s, are the cell in row −v − h3 + 1 and column
−v + h1 + 2 on diagonal −h3 − h1 + 6+ 2, and the cell in row −v − h3 − h1 + 1 and
column −v − h1 + 2 on diagonal −h3 + 6 + 2.

All cells ofB0 have entry 0 except one cell that has entry 1. Mθ is an orthomorphism
matrix if and only if the cell in row u+2 and column −v+2 is not on diagonal 0 or
h1. But this cell is on the diagonal u + v = (h1 + h2 + h3) + (h1 − h2 − h3) = −h1,
and so Mθ is an orthomorphism matrix uniquely determined by h1, h2, h3. Thus
|210| = 2× 3× 3 = 18 and, hence, by Lemma 3.1, |201| = 18.

The classes 120 and 102. If θ is a normalized orthomorphism in the class 120,
then, for some h1, h2 ∈ H , θ(0) = 0, θ(h1 + 1) = 3, and θ(3) = h2 + 1. We will
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show that, for each choice of h1, h2, θ, equivalently Mθ, is uniquely determined. By
Lemma 2.1, each row, column, and diagonal of Mθ contains exactly one 1. So far
we have determined the positions of 1s in rows 0, 3, and h2 + 1; columns 0, 3, and
h1 + 1; and diagonals 0, −h1 + 2, and h2 + 6 + 1. All other entries in these rows,
columns, and diagonals must be 0.

There must be a second 1 in B1 in column 6 and row 1 + x and on diagonal
x + 3 + 1, for some x ∈ H . As this cell cannot be in row h2 + 1 or on diagonal
h2 + 6+ 1, it must be that x = h2 + 6, placing the second 1 in B1 in row h2 + 6+ 1,
column 6 and on diagonal h2 + 1. Similarly, the second 1 in B2 is in row 6, column
h1 + 6 + 1, and on diagonal −h1 + 6 + 2.

The 1 in A1 must be in column h1+3+1, row y+2, and on diagonal y−h1+6+1,
for some y ∈ H . As this cell cannot be on diagonals h2 + 6+ 1 or h2 + 1, it must be
that y = h1 + h2 + 6, placing the 1 in A1 in row h1 + h2 + 6 + 2, column h1 + 3 + 1,
and on diagonal h2 + 3 + 1. Similarly, the 1 in A2 is in row h2 + 3 + 1, column
h1 + h2 + 6 + 2, and on diagonal −h1 + 3 + 2.

In Figure 3 we depict B′
0 with row and column headings: the cells that are marked

with ×s are the cells that we know have entry 0. As no cell in B0 can be on diagonal
0, the 1s in B0 must be in row h2 + h1 + 2, column h2 + h1 + 3+ 2, and on diagonal
6; and in row h2+h1+3+2, column h2+h1+2, and on diagonal 3. Hence Mθ is an
orthomorphism matrix uniquely determined by h1, h2. Thus |120| = 3 × 3 = 9 and,
hence, by Lemma 3.1, |102| = 9.

h2 + h1 + 2 h2 + h1 + 3 + 2 h2 + h1 + 6 + 2
h2 + h1 + 2 0 6 ×

h2 + h1 + 3 + 2 3 0 ×
h2 + h1 + 6 + 2 × × ×

.

Figure 3: B′
0 for the class 120

The class 111. If θ ∈ C(3, 0, 0), then, for some h1, h2, h3 ∈ H , h1 �= 0, θ(0) = 0,
θ(3) = 1, θ(6) = 2, θ(h2 +1) = h1, and θ(h3 + 2) = −h1. We will see that the choice
of h1, h2, h3 need not uniquely determine θ, equivalently Mθ. We have specified the
partial orthomorphism matrices A0, B1, B2, C1, and C2. It remains to determine
A1, A2, B0, and C0. By Lemma 2.1, each row, column, and diagonal of Mθ contains
exactly one 1. So far we have determined the positions of 1s in rows 0, 1, 2, h1, and
−h1; columns 0, 3, 6, h2+1, and h3+2; and diagonals 0, 6+1, 3+2, h1−h2+6+2,
and −h1 − h3 + 6 + 1. All other entries in these rows, columns, and diagonals must
be 0. As there can only be one 1 on a diagonal h1−h2+6 �= 3 and −h1−h3+6 �= 6.
Thus h2 = h1 + 3 + k1 and h3 = −h1 + k2 for some k1, k2 ∈ H , k1, k2 �= 0.

Figure 4 shows A′
1, A

′
2, B

′
0, and C ′

0 with row and column headings, and rows and
columns, for which the matrices A1, A2, B0, and C0 have only 0 entries, removed.
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h2 + 3 + 1 h2 + 6 + 1 h3 + 3 + 2 h3 + 6+ 2
3 + 1 (−h2) (−h2) + 6 (−h3 + 6 + 2) (−h3 + 6 + 2) + 6
6 + 1 (−h2) + 3 (−h2) (−h3 + 6 + 2) + 3 (−h3 + 6 + 2)
3 + 2 (−h2 + 1) (−h2 + 1) + 6 (−h3) (−h3) + 6
6 + 2 (−h2 + 1) + 3 (−h2 + 1) (−h3) + 3 (−h3)

Figure 4: The matrices A′
1, A

′
2, B

′
0, and C ′

0

For some c0, c1, c2, c3 ∈ H , there is an entry 1 in a cell of C0 on the diagonal
(−h2) + c0, an entry 1 in a cell of A2 on the diagonal (−h3 + 6 + 2) + c1, an entry
1 in a cell of B0 on the diagonal (−h3) + c2, and an entry 1 in a cell of A1 on the
diagonal (−h2 + 1) + c3.

The entries on diagonal 0 of CMθ sum to three and, as the corresponding cells in
Mθ are on distinct diagonals, by Lemma 3.3

0 + (−h2 + c0) + (−h3 + c2) = 0. (1)

Similarly
3 + (h1 − h2 + 6) + (−h3 + 6 + c1) = 0, (2)

and
6 + (−h1 − h3 + 6) + (−h2 + c3) = 0. (3)

If the equations (1), (2), and (3) are satisfied, then, by Lemma 3.3, all cells of Mθ

are on distinct diagonals if and only if

h2 = h1 + 3 + k1, (4)

h3 = −h1 + k2, (5)

and
−h2 + c0 = −h3 + c2 + k3, (6)

for some k3 ∈ H , k3 �= 0.

From equations (1),. . . , (6) we derive the following four equations

c0 = h1 + 3 + (k1 − k3), (7)

c1 = −h1 + 6 + (k1 + k2), (8)

c2 = −h1 + (k2 + k3), (9)

and
c3 = h1 + (k1 + k2). (10)

Note that c0 + c1 + c2 + c3 = 0.
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If we specify h1, k1, k2, and k3, then c0, c1, c2, and c3 are determined by equations
(7), . . . , (10), h2 is determined by equation (4), and h3 by equation (5). It is easy to
then verify that equations (1), (2), and (3) are satisfied. To determine whether these
solutions yield orthomorphisms or not, we need to check that no row or column of
Mθ contains more than one 1. We will see that, in C(3, 0, 0), the solution c0 = c1 =
c2 = c3 = 0 will never occur. If, for some i ∈ {0, 1, 2, 3}, ci = ci+1 �= 0, subscripts
added modulo 4, then some row or column of Mθ must contain two 1s, and hence this
solution yields no orthomorphisms. Any other solution yields exactly one normalized
orthomorphism in C(3, 0, 0). We will determine |C(3, 0, 0)| case by case. There are
two cases, h1 = 6 and h1 = 3.

Case 1: h1 = 6.

If (k2, k3) = (k1, k1), c0 = 0, c1 = −k1, c2 = 3 − k1, and c3 = 6 − k1. If k1 = 3,
then (c0, c1, c2, c3) = (0, 6, 0, 3), and if k1 = 6, then (c0, c1, c2, c3) = (0, 3, 6, 0). This
yields two normalized orthomorphisms in C(3, 0, 0).

If (k2, k3) = (k1,−k1), c0 = −k1 = c1. This yields no normalized orthomorphisms
in C(3, 0, 0).

If (k2, k3) = (−k1, k1), c0 = 0, c1 = 0, c2 = 3, and c3 = 6. This yields one
normalized orthomorphism in C(3, 0, 0) for each value of k1.

If (k2, k3) = (−k1,−k1), c0 = −k1, c1 = 0, c2 = 3+ k1, and c3 = 6. If k1 = 3, then
(c0, c1, c2, c3) = (6, 0, 6, 6), and if k1 = 6, then (c0, c1, c2, c3) = (3, 0, 0, 6) yielding one
normalized orthomorphism in C(3, 0, 0).

Case 1 yields five normalized orthomorphisms in C(3, 0, 0).

Case 2: h1 = 3.

If (k2, k3) = (k1, k1), c0 = 6, c1 = 3− k1, c2 = 6 − k1, and c3 = 3 − k1. If k1 = 3,
then (c0, c1, c2, c3) = (6, 0, 3, 0), and if k1 = 6, then (c0, c1, c2, c3) = (6, 6, 0, 6) yielding
one normalized orthomorphism in C(3, 0, 0).

If (k2, k3) = (k1,−k1), c0 = 6 − k1, c1 = 3 − k1, c2 = 6, and c3 = 3 − k1. If
k1 = 3, then (c0, c1, c2, c3) = (3, 0, 6, 0), and if k1 = 6, then (c0, c1, c2, c3) = (0, 6, 6, 6)
yielding one normalized orthomorphism in C(3, 0, 0).

If (k2, k3) = (−k1, k1), c0 = 6, c1 = 3, c2 = 6, and c3 = 3 yielding one normalized
orthomorphism in C(3, 0, 0) for each value of k1.

If (k2, k3) = (−k1,−k1), c0 = 6 − k1, c1 = 3, c2 = 6 + k1, and c3 = 3. If k1 = 3,
then (c0, c1, c2, c3) = (3, 3, 0, 3), and if k1 = 6, then (c0, c1, c2, c3) = (0, 3, 3, 3) yielding
no normalized orthomorphisms in C(3, 0, 0).

Case 2 yields four normalized orthomorphisms in C(3, 0, 0).

Hence, |C(3, 0, 0)| = 9. By Lemma 3.2, |111| = 18 × |C(3, 0, 0)| = 18× 9 = 162.
It follows that the number of normalized orthomorphisms of Z9 is |300|+2×|210|+
2× |120|+ |111| = 9 + 2× 18 + 2× 9 + 162 = 225. �
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4 Applications to other groups

The group GF (9)+, the additive group of the field of order 9, has 249 normalized
orthomorphisms. This was shown in [2] using the “method of exhaustion”. This
number has been confirmed by computer searches: see. [11], [15], and [16]. The
normalized orthomorphisms of GF (9)+ have been determined theoretically using
permutation polynomials. Each mapping GF (9) → GF (9) can be represented by a
polynomial of reduced degree at most 8, a permutation polynomial if the mapping
is a permutation, and an orthomorphism polynomial if the mapping is an orthomor-
phism. Each orthomorphism polynomial of GF (9)+ has reduced degree at most 6.
Orthomorphism polynomials of degree at most 5 were described in [13], and the or-
thomorphism polynomials of GF (9)+ of degree 6 were described in [14]. There are
81 normalized orthomorphisms of GF (9)+ represented by orthomorphism polynomi-
als of degree at most 5, and 168 normalized orthomorphisms of GF (9)+ represented
by orthomorphism polynomials of degree 6, yielding a total of 249 normalized or-
thomorphisms: see Sections 9.2.2 and 13.3.1 in [5]. The methods of Section 3 are
easily adapted to give another theoretical proof that GF (9)+ has 249 normalized
orthomorphisms.

Let G = GF (9)+ = {ij | i, j ∈ Z3}, and let H = {00, 01, 02} be a subgroup of
index 3. The set D = {00, 10, 20} is a system of distinct coset representatives for H
in G. We will order the elements of G as {00, 01, 02; 10, 11, 12; 20, 21, 22}. As in the
case G = Z9, each normalized orthomorphism of G belongs to one of the classes 300,
210, 201, 120, 102, or 111, and can be represented by an orthomorphism matrix of
the form

Mθ = (Ai0,j0) =

⎛
⎝ A00 B20 C10

B10 C00 A20

C20 A10 B00

⎞
⎠ ,

i, j = 0, 1, 2. As in the case G = Z9, for X one of A, B, C, let us form a matrix X ′
k0

from Xk0 by making each entry in a cell of X ′
k0 the diagonal the corresponding cell

of Xk0 is on.

As in Lemma 3.1, we can reduce the number of classes that we need to deal with.

Lemma 4.1 |210| = |201| and |120| = |102|.

Proof: Let α ∈ Aut(G) be defined by α(ij) = (−i)j. Then, as in Lemma 3.1,
Hα acts as a bijection between the set of normalized orthomorphisms in the class
210 and the set of normalized orthomorphisms in the class 201, and also acts as a
bijection between the set of normalized orthomorphisms in the class 120 and the set
of normalized orthomorphisms in the class 102. �

For the class 111, set C(h1) = {θ ∈ class 111 | θ(00) = 00, θ(0h1) = 1h2,
θ(0(−h1)) = 2h3 for some h2, h3 ∈ Z3}, h1 ∈ Z3, h1 �= 0. The reflection can be used
to reduce the problem of determining |111| to that of determining |C(1)|.
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Lemma 4.2 |111| = 2× |C(1)|.

Proof: The reflection R acts as a bijection between C(1) and C(2). �

Theorem 4.1 GF (9)+ has 249 normalized orthomorphisms.

Proof: As in the proof of Theorem 3.1, we will compute |abc| for each class abc, using
Lemmas 4.1 and 4.2 to reduce the amount of computation.

The class 300. The proof that |300| = 9 is identical to the proof in the proof of
Theorem 3.1.

The classes 210 and 201. If θ is a normalized orthomorphism in the class 210, then,
for some h1, h2, h3 ∈ Z3, h1 �= 0, θ(00) = 00, θ(0h1) = 0(−h1), θ(0(−h1)) = 1h2,
and θ(1h3) = 0h1. For each choice of h1, h2, h3, θ, equivalently Mθ, is uniquely
determined: the proof of this is identical to the proof in the proof of Theorem 3.1.
Thus |210| = 2× 3× 3 = 18 and, hence, by Lemma 4.1, |201| = 18.

The classes 120 and 102. If θ is a normalized orthomorphism in the class 120,
then, for some h1, h2 ∈ Z3, θ(00) = 00, θ(1h1) = 01, and θ(01) = 1h2. For each
choice of h1, h2, θ, equivalently Mθ, is uniquely determined: the proof of this is very
similar to the proof in the proof of Theorem 3.1. Thus |120| = 3× 3 = 9 and, hence,
by Lemma 4.1, |102| = 9.

The class 111. If θ ∈ C(1), then, for some h1, h2, h3, h4, h5 ∈ Z3, h5 �= 0, θ(00) = 00,
θ(01) = 1h1, θ(02) = 2h2, θ(1h3) = 0h5, and θ(2h4) = 0(−h5).

We will see that the choice of h1, h2, h3 need not uniquely determine θ, equivalently
Mθ. We have specified the partial orthomorphism matrices A00, B10, B20, C10, and
C20. It remains to determine A10, A20, B00, and C00. By Lemma 2.1, each row,
column, and diagonal of Mθ contains exactly one 1. So far we have determined the
positions of 1s in rows 00, 1h1, 2h2, 0h5, and 0(−h5); columns 00, 01, 02, 1h3, and
2h4; and diagonals 00, 2(h5 − h3), 1(−h5 − h4), 1(h1 − 1), and 2(h2 + 1). All other
entries in these rows, columns, and diagonals must be 0. Note that, as there can
only be one 1 on a diagonal h1 − 1 �= −h5 − h4 and h2 + 1 �= h5 − h3.

Figure 5 shows A′
10, A

′
20, B

′
00, and C ′

00 with row and column headings, where the
rows and columns, for which the matrices A10, A20, B00, and C00 have only 0 entries,
removed.

For some c0, c1, c2, c3 ∈ Z3, there is an entry 1 in a cell of C00 on the diagonal
0(h1 − h3 + c0), an entry 1 in a cell of A20 on the diagonal 2(h1 − h4 + c1), an entry
1 in a cell of B00 on the diagonal 0(h2 − h4 + c2), and an entry 1 in a cell of A10 on
the diagonal 1(h2 − h3 + c3).

The entries on diagonal 0 of CMθ sum to three and, as the corresponding cells in
Mθ are on distinct diagonals, by Lemma 3.3

0 + (h1 − h3 + c0) + (h2 − h4 + c2) = 0. (11)
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1(h3 + h5) 1(h3 − h5) 2(h4 + h5) 2(h4 − h5)
1(h1 + h5) 0(h1 − h3) 0(h1 − h3 − h5) 2(h1 − h4) 2(h1 − h4 − h5)
1(h1 − h5) 0(h1 − h3 + h5) 0(h1 − h3) 2(h1 − h4 + h5) 2(h1 − h4)
2(h2 + h5) 1(h2 − h3) 1(h2 − h3 − h5) 0(h2 − h4) 0(h2 − h4 − h5)
2(h2 − h5) 1(h2 − h3 + h5) 1(h2 − h3) 0(h2 − h4 + h5)3 0(h2 − h4)

Figure 5: The matrices A′
10, A

′
20, B

′
00, and C ′

00

Similarly
(h2 + 1) + (h5 − h3) + (h1 − h4 + c1) = 0, (12)

and
(h1 − 1) + (−h5 − h4) + (h2 − h3 + c3) = 0. (13)

If the equations (11), (12), and (13) are satisfied, then, by Lemma 3.3, all cells of
Mθ are on distinct diagonals if and only if

h1 − h3 + c0 = k1, (14)

h5 − h3 = h2 + 1 + k2, (15)

and
−h5 − h4 = h1 − 1 + k3, (16)

for some k1, k2, k3 ∈ Z3 \ {0}.
From equations (11),. . . , (16) we derive the following four equations

c0 = −k + h5 − 1 + (k1 − k2), (17)

c1 = k − h5 − 1− (k2 + k3), (18)

c2 = −k − h5 + 1− (k1 + k3), (19)

and
c3 = k + h5 + 1− (k2 + k3), (20)

where k = h1 + h2. Note that, as in Theorem 3.1, c0 + c1 + c2 + c3 = 0.

As in the proof of Theorem 3.1, if we specify h1, h2, h5, k1, k2, and k3, then c0, c1,
c2, and c3 are determined by equations (17), . . . , (20), h3 is determined by equation
(15), and h4 by equation (16). It is easy to then verify that equations (11), (12),
and (13) are satisfied. In what follows we will specify k, h5, k1, k2, and k3 instead.
Note that each value of k determines three values of (h1, h2). Thus, as in the proof of
Theorem 3.1, to determine whether these solutions yield orthomorphisms or not, we
need to check that no row or column of Mθ contains more than one 1. In particular,
we obtain six normalized orthomorphisms in C(1) when c0 = c1 = c2 = c3 = 0: no
orthomorphisms if, for some i ∈ {0, 1, 2, 3}, ci = ci+1 �= 0, subscripts added modulo



A.B. EVANS/AUSTRALAS. J. COMBIN. 86 (1) (2023), 206–221 218

4; and three normalized orthomorphisms in C(1) for any other solution. We will
determine |C(1)| case by case. There are three cases, k = 0, k = 1, and k = 2.

Case 1: k = 0.

Subcase 1i: h5 = 1.

If (k2, k3) = (k1, k1), c0 = 0, c1 = 1 + k1, c2 = k1, and c3 = 2+ k1. If k1 = 1, then
(c0, c1, c2, c3) = (0, 2, 1, 0), and if k1 = 2, then (c0, c1, c2, c3) = (0, 0, 2, 1). This yields
six normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 0, c1 = 1, c2 = 0, and c3 = 2. This yields three
normalized orthomorphisms in C(1) for each choice of k1.

If (k2, k3) = (−k1, k1), c0 = −k1, c1 = 1, c2 = k1, and c3 = 2. This yields no
normalized orthomorphisms in C(1).

If (k2, k3) = (−k1,−k1), c0 = −k1, c1 = 1 − k1, c2 = 0, and c3 = 2 − k1. If
k1 = 1, then (c0, c1, c2, c3) = (2, 0, 0, 1), and if k1 = 2, then (c0, c1, c2, c3) = (1, 2, 0, 0)
yielding six normalized orthomorphisms in C(1).

Subcase 1i yields eighteen normalized orthomorphisms in C(1).

Subcase 1ii: h5 = 2.

If (k2, k3) = (k1, k1), c0 = 1, c1 = k1, c2 = 2 + k1, and c3 = k1. If k1 = 1, then
(c0, c1, c2, c3) = (1, 1, 0, 1), and if k1 = 2, then (c0, c1, c2, c3) = (1, 2, 1, 2). This yields
three normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 1, c1 = 0, c2 = 2, and c3 = 0. This yields three
normalized orthomorphisms in C(1) for each choice of k1.

If (k2, k3) = (−k1, k1), c0 = 1− k1, c1 = 0, c2 = 2+ k1, and c3 = 0. If k1 = 1, then
(c0, c1, c2, c3) = (0, 0, 0, 0), and if k1 = 2, then (c0, c1, c2, c3) = (2, 0, 1, 0). This yields
nine normalized orthomorphisms in C(1).

If (k2, k3) = (−k1,−k1), c0 = 1 − k1, c1 = −k1, c2 = 2, and c3 = −k1. If k1 = 1,
then (c0, c1, c2, c3) = (0, 2, 2, 2), and if k1 = 2, then (c0, c1, c2, c3) = (2, 1, 2, 1) yielding
three normalized orthomorphisms in C(1).

Subcase 1ii yields twenty one normalized orthomorphisms in C(1).

Case 2: k = 1.

Subcase 2i: h5 = 1.

If (k2, k3) = (k1, k1), c0 = 2, c1 = 2 + k1, c2 = 2+ k1, and c3 = k1. If k1 = 1, then
(c0, c1, c2, c3) = (2, 0, 0, 1), and if k1 = 2, then (c0, c1, c2, c3) = (2, 1, 1, 2). This yields
three normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 2, c1 = 2, c2 = 2, and c3 = 0. This yields no
normalized orthomorphisms in C(1).

If (k2, k3) = (−k1, k1), c0 = 2− k1, c1 = 2, c2 = 2+ k1, and c3 = 0. If k1 = 1, then
(c0, c1, c2, c3) = (1, 2, 0, 0), and if k1 = 2, then (c0, c1, c2, c3) = (0, 2, 1, 0) yielding six
normalized orthomorphisms in C(1).
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If (k2, k3) = (−k1,−k1), c0 = 2 − k1, c1 = 2 − k1, c2 = 2, and c3 = −k1. If
k1 = 1, then (c0, c1, c2, c3) = (1, 1, 2, 2), and if k1 = 2, then (c0, c1, c2, c3) = (0, 0, 2, 1)
yielding three normalized orthomorphisms in C(1).

Subcase 2i yields twelve normalized orthomorphisms in C(1).

Subcase 2ii: h5 = 2.

If (k2, k3) = (k1, k1), c0 = 0, c1 = 1 + k1, c2 = 1 + k1, and c3 = 1 + k1. If k1 = 1,
then (c0, c1, c2, c3) = (0, 2, 2, 2), and if k1 = 2, then (c0, c1, c2, c3) = (0, 0, 0, 0). This
yields six normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 0, c1 = 1, c2 = 1, and c3 = 1. This yields no
normalized orthomorphisms in C(1).

0If (k2, k3) = (−k1, k1), c0 = −k1, c1 = 1, c2 = 1 + k1, and c3 = 1. If k1 = 1, then
(c0, c1, c2, c3) = (2, 1, 2, 1), and if k1 = 2, then (c0, c1, c2, c3) = (1, 1, 0, 1). This yields
three normalized orthomorphisms in C(1).

If (k2, k3) = (−k1,−k1), c0 = −k1, c1 = 1 − k1, c2 = 1, and c3 = 1 − k1. If
k1 = 1, then (c0, c1, c2, c3) = (2, 0, 1, 0), and if k1 = 2, then (c0, c1, c2, c3) = (1, 2, 1, 2)
yielding six normalized orthomorphisms in C(1).

Subcase 2ii yields fifteen normalized orthomorphisms in C(1).

Case 3: k = 2.

Subcase 3i: h5 = 1.

If (k2, k3) = (k1, k1), c0 = 1, c1 = k1, c2 = 1 + k1, and c3 = 1+ k1. If k1 = 1, then
(c0, c1, c2, c3) = (1, 1, 2, 2), and if k1 = 2, then (c0, c1, c2, c3) = (1, 2, 0, 0). This yields
three normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 1, c1 = 0, c2 = 1, and c3 = 1. This yields three no
orthomorphisms in C(1).

If (k2, k3) = (−k1, k1), c0 = 1− k1, c1 = 0, c2 = 1+ k1, and c3 = 1. If k1 = 1, then
(c0, c1, c2, c3) = (0, 0, 2, 1), and if k1 = 2, then (c0, c1, c2, c3) = (2, 0, 0, 1) yielding six
normalized orthomorphisms in C(1).

If (k2, k3) = (−k1,−k1), c0 = 1 − k1, c1 = −k1, c2 = 1, and c3 = 1 − k1. If
k1 = 1, then (c0, c1, c2, c3) = (0, 2, 1, 0), and if k1 = 2, then (c0, c1, c2, c3) = (2, 1, 1, 2)
yielding three normalized orthomorphisms in C(1).

Subcase 3i yields twelve normalized orthomorphisms in C(1).

Subcase 3ii: h5 = 2.

If (k2, k3) = (k1, k1), c0 = 2, c1 = 2 + k1, c2 = k1, and c3 = 2+ k1. If k1 = 1, then
(c0, c1, c2, c3) = (2, 0, 1, 0), and if k1 = 2, then (c0, c1, c2, c3) = (2, 1, 2, 1). This yields
six normalized orthomorphisms in C(1).

If (k2, k3) = (k1,−k1), c0 = 2, c1 = 2, c2 = 0, and c3 = 2. This yields no
normalized orthomorphisms in C(1).
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If (k2, k3) = (−k1, k1), c0 = 2 − k1, c1 = 2, c2 = k1, and c3 = 2. If k1 = 1, then
(c0, c1, c2, c3) = (1, 2, 1, 2), and if k1 = 2, then (c0, c1, c2, c3) = (0, 2, 2, 2). This yields
three normalized orthomorphisms in C(1).

If (k2, k3) = (−k1,−k1), c0 = 2 − k1, c1 = 2 − k1, c2 = 0, and c3 = 2 − k1. If
k1 = 1, then (c0, c1, c2, c3) = (1, 1, 0, 1), and if k1 = 2, then (c0, c1, c2, c3) = (0, 0, 0, 0)
yielding six normalized orthomorphisms in C(1).

Subcase 3ii yields fifteen normalized orthomorphisms in C(1).

Thus |C(1)| = 18 + 21 + 12 + 15 + 12 + 15 = 93. It follows that the number of
normalized orthomorphisms of GF (9) is |300|+ 2× |210|+ 2× |120|+ 2× |C(1)| =
9 + 2× 18 + 2× 9 + 2× 93 = 249. �

The classification and methods of Sections 2 and 3 can, in principle, be applied
to any group of order 3n with a normal subgroup of index 3. Each normalized
orthomorphism of such a group is in a class abc, for some a, b, c ≥ 0, a �= 0. The
number of such classes is

(
n+1
2

)
, the coefficient of xn in (x + x2 + x3 + . . . )(1 + x +

x2 + . . . )2.

The next smallest groups, with normal subgroups of index 3, for which the num-
ber of normalized orthomorphisms has not been explained theoretically are of orders
12 and 15. There are two groups of order 12 that have non-cyclic Sylow 2-subgroups
and normal subgroups of index 3, Z2 × Z6 and A4, and there is one group of order
15, Z15. In [3] , using the “method of exhaustion”, A4 was found to have 3, 776 nor-
malized orthomorphisms, whereas subsequent computer searches found the number
to be 3, 840: see [6], [12], and [17]. Computer searches reported in [10], [11], [16],
and [17] found Z2 × Z6 to have 16, 512 normalized orthomorphisms, and computer
searches reported in [12], [15], and [16] found Z15 to have 2, 424, 195 normalized
orthomorphisms.
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