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Abstract

In this paper, we investigate pattern avoidance of parity restricted (even
or odd) Grassmannian permutations for patterns of sizes 3 and 4. We
use a combination of direct counting and bijective techniques to provide
recurrence relations, closed formulas, and generating functions for their
corresponding enumerating sequences. In addition, we establish some
connections to Dyck paths, directed multigraphs, weak compositions, and
certain integer partitions.

1 Introduction

A Grassmannian permutation is a permutation having at most one descent. Note
that a permutation π is Grassmannian if and only if its reverse complement πrc is
Grassmannian. We refer to the book by Kitaev [2] for basic definitions of permuta-
tions and pattern avoidance.

We let Gn denote the set of Grassmannian permutations on [n] = {1, . . . , n}. This
set is in bijection with the set of Dyck paths of semilength n having at most one long
ascent.1 We will call them Grassmannian Dyck paths. Further, we let Gn(σ) denote
the set of elements in Gn that avoid the pattern σ, and let G ∗

n (σ) = Gn(σ)\{idn}. The
enumeration of Gn(σ) for a pattern σ of arbitrary size was studied in [1]. Clearly,
Gn(σ) = Gn whenever des(σ) > 1. If des(σ) = 1, we have the following general result.

Theorem 1.1 ([1, Thm. 3.1]) If k ≥ 3 and σ ∈ Sk with des(σ) = 1, then

|Gn(σ)| = 1 +

k∑
j=3

(
n

j − 1

)
for n ∈ N.

1An explicit bijection can be found in [1, Section 4].
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In this paper, we will study the subset of pattern-avoiding Grassmannian permu-
tations with an additional parity restriction. Recall that a permutation is said to be
even if it has an even number of inversions (occurrences of the pattern 21); otherwise
the permutation is said to be odd. As discussed in [1, Remark 5.2],

|G even
n | = 2n−1 + 2�

n−1
2

� − n and |G odd
n | = 2n−1 − 2�

n−1
2

�.

Proposition 1.2 ([1, Prop. 5.1]) The set G odd
n is in bijection to the set of Grass-

mannian Dyck paths of semilength n having an odd number of peaks at even height.
On the other hand, the elements of G even

n correspond to Grassmannian Dyck paths
with an even number of peaks at even height.

As it turns out, the enumeration of G odd
n (σ) (or G even

n (σ)) leads to multiple Wilf
equivalence classes. Because of Theorem 1.1, it suffices to only enumerate the odd
or the even pattern-avoiding Grassmannian permutations. We will focus on odd
permutations and will prove that if des(σ) = 1, there are two equivalence classes for
G odd
n (σ) when |σ| = 3 (Table 1) and five equivalence classes when |σ| = 4 (Table 2).

For patterns of sizes 5, 6, and 7, there appear to be three, seven, and four Wilf
equivalence classes, respectively.

Pattern σ |G odd
n (σ)| Gen. function OEIS

123 0, 1, 2, 1, 0, 0, . . .

132
213

0, 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, 21, . . . x2

(1−x)3(1+x)2
A008805

231
312

0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, . . . x2

(1−x)3(1+x)
A002620

|G even
n (σ)|

123 1, 1, 2, 1, 0, 0, . . .

132
213

1, 1, 3, 4, 8, 10, 16, 19, 27, 31, 41, 46, . . . x+x4+x5

(1−x)3(1+x)2 A131355

231
312

1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, . . . x−x2+x4

(1−x)3(1+x) A033638

Table 1

The paper is structured as follows. In Section 2, we warm up with the avoidance
of patterns of size 3. We give closed formulas for the two nontrivial Wilf equivalence
classes and give simple combinatorial interpretations in terms of Grassmannian Dyck
paths. In Section 3, we discuss patterns of size 4 with exactly one descent and use
bijective methods to derive closed formulas and recurrence relations for the enumer-
ation of the corresponding pattern-avoiding Grassmannian permutations. Finally, in
Section 4, we conclude with interesting combinatorial interpretations for G odd

n (2413)
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Pattern σ |G odd
n (σ)| Gen. function OEIS

1234 0, 1, 2, 6, 4, 3, 0, 0, . . .

1243, 2134
2341, 4123

0, 1, 2, 5, 9, 16, 25, 38, 54, 75, . . . x2(1+x3)
(1−x)4(1+x)2 A175287

1324 0, 1, 2, 5, 8, 16, 20, 38, 40, 75, . . . x2(1+2x+x2+2x4)
(1−x)4(1+x)4

A361270

1342, 3124 0, 1, 2, 6, 9, 19, 25, 44, 54, 85, . . . x2(1+x+x2+x4)
(1−x)4(1+x)3 A361271

1423, 2314
3412

0, 1, 2, 6, 10, 19, 28, 44, 60, 85, . . . x2(1+x2)
(1−x)4(1+x)2

A005993

2413 0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, . . . x2

(1−x)4(1+x)2 A006918

|G even
n (σ)|

1234 1, 1, 3, 5, 6, 2, 0, 0, . . .

1243, 2134
2341, 4123

1, 1, 3, 6, 12, 20, 32, 47, 67, 91, . . . x−2x2+2x3+x4−x5

(1−x)4(1+x) A361272

1324 1, 1, 3, 6, 13, 20, 37, 47, 81, 91, . . . x+x2−x3+2x4+7x5+2x6−x7−x8

(1−x)4(1+x)4
A361273

1342, 3124 1, 1, 3, 5, 12, 17, 32, 41, 67, 81, . . . x−x3+2x4+4x5−x6−x7

(1−x)4(1+x)3 A361274

1423, 2314
3412

1, 1, 3, 5, 11, 17, 29, 41, 61, 81, . . . x−x2+2x4+x5−x6

(1−x)4(1+x)2
A361275

2413 1, 1, 3, 6, 13, 22, 37, 55, 81, 111, . . . x−x2+3x4+x5−x6

(1−x)4(1+x)2
A361276

Table 2

and G odd
n (3412). We give a bijection between the first set and the set of integer par-

titions of n+ 2 having Durfee square2 of size 2. In addition, for n ≥ 2, we provide a
bijection between G odd

n (3412) and the set of multidigraphs on two nodes having n−2
edges.

Regarding future research directions, we believe that the techniques used here and
in our previous paper [1] can be applied to discuss parity restricted Grassmannian
permutations avoiding patterns of larger sizes. Studying such permutations might
shed some light into a possible unifying approach for their enumeration.

2 Patterns of size 3

We start by noting that, by means of the reverse complement map, we have

|G odd
n (132)| = |G odd

n (213)| and |G odd
n (231)| = |G odd

n (312)|.
2Largest square that is contained within the partition’s Ferrers diagram; see [4], [5].
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We will provide closed formulas for |G odd
n (132)| and |G odd

n (312)|, as well as interpre-
tations for all four patterns in terms of Grassmannian Dyck paths.

Theorem 2.1 For n ≥ 2 we have

|G odd
n (132)| =

(�n
2
�+ 1

2

)
.

Proof: Excluding the identity, any Grassmannian permutation that avoids 132 must
be of the form

(i+ 1) · · ·m︸ ︷︷ ︸
τ1

1 · · · i︸ ︷︷ ︸
τ2

(m+ 1) · · ·n︸ ︷︷ ︸
τ3

with i,m ∈ {1, . . . , n}, i < m,

where τ3 = ε (the empty word) if m = n. Note that m1 forms the unique descent of
the permutation. The permutation is odd if and only if the product |τ1| · |τ2| is odd.
This implies m is even and i is odd.

If n = 2k, we can construct the elements of G odd
n (132) by placing m ∈ {2, 4, . . . , 2k}

at position d ∈ {1, 3, . . . , 2k − 1}, with the restriction that m > d. Thus, there are

k + (k − 1) + · · ·+ 2 + 1 =
k(k + 1)

2
=

(
n
2
+ 1

2

)

even-sized such permutations. Alternatively, note that since m is even and i is odd,
every permutation in G odd

n (132) corresponds to a choice of two elements i′ < m′ from
[n
2
+ 1], where i = 2i′ − 1 and m = 2m′ − 2.

If n is odd, the entry n cannot be part of the descent, so every element of G odd
n (132)

can be created by appending n at the end of a corresponding permutation of size
n− 1. Thus,

|G odd
n (132)| =

{(n
2
+1
2

)
if n is even,

|G odd
n−1(132)| if n is odd,

which gives the claimed formula. �

The following two propositions are immediate consequences of the bijections dis-
cussed in [1, Prop. 4.1 & Prop. 5.1].

Proposition 2.2 The elements of G odd
n (132) are in one-to-one correspondence with

the odd Grassmannian Dyck paths of semilength n that begin with a long ascent and
have exactly one long descent.

Proposition 2.3 The elements of G odd
n (213) are in one-to-one correspondence with

the odd Grassmannian Dyck paths of semilength n that have exactly one long ascent
and one long descent, with no peak after the long descent.



J.B. GIL AND J.A. TOMASKO/AUSTRALAS. J. COMBIN. 86 (1) (2023), 187–205 191

2 1 3 4 5 6 2 3 4 1 5 6 2 3 4 5 6 1

4 1 2 3 5 6 4 5 6 1 2 3 6 1 2 3 4 5

Figure 1: Elements of G odd
6 (132) and their Dyck paths.

1 2 3 4 6 5 1 2 4 5 6 3 1 2 6 3 4 5

2 3 4 5 6 1 4 5 6 1 2 3 6 1 2 3 4 5

Figure 2: Elements of G odd
6 (213) and their Dyck paths.

Theorem 2.4 For n ≥ 2 we have

|G odd
n (312)| =

(�n−1
2
� + 1

2

)
+

(�n
2
� + 1

2

)
.

Proof: Excluding the identity, any Grassmannian permutation that avoids 312 can
be written as

1 · · · (i− 1)︸ ︷︷ ︸
τ1

(i+ 1) · · ·m︸ ︷︷ ︸
τ2

i (m+ 1) · · ·n︸ ︷︷ ︸
τ3

with i,m ∈ {1, . . . , n}, i < m,

where τ1 = ε if i = 1, and τ3 = ε if m = n. Moreover, the permutation is odd if and
only if |τ2| is an odd number.

Since |Gn(312)| =
(
n
2

)
+ 1,(
n

2

)
+ 1 = |G odd

n (312)|+ |G even,∗
n (312)|+ 1.

where G even,∗
n (312) = G even

n (312)\{idn}. Define α : G even,∗
n (312) → G odd

n−1(312) as
follows.

Let τ ∈ G even,∗
n (312), so |τ2| ≥ 2. If m = n (i.e. τ3 = ε), we let α(τ) be the

permutation in Gn−1(312) obtained by removing n from τ . This reduces τ2 by one,
so α(τ) is odd.
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If m < n (τ3 �= ε), then τ has n at the end. In this case, we let α(τ) be the
permutation obtained by removing n from τ and moving the entry m to the right
of i. Again, α(τ) is in Gn−1(312) and has one less inversion than τ , so α(τ) is odd.
Note that τ ends with a descent (τ3 = ε) if and only if α(τ) does. In other words,
the map α is reversible.

Now, since G odd
n−1(312)

∼= G even,∗
n (312), we conclude

|G odd
n (312)| =

(
n

2

)
− |G odd

n−1(312)|.

This relation leads to the generating function given in Table 1, which is (x + 1)
times the generating function for |G odd

n (132)|. So, the stated formula follows from
Theorem 2.1. �

The following two propositions can be easily verified.

Proposition 2.5 The elements of G odd
n (312) are in one-to-one correspondence with

the odd Grassmannian Dyck paths of semilength n that have no valleys above height
zero.

1 2 3 5 4 1 2 4 3 5 1 3 2 4 5

1 3 4 5 2 2 1 3 4 5 2 3 4 1 5

Figure 3: Elements of G odd
5 (312) and their Dyck paths.

Proposition 2.6 The elements of G odd
n (231) are in one-to-one correspondence with

the odd Grassmannian Dyck paths of semilength n that have no peaks above height
two.

1 2 3 5 4 1 2 4 3 5 1 3 2 4 5

1 5 2 3 4 2 1 3 4 5 4 1 2 3 5

Figure 4: Elements of G odd
5 (231) and their Dyck paths
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3 Patterns of size 4

Once again, recall that |G odd
1 (σ)| = 0 and |G odd

2 (σ)| = 1 for any σ with |σ| ≥ 3.

Theorem 3.1 For σ ∈ {1243, 2134, 2341, 4123} and n ≥ 2, we have

|G odd
n (σ)| =

(
n

3

)
+ n− 1− |G odd

n−1(σ)|.

Proof: We will focus on the patterns 2341 and 1243. The reverse complement map
gives the statement for the other two patterns.

Observe that every τ ∈ Gn(2341), excluding the identity, must be of the form

k

�

or

if τ avoids 231 if τ contains 231

j

k

�

where a line segment (solid or dashed) represents an increasing sequence of consec-
utive numbers, and the length of the dashed portion (black & orange) determines
the parity of the permutation. For instance, such a permutation is odd if and only
if the dashed segment has odd length. Note that every permutation in G odd

n−1(2341)
gives rise to a unique permutation in G even

n (2341), created by adding one element to
its dashed segment. Moreover, the only even permutations of size n that cannot be
generated through this process are those for which the dashed segment is actually
empty. Let An denote the set of such permutations. We have idn ∈ An, and if
τ ∈ An is not the identity, then it must be of the form

τ = τ1 j (j + 1) � τ2τ3 with j, � ∈ {1, 2, . . . , n− 1} and j > �,

where every τi is either ε or an increasing run of consecutive numbers. There are(
n−1
2

)
such permutations, hence |G even

n (2341)| = |G odd
n−1(2341)|+

(
n−1
2

)
+1. Therefore,

|G odd
n (2341)| = |Gn(2341)| − |G even

n (2341)|
= 1 +

(
n

2

)
+

(
n

3

)
− |G odd

n−1(2341)| −
(
n− 1

2

)
− 1

=

(
n

3

)
+ n− 1− |G odd

n−1(2341)|.

On the other hand, every permutation in Gn(1243) must be of one of the following
forms:
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j

k

�

(a) j τ1 k τ2τ3 � τ4 (b) 1 τ1 k τ3 � τ4 (c) τ1 k τ2 � τ4

k

�

k

�

Every τ ∈ G even,∗
n−1 (1243) gives rise to a unique permutation γ(τ) in G odd

n (1243),
constructed as follows:

	 If |τ1| is even, increase each term greater than � by one and insert � + 1 at the
position to the right of �. For example, γ(2567134) = 26781345, γ(1456237) =
15672348, and γ(5671234) = 67812345.

	 If τ is of type (a) or (b) and |τ1| is odd, increase each element by one and insert
1 at the position of the descent of τ . For instance, we have γ(245136) = 3561247
and γ(145236) = 2561347.

	 If τ is of type (c) and |τ1| is odd, increase each element greater than � + 1 by
one and insert �+2 at the position to the right of �. For example, γ(345612) =
3567124.

In all three cases, the above algorithm creates an odd number of new inversions, so
τ and γ(τ) have different parity.

Let Bn be the set of elements in G odd
n (1243) of the form 1 τ1 k 2 τ4 or τ1 k 1 τ4. These

are special cases of permutations of type (b) and (c), and they cannot be created
from an element in G even,∗

n−1 (1243) through the above algorithm. Every odd 1 < k ≤ n
produces an odd permutation of the form 1 τ1 k 2 τ4, so there are �n−1

2
� of them. On

the other hand, every even k ≤ n gives an odd permutation of the form τ1 k 1 τ4, so
there are �n

2
� of those. In conclusion, |Bn| = �n−1

2
�+ �n

2
� = n− 1.

Finally, it is easy to see that γ : G even,∗
n−1 (1243) → G odd

n (1243)\Bn is bijective, hence

|G odd
n (1243)| = |G even,∗

n−1 (1243)|+ n− 1.

The claimed formula follows from the fact that |G even,∗
n−1 (σ)| = (

n
3

)− |G odd
n−1(σ)|. �

Before discussing the next set of patterns, recall that if |σ| = 4 and des(σ) = 1,
then |G ∗

n (σ)| =
(
n+1
3

)
. In other words, for n ≥ 2, the set G ∗

n (σ) is equinumerous with
the set W4(n− 2) of weak compositions of n− 2 having 4 parts. For example, every
permutation τ ∈ G ∗

n (3412) must be of the form

k

�
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and can be written as
τ = τ1τ2 k � τ3τ4 with k > �.

Similarly, every τ ∈ G ∗
n (1423) is of the form

k

�

and can be written as
τ = τ1τ2 k τ3 � τ4 with k > �.

In both cases, the map
Λσ(τ) = (|τ1|, |τ2|, |τ3|, |τ4|)

gives a bijection G ∗
n (σ) → W4(n− 2). Moreover,

τ ∈ Gn(3412) is odd ⇐⇒ |τ2| ≡ |τ3| (mod 2),

τ ∈ Gn(1423) is odd ⇐⇒ (|τ1|+ |τ2|+ 1)|τ3|+ |τ2| ≡ 0 (mod 2). (3.1)

Theorem 3.2 For σ ∈ {1423, 2314, 3412} and n ≥ 1, we have

|G odd
2n−1(σ)| =

1

2

(
2n

3

)
and |G odd

2n (σ)| = 1

2

[(
2n+ 1

3

)
+ n

]
.

Proof: For simplicity of notation, we write Λ = Λσ. For t̂ = (t1, t2, t3, t4) with ti ≥ 0,
let

φ(t̂) =

⎧⎪⎨
⎪⎩
(t1, t2, t3 + 1, t4 − 1) if t3 even and t4 > 0,

(t1 − 1, t2 + 1, t3, t4) if t3 even and t4 = 0,

(t1, t2, t3 − 1, t4 + 1) if t3 odd.

If t̂ = Λ(τ) with τ ∈ G odd
2n−1(3412), then t2 ≡ t3 (mod 2), and so φ(t̂)2 �≡ φ(t̂)3

(mod 2). Moreover, in this case,
∑
ti is odd, so if t2 and t3 are both even and

t4 = 0, then t1 must be odd and thus greater than 0. In conclusion, Λ−1(φ(t̂)) is an
element of G even,∗

2n−1 (3412). Clearly, the map φ : Λ(G odd
2n−1(3412)) → Λ(G even,∗

2n−1 (3412)) is
invertible and

Λ−1 ◦ φ ◦ Λ : G odd
2n−1(3412) → G even,∗

2n−1 (3412)

is a bijection. Let A2n be the set of permutations τ ∈ G odd
2n (3412) with τ1 = τ4 = ε

and such that |τ2| ≡ |τ3| ≡ 0 (mod 2). For example,

A8 = {81234567, 23814567, 23458167, 23456781}.
We have |A2n| = n, and if τ �∈ A2n, then Λ(τ) cannot be of the form (0, t2, t3, 0)
with t3 even. The above map φ gives a bijection Λ−1 ◦ φ ◦ Λ : G odd

2n (3412)\A2n →
G even,∗
2n (3412).
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In conclusion,

|G odd
2n−1(3412)| = |G even

2n−1(3412)| − 1, |G odd
2n (3412)| = |G even

2n (3412)|+ n− 1,

and the claimed formulas for σ = 3412 both follow from the identities |Gm(σ)| =
1 +

(
m+1
3

)
and |Gm(σ)| = |G even

m (σ)|+ |G odd
m (σ)|.

The case when σ = 1423 can be treated similarly. For t̂ = (t1, t2, t3, t4), we now
define

ψ(t̂) =

{
(t1 − 1, t2 + 1, t3, t4) if t1 > 0,

(t2, 0, t3 + 1, t4 − 1) if t1 = 0.

If t̂ = Λ(τ) with τ ∈ G odd
2n−1(1423), (3.1) implies (t1 + t2 + 1)t3 + t2 ≡ 0 (mod 2). If

t1 > 0, then (ψ(t̂)1 + ψ(t̂)2 + 1)ψ(t̂)3 + ψ(t̂)2 ≡ 1 (mod 2). If t1 = 0, then t2 and t3
must both be even, so ψ(t̂)3 is odd and again (ψ(t̂)1 + ψ(t̂)2 + 1)ψ(t̂)3 + ψ(t̂)2 ≡ 1
(mod 2). Moreover, since

∑
ti is odd, t4 must be odd and thus greater than 0. In

conclusion,
Λ−1 ◦ ψ ◦ Λ : G odd

2n−1(1423) → G even,∗
2n−1 (1423)

is a bijective map. Now, let B2n consist of all τ ∈ G odd
2n (1423) with τ1 = τ4 = ε. For

example, B8 = {81234567, 67812345, 45678123, 23456781}. Clearly, |B2n| = n, and ψ
gives a bijection Λ−1 ◦ ψ ◦ Λ : G odd

2n (1423)\B2n → G even,∗
2n (1423). Note that if τ �∈ B2n

and t1 = 0, then t4 > 0. From here, we can argue as for σ = 3412.

Finally, the statement for σ = 2314 follows using the reverse complement map. �

Theorem 3.3 For n ≥ 2 we have

|G odd
n (2413)| = |G odd

n−1(2413)|+
(�n

2
� + 1

2

)
.

Proof: Let En be the set of permutations in G odd
n (2413) that contain a 132 pattern.

Then, since Sn(132) ⊂ Sn(2413), we have |G odd
n (2413)| = |En|+ |G odd

n (132)|.
Clearly, for every element τ ∈ G odd

n−1(2413), we have 1 ⊕ τ ∈ En. On the other hand,
every permutation in En must start with 1 (otherwise, 1 would be part of the descent
creating a 2413 pattern). In other words, the map τ �→ 1 ⊕ τ gives a bijection from
G odd
n−1(2413) to En, and the statement of the theorem follows by means of Theorem 2.1.

�

Theorem 3.4 For n ≥ 1 we have

|G odd
2n−1(1324)| = |G odd

2n−1(2413)| and |G odd
2n (1324)| = |G odd

2n (2134)|.

Proof: To prove both identities we will provide explicit bijections between the sets
involved. We start by pointing out that the plot of any permutation in G odd

n (1324)
looks like
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and can therefore be written as an inflation of 2413 by empty or identity permuta-
tions. Let ϕ1 : G odd

2n−1(2413) → G odd
2n−1(1324) be defined as follows. If τ ∈ G odd

2n−1(2413)
avoids the pattern 1324, we let ϕ1(τ) = τ . If τ ∈ G odd

2n−1(2413) contains the pattern
1324, it must be of the form

and can then be written as

τ = 1324[idk1, idk2 , idk3, idk4 ],

where kj ≥ 1 and
∑
kj = 2n−1. In this case, we let ϕ1(τ) = 2413[idk2 , idk1, idk4 , idk3].

Note that ϕ1(τ) has (k2+k1)k4+k1k3 inversions. Moreover, τ odd implies k2 ≡ k3 ≡
1, and

∑
kj ≡ 1 implies k1 �≡ k4 (mod 2). Thus k1+k4 ≡ 1, k1k4 ≡ 0, and therefore,

inv(ϕ1(τ)) = (k2 + k1)k4 + k1k3 ≡ (1 + k1)k4 + k1 ≡ 1 (mod 2).

Hence ϕ1(τ) ∈ G odd
2n−1(1324). In the definition of ϕ1, the first case produces permuta-

tions that avoid 2413 while the second case gives permutations that contain a 2413
pattern. Therefore, the map ϕ1 : G odd

2n−1(2413) → G odd
2n−1(1324) is bijective.

We now proceed to define a map ϕ2 : G odd
2n (2134) → G odd

2n (1324). As before, we let
ϕ2(τ) = τ whenever τ avoids both patterns. If τ ∈ G odd

2n (2134) contains the pattern
1324, it must be of the form

where the gray segment could be empty. Thus, it can be written as

τ = 13524[idk1 , idk2, idk3 , idk4, 1],

where k1, k2, k4 ≥ 1, k3 ≥ 0,
∑
kj = 2n− 1, and (k2 + k3)k4 + k3 ≡ 1 (mod 2). Here

we adopt the convention that id0 = ε. In this case, we define

ϕ2(τ) =

{
2413[idk2 , idk3, idk1 , idk4+1], if k3 �≡ k4 (mod 2),

2413[idk2+1, idk3 , idk1−1, idk4+1], if k3 ≡ k4 ≡ 1 (mod 2).
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If k3 �≡ k4, then k3 + k4 ≡ 1 and k3k4 ≡ 0 (mod 2).
∑
kj = 2n − 1 then implies

k1 ≡ k2, and since (k2 + k3)k4 + k3 ≡ 1, we must have k3 ≡ 1 + k1k4 (mod 2).
Therefore,

inv(ϕ2(τ)) = (k2 + k3)k1 + k3(k4 + 1)

≡ (k1 + k3 + k4)k1 + 1 (mod 2)

≡ (k1 + 1)k1 + 1 ≡ 1 (mod 2).

On the other hand, if k3 ≡ k4 ≡ 1, then k2 ≡ 1, k1 ≡ 0 (in particular, k1 ≥ 2), and
so

inv(ϕ2(τ)) = (k2 + 1 + k3)(k1 − 1) + k3(k4 + 1) ≡ 1 (mod 2).

By construction, ϕ2(τ) is odd, avoids 1324, and it contains a 2134 pattern if and only
if τ contains a 1324 pattern. The map ϕ2 : G odd

2n (2134) → G odd
2n (1324) is a bijection.

�

Theorem 3.5 For σ ∈ {1342, 3124} and n ≥ 1, we have

|G odd
2n+1(σ)| = |G odd

2n+1(2341)| and |G odd
2n (σ)| = |G odd

2n (1423)|.

Proof: First, the reverse complement map gives the identity

|G odd
n (3124)| = |G odd

n (1342)|.

Similar to the proof of the previous theorem, we will provide explicit bijections

ψ1 : G odd
2n+1(2341) → G odd

2n+1(1342) and ψ2 : G odd
2n (1423) → G odd

2n (1342).

It is easy to verify that every element of G odd
n (1342) can be written as an inflation of

24135 by empty or identity permutations.

Let τ ∈ G odd
2n+1(2341). If τ avoids 1342, we let ψ1(τ) = τ . If τ contains 1342, then it

must be of the form τ = 135246[idk1, 1, 1, idk2 , idk3, idk4 ] with k1, k2, k3 ≥ 1, k4 ≥ 0,∑
kj = 2n− 1, and k3 odd. In this case, we let

ψ1(τ) =

{
24135[idk2+1, 1, idk1, idk3 , idk4], if k1k2 ≡ 0 (mod 2),

24135[idk2+1, 1, idk1, idk3−1, idk4+1], if k1k2 ≡ 1 (mod 2).

Moreover,

inv(ψ1(τ)) =

{
(k2 + 2)k1 + k3 ≡ 1, if k1k2 ≡ 0 (mod 2),

(k2 + 2)k1 + k3 − 1 ≡ 1, if k1k2 ≡ 1 (mod 2).

In all cases, ψ1(τ) is odd, avoids 1342, and it contains a 2341 pattern if and only if
τ contains a 1342 pattern. It is not difficult to see that ψ1 is a bijective map.
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Now, let τ ∈ G odd
2n (1423). If τ avoids 1342, we let ψ2(τ) = τ . If τ contains 1342,

then it must be of the form τ = 24135[idk1 , idk2, idk3 , 1, idk4 ] with k1 ≥ 1, k2 ≥ 2,
k3, k4 ≥ 0,

∑
kj = 2n− 1, and (k1 + k2)k3 + k2 ≡ 1 (mod 2). In this case, we let

ψ2(τ) =

{
24135[idk1, 1, idk3, idk2 , idk4], if k2 ≡ 1 (mod 2),

24135[idk1+1, 1, idk3 , idk2, idk4−1], if k2 ≡ 0 (mod 2).

If k2 ≡ 1 (mod 2), then (k1 + 1)k3 ≡ 0 (mod 2), and so

inv(ψ2(τ)) = (k1 + 1)k3 + k2 ≡ 1 (mod 2).

On the other hand, if k2 ≡ 0 (mod 2), then k1k3 ≡ 1 (mod 2), and so

inv(ψ2(τ)) = (k1 + 2)k3 + k2 ≡ k1k3 ≡ 1 (mod 2).

In conclusion, ψ2(τ) is odd, avoids 1342, and it contains a 1423 pattern whenever τ
contains a 1342 pattern. As for ψ1, it can be easily verified that ψ2 is bijective. �

4 Bijections to integer partitions and multidigraphs

In this section, we discuss combinatorial interpretations for the elements of
G odd
n (2413), enumerated by the sequence [3, A006918], and for the elements of

G odd
n (3412), counted by the sequence [3, A005993].

It is not hard to see that every permutation τ ∈ G ∗
n (2413) may be written as an

inflation
τ = 1324[idk1, idk2 , idk3, idk4 ],

where k1, k4 ≥ 0, k2, k3 ≥ 1,
∑
kj = n, and id0 = ε. Moreover, inv(τ) = k2 · k3,

hence the permutation τ is odd if and only if k2 ≡ k3 ≡ 1 (mod 2). The map τ �→
(k1, k2, k3, k4) gives a bijection between G ∗

n (2413) and the set of weak compositions
of n where parts 2 and 3 are greater than zero.

Proposition 4.1 The elements of G odd
n (2413) are in one-to-one correspondence with

the integer partitions of n+ 2 having Durfee square of size 2.

Proof: For τ ∈ G odd
n (2413) let wτ = (k1, k2, k3, k4) be its corresponding weak compo-

sition of n. Recall that k2 and k3 must both be odd numbers. We then create the
Ferrers diagram of a partition of n+2 through the following process. To the diagram
of the partition 2 + 2, we append circles vertically downward or horizontally to the
right based on the four elements of wτ as shown:

...
k1
...

...
(k2−1)
...

· · · (k3−1) · · ·
· · · k4 · · ·
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This representation is not necessarily that of an integer partition, so we make ad-
justments to the first two columns (and similarly to the first two rows) as follows:

(i) k1 ≡ 1 (mod 2) and k1 > k2 − 1: do nothing.

(ii) k1 ≡ 1 (mod 2) and k1 < k2 − 1: swap the two columns.

(iii) k1 ≡ 0 (mod 2) and k1 > k2 − 1: move one circle from the first column to the
second.

(iv) k1 ≡ 0 (mod 2) and k1 ≤ k2 − 1: swap the two columns.

We then apply the same adjustment to the first two rows of the diagram, with k4 and
k3 playing the roles of k1 and k2, respectively, and we end up with a proper partition
of n + 2 with a Durfee square of size 2. For example, the permutation τ = 1263457
corresponds to the weak composition wτ = (2, 1, 3, 1) and leads to

(2, 1, 3, 1) 4 + 3 + 2

The map is reversible since all cases are identifiable in the Ferrers diagram of the
partition based on the parities of the first two columns and first two rows. The four
procedures (i)–(iv) lead to the parities odd-even, even-odd, odd-odd, and even-even,
respectively. �

We end this section with an interesting interpretation for the elements of
G odd
n (3412).

A multidigraph is a directed graph that is allowed to have multiple edges (arcs
and loops). For n ≥ 0, let Vn be the set of multidigraphs on two nodes having n
edges. The elements of Vn for n = 0, 1, 2 are illustrated in Table 3.

n = 0

n = 1

n = 2

Table 3 Elements of V0, V1, and V2.

If we think of the two nodes as ‘left node’ and ‘right node’, then every G ∈ Vn

can be identified with a weak composition t̂G = (t1, t2, t3, t4) ∈ W4(n), where
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t1 = number of loops on the left node;

t2 = number of edges that go from the left node to the right;

t3 = number of edges that go from the right node to the left;

t4 = number of loops on the right node.

However, since the elements of Vn are invariant under rotation, G could also be
represented by the weak composition t̂′G = (t4, t3, t2, t1). Therefore, we define the
equivalence relation

(t1, t2, t3, t4) ∼ (t4, t3, t2, t1),

and let Pn = W4(n)/∼ be the set of equivalence classes. For instance,

P0 = {[(0, 0, 0, 0)]} and P1 = {[(1, 0, 0, 0)], [(0, 1, 0, 0)]}.

By definition, the elements of Vn are in one-to-one correspondence with those of Pn.

Proposition 4.2 For n ≥ 2, the set G odd
n (3412) is in bijection with the set Pn−2.

Proof: For u = (u1, u2, u3, u4), we let u′ = (u4, u3, u2, u1) and write u ≺ u′ if either
u1 < u4 or u1 = u4 and u2 < u3. We say that u is minimal if u ≺ u′. Clearly, if
u �= u′, then u is minimal if and only if u′ is not. An element u is called symmetric
if u = u′.

We will use the maps Λ and φ introduced in the proof of Theorem 3.2 to define a
bijective map ξ : G odd

n (3412) → Pn−2. Recall that φ is only defined on the sets
Λ
(
G odd
2m−1(3412)

)
and Λ

(
G odd
2m (3412)\A2m

)
. Also recall that the elements of A2m are

of the form τ = τ2 (2m)1 τ3 with |τ2| ≡ |τ3| ≡ 0 (mod 2), so Λ(τ) = (0, |τ2|, |τ3|, 0).
Let τ ∈ G odd

n (3412) and t̂ = Λ(τ). If t̂ is minimal or if t̂′ is minimal and φ(t̂) is
defined, we let

ξ(τ) =

{
[ t̂ ] if t̂ is minimal,

[φ(t̂)] if t̂′ is minimal.

Otherwise, either t̂ is symmetric or t̂′ is minimal but φ(t̂) is undefined (which means
τ ∈ An). In both cases, n must be even and t1 + t2 + t3 + t4 = n− 2.

If n ≡ 0 (mod 4) and t̂ is symmetric, say t̂ = (t1, t2, t2, t1), then we let

ξ(τ) =

{
[ t̂ ] if t1 is even,

[φ(t̂)] if t1 is odd.

On the other hand, if τ ∈ An and t̂ = Λ(τ) is not minimal, then t̂ = (0, t2, t3, 0) with
t2 > t3 and t2 ≡ t3 ≡ 0 (mod 2). In this case, we let

ξ(τ) =

{[(
t2
2
, t3
2
, t3

2
, t2
2

)]
if t2/2 is odd,[(

t3
2
, t2
2
, t2

2
, t3
2

)]
if t2/2 is even.
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If n ≡ 2 (mod 4) and t̂ = (t1, t2, t2, t1) (i.e. symmetric), we let

ξ(τ) =

{
[ t̂ ] if t1 is odd or t1 = 0,

[φ(t̂)] if t1 is even, t1 > 0.

Finally, if τ ∈ An and t̂ = Λ(τ) is neither minimal nor symmetric, then we let

ξ(τ) =

{[(
t2
2
, t3
2
, t3
2
, t2
2

)]
if t2/2 is even,[(

t3
2
+ 1, t2

2
− 1, t2

2
− 1, t3

2
+ 1

)]
if t2/2 is odd.

For every n, the map ξ sends the elements of G odd
n (3412) into three distinguishable

disjoint subsets of Pn−2 whose elements can be recognized by their symmetry prop-
erties and the parities of their components. Observe that if τ is odd and t̂ = Λ(τ),
then t2 ≡ t3 (mod 2) and therefore φ(t̂)2 �≡ φ(t̂)3 (mod 2).

The inverse map ξ−1 : Pn−2 → G odd
n (3412) is defined as follows.

Let [u] = [(u1, u2, u3, u4)] be an equivalence class in Pn−2.

(i) If u is not symmetric and u2 ≡ u3 (mod 2), choose the representative of [u] that
is minimal, call it t̂min, and let ξ−1([u]) = Λ−1(t̂min).

(ii) If u2 �≡ u3, consider φ
−1(u) and φ−1(u′). By Lemma 4.3, they both have the

same symmetry properties. If neither is symmetric, Lemma 4.4 implies that
one and only one of them must be minimal, say t̂min = φ−1(u). We then denote
t̂max = φ−1(u′) and let

ξ−1([u]) = Λ−1(t̂max).

If φ−1(u) and φ−1(u′) are both symmetric and u ≺ u′, then

ξ−1([u]) = Λ−1(φ−1(u′)).

(iii) If u is symmetric and φ(u) is minimal, then

ξ−1([u]) = Λ−1(u).

If u is symmetric and φ(u) is not minimal (or undefined), we consider two cases:

(a) If n ≡ 0 (mod 4), then u = (2k + 1, 2�, 2�, 2k + 1). We then let

ξ−1([u]) =

{
Λ−1(0, 4k + 2, 4�, 0) if k ≥ �,

Λ−1(0, 4�, 4k + 2, 0) if k < �.

(b) If n ≡ 2 (mod 4), then u = (2k, 2�, 2�, 2k). In this case, we let

ξ−1([u]) =

⎧⎪⎨
⎪⎩
Λ−1(0, 4k, 4�, 0) if k > �,

Λ−1(0, 4�+ 2, 4k − 2, 0) if 0 < k ≤ �,

Λ−1(0, 2�, 2�, 0) if k = 0.
�
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τ ∈ G odd
6 (3412) t̂ = Λ(τ) Property ξ(τ) ∈ P4

1 2 3 4 6 5 (4, 0, 0, 0) t̂′ minimal [(3, 1, 0, 0)]∗
1 2 3 5 4 6 (3, 0, 0, 1) t̂′ minimal [(3, 0, 1, 0)]∗
1 2 4 3 5 6 (2, 0, 0, 2) symm., t1 > 0 even [(2, 0, 1, 1)]∗
1 2 4 5 6 3 (2, 2, 0, 0) t̂′ minimal [(1, 3, 0, 0)]∗
1 2 4 6 3 5 (2, 1, 1, 0) t̂′ minimal [(2, 1, 0, 1)]∗
1 2 6 3 4 5 (2, 0, 2, 0) t̂′ minimal [(1, 1, 2, 0)]∗
1 3 2 4 5 6 (1, 0, 0, 3) minimal [(1, 0, 0, 3)]

1 3 4 5 2 6 (1, 2, 0, 1) t̂′ minimal [(1, 2, 1, 0)]∗
1 3 5 2 4 6 (1, 1, 1, 1) symm., t1 odd [(1, 1, 1, 1)]

1 5 2 3 4 6 (1, 0, 2, 1) minimal [(1, 0, 2, 1)]

2 1 3 4 5 6 (0, 0, 0, 4) minimal [(0, 0, 0, 4)]

2 3 4 1 5 6 (0, 2, 0, 2) minimal [(0, 2, 0, 2)]

2 3 4 5 6 1 (0, 4, 0, 0) not min., τ ∈ A6 [(2, 0, 0, 2)]�

2 3 4 6 1 5 (0, 3, 1, 0) t̂′ minimal [(0, 3, 0, 1)]∗
2 3 6 1 4 5 (0, 2, 2, 0) symm., t1 = 0 [(0, 2, 2, 0)]

2 4 1 3 5 6 (0, 1, 1, 2) minimal [(0, 1, 1, 2)]

2 6 1 3 4 5 (0, 1, 3, 0) minimal [(0, 1, 3, 0)]

4 1 2 3 5 6 (0, 0, 2, 2) minimal [(0, 0, 2, 2)]

6 1 2 3 4 5 (0, 0, 4, 0) minimal [(0, 0, 4, 0)]

Table 4 Bijective map ξ : G odd
6 (3412) → P4.

The bijective map ξ is illustrated in Table 4 for n = 6. The elements in blue (marked
with ∗) are the ones obtained through the map φ. The element in red (marked with
�) is the one obtained through the process for the permutations τ ∈ An for which
Λ(τ) is neither minimal nor symmetric.

Lemma 4.3 Let u, v ∈ W4(n − 2). If φ(u) ∼ φ(v) and u is symmetric, then v is
symmetric.

Proof: Suppose u2 = u3 ≡ 0 (mod 2). If n ≡ 0 (mod 4), then u = (2k+1, 2�, 2�, 2k+
1) for some k, � ≥ 0. So, φ(u) = (2k+1, 2�, 2�+1, 2k) and φ(v) = (2k, 2�+1, 2�, 2k+1).
Therefore, v = (2k, 2� + 1, 2� + 1, 2k). If n ≡ 2 (mod 4), u can be written as
u = (2k, 2�, 2�, 2k) where k ≥ 1 and � ≥ 0, leading to v = (2k−1, 2�+1, 2�+1, 2k−1).
The argument when u2 = u3 ≡ 1 (mod 2) is similar and can be seen as going from v
to u. �
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Lemma 4.4 Let u, v ∈ W4(n − 2), not symmetric. If φ(u) ∼ φ(v) and u is not
minimal, then v is minimal. Similarly, if φ(u) ∼ φ(v) and u is minimal, then v is
not minimal.

Proof: Let φ(u) = (u1, u2, u3, u4) and φ(v) = (u4, u3, u2, u1). Since u2 �≡ u3 (mod 2),
there are three cases to consider, u3 ≡ 1, u3 ≡ 0 with u4 > 0, and u3 ≡ 0 with
u4 = 0. If u3 ≡ 1, then u = (u1, u2, u3 − 1, u4 + 1) and, for u not to be minimal, we
must have either u1 > u4+1 or u1 = u4+1 and u2 > u3−1. This guarantees u1 > 1,
so v = (u4, u3, u2 + 1, u1 − 1). Thus, v is minimal. The other cases are similar and
follow directly from the definitions. �

Corollary 4.5 The elements of G odd
n (3412) are in one-to-one correspondence with

the multidigraphs on two nodes having n− 2 edges.

For n = 5, the above correspondence is illustrated in Figure 5.

[(0, 3, 0, 0)]∗
1 3 4 5 2

[(0, 1, 2, 0)]∗
1 5 2 3 4

[(2, 0, 1, 0)]∗
1 2 4 3 5

[(2, 1, 0, 0)]∗
1 2 3 5 4

[(1, 1, 0, 1)]∗
1 3 5 2 4

[(0, 0, 2, 1)]

4 1 2 3 5

[(0, 1, 1, 1)]

2 4 1 3 5

[(0, 2, 0, 1)]

2 3 4 1 5

[(1, 0, 0, 2)]

1 3 2 4 5

[(0, 0, 0, 3)]

2 1 3 4 5

Figure 5: Multidigraphs corresponding to the elements of G odd
5 (3412).

Acknowledgements

We are very grateful to the Altoona Summer Undergraduate Research Fellowship
that made it possible for Tomasko to dedicate herself to this project during the
summer of 2021.

References

[1] J. B. Gil and J.A. Tomasko, Restricted Grassmannian permutations, Enum.
Combin. Appl. 2 (4) (2022), Art.#S4PP6.

[2] S. Kitaev, Patterns in permutations and words, Monographs in Theoretical Com-
puter Science, an EATCS Series, Springer, Heidelberg, 2011.



J.B. GIL AND J.A. TOMASKO/AUSTRALAS. J. COMBIN. 86 (1) (2023), 187–205 205

[3] N. J.A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.

[4] R. P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge Studies in Advanced
Mathematics 49, Cambridge University Press, Cambridge, 1997.

[5] J. J. Sylvester and F. Franklin, A constructive theory of partitions, arranged in
three acts, an interact and an exodion, Amer. J. Math. 5 (1-4) (1882), 251–330.

(Received 26 July 2022; revised 26 Jan 2023)

http://oeis.org

	Introduction
	Patterns of size 3
	Patterns of size 4
	Bijections to integer partitions and multidigraphs

