123-Forcing matrices

Richard A. Brualdi
Department of Mathematics
University of Wisconsin
Madison, WI 53706, U.S.A.
brualdi@math.wisc.edu

Lei Cao
Department of Mathematics
Nova Southeastern University
Ft. Lauderdale, FL 33314, U.S.A.
lcao@nova.edu

Abstract

A permutation σ of $\{1,2, \ldots, n\}$ contains a 123 -pattern provided it contains an increasing subsequence of length 3 and, otherwise, is 123 -avoiding. In terms of the $n \times n$ permutation matrix P corresponding to σ, P contains a 123-pattern provided the 3×3 identity matrix I_{3} is a submatrix of P. If A is an $n \times n(0,1)$-matrix, then A is 123 -forcing provided every permutation matrix $P \leq A$ contains a 123-pattern. The main purpose of this paper is to characterize such matrices A with the minimum number of 0's.

1 Introduction

Let n be a positive integer and let \mathcal{P}_{n} be the set of $n \times n$ permutation matrices corresponding to the set \mathcal{S}_{n} of permutations of $\{1,2, \ldots, n\}$. A permutation σ of $\{1,2, \ldots, n\}$ contains a 123-pattern provided it contains an increasing subsequence of length 3 and, otherwise, is 123-avoiding. In terms of the $n \times n$ permutation matrix P corresponding to σ, P contains a 123-pattern provided the 3×3 identity matrix I_{3} is a submatrix of P. If A is an $n \times n(0,1)$-matrix, then A is 123 -forcing provided every permutation matrix $P \leq A$ (pointwise order) contains a 123-pattern; the matrix A thus blocks all 123 -avoiding permutations in that every 123-avoiding permutation matrix has at least one 1 in a position of a 0 of A. The number of $n \times n$ 123 -avoiding permutation matrices is the Catalan number

$$
C_{n}=\frac{\binom{2 n}{n}}{n+1}
$$

In fact, this is the same number for any of the six permutations of $\{1,2,3\}$, see e.g. [1]. The ideas of forcing and blocking can be extended to other patterns [3].

The main purpose of this paper is to characterize 123 -forcing matrices (equivalently, blockers of 123 -avoiding matrices) A with the minimum number of 0 's. Such matrices have been previously investigated in [3] where it was shown that the minimum possible number of 0 's is n. The following example illustrates these concepts.

Example 1.1 Let $n=6$ and let

$$
A=\left[\begin{array}{l|l|l|l|l|l}
1 & 1 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

Then every permutation matrix $P \leq A$ contains one of the two 1 's from row 1 , one of the three 1's from column 6, and then necessarily one of the 1's from the 2×3 submatrix formed by rows 2 and 3 , and columns 3,4 , and 5 , thereby resulting in a 123 -pattern. Thus A is a 123 -forcing matrix; equivalently, A blocks all 6×6123 avoiding permutation matrices. Another example of a 123 -forcing matrix with 60 's that is readily checked is
$\left[\begin{array}{l|l|l|l|l|l}1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$.

Of course, an $n \times n$ matrix A with a row or column of all 0 's is 123 -forcing, since there are no permutation matrices $P \leq A$.

2 Characterization of minimum 123-forcing matrices

In [3] the cyclic-Hankel decomposition of the $n \times n$ matrix J_{n} of all 1's into n permutation matrices was defined by starting with row 1 and cyclically permuting it as for circulant matrices, but in a right-to-left fashion, obtaining n disjoint permutation matrices. This is illustrated below for $n=6$ using letters a, b, c, d, e, f below to designate the resulting permutation matrices:

$$
\left[\begin{array}{llllll}
a & b & c & d & e & f \\
b & c & d & e & f & a \\
c & d & e & f & a & b \\
d & e & f & a & b & c \\
e & f & a & b & c & d \\
f & a & b & c & d & e
\end{array}\right]
$$

The cyclic-Hankel decomposition gives a decomposition of J_{n} into permutation matrices each of which avoids a 123-pattern, since each permutation in the decomposition corresponds to a decreasing subsequence followed by another decreasing subsequence (empty in one case). Such a decomposition was shown to be unique in [3]. The resulting permutation matrices $H_{1}, H_{2}, \ldots, H_{n}$ (our notation is such that the 1 in row 1 of H_{i} is in column i) are the $n \times n$ cyclic-Hankel permutation matrices, with H_{n} also called the Hankel diagonal. So with $n=5$ we have

Remark 2.1 The famous Frobenius-König Theorem can be put in the context of our investigations. Consider the empty permutation σ_{0}. Then every permutation of $\{1,2, \ldots, n\}$ contains the pattern σ_{0}. Thus every $n \times n(0,1)$-matrix A is σ_{0}-forcing, and no permutation matrix is σ_{0}-avoiding. Thus the property that the $n \times n(0,1)-$ matrix A blocks all σ_{0}-avoiding permutation matrices is equivalent to the property that there does not exist a permutation matrix $P \leq A$. By the Frobenius-König Theorem, this holds if and only if A contains an $r \times(n+1-r)$ zero submatrix for some r with $1 \leq r \leq n$.

Lemma 2.2 The number of 0 's in a 123-forcing $n \times n(0,1)$-matrix is at least n. A 123-forcing $n \times n(0,1)$-matrix with exactly $n 0$'s contains exactly one 0 from the positions of the 1's of each cyclic-Hankel permutation matrix.

Proof. The cyclic-Hankel decomposition of J_{n} consists of n mutually disjoint 123avoiding permutation matrices. Hence a 123 -forcing $n \times n$ matrix must have a 0 in a position of a 1 of each of them, and thus must contain at least $n 0$'s.

We characterize the 123 -forcing $n \times n(0,1)$-matrix with the minimum number n of 0 's. Our characterization is based on the following construction generalizing the matrix A constructed in Example 1.1.

Let $k \leq n$ and let a and b be integers with $1 \leq a, b \leq n$ where $a+b=k+1$. By $L_{n}^{k}(a, b)$ we denote the $n \times n(0,1)$-matrix with exactly $k 0$'s forming an L-shaped region whose last a positions in row 1 equal 0 and whose first b positions in column n equal to 0 , giving a total of $k 0$'s. In particular, there is a 0 in the corner position
$(1, n)$. (Sometimes we refer to the set of positions of the 0 's of $L_{n}^{k}(a, b)$.) For example, we have

Lemma 2.3 The $n \times n$ matrices $L_{n}^{n}(a, b)$ with $a+b=n+1$ are 123 -forcing $(0,1)$ matrices with the minimum number n of 0 's.

Proof. The number of 0 's in $L_{n}^{n}(a, b)$ equals n. If a or b equals n, we have a row or column of all 0 's and so (vacuously) a 123-forcing matrix. Now assume that neither a nor b equals 1 . The matrix $L_{n}^{n}(a, b)$ contains an $n \times n$ matrix which is the direct sum of the following matrices of all 1's: $J_{1, n-a}, J_{b-1, a-1}$, and $J_{n-b, 1}$. Every permutation matrix $P \leq L_{n}^{n}(a, b)$ contains a 1 from the $J_{1, n-a}$ and a 1 from the $J_{n-b, 1}$. Since $b-1=n-a$, such a permutation matrix must also contain a 1 from the $J_{b-1, a-1}$ and hence has a 123 -pattern.

There is a similar construction and lemma with $L_{n}^{n}(a, b)$ replaced with the L shaped region $V_{n}^{k}(a, b)$ with corner at position $(n, 1)$, the transpose of $L_{n}^{k}(a, b)$.

The following example illustrates the complexities involved in characterizing the 123 -forcing $n \times n(0,1)$-matrix with the minimum number n of 0 's.

Example 2.4 Consider $n=10$ and the labeling of the positions of a 10×10 matrix with a, b, c, \ldots, where all the positions on the same cyclic-Hankel permutation matrix are labeled the same. We start with the 123 -forcing matrix $L_{10}^{10}(5,6)$. We move its first two 0 's in row 1 (the positions labeled f and g there), down their cyclic-Hankel permutation matrices to the positions $z_{1}=(4,3)$ (on H_{6}) and $z_{2}=(6,2)$ (on H_{7}); these are colored, respectively, red and green in (1). The remaining positions of $L_{10}^{10}(5,6)$, now forming a $L_{10}^{8}(3,6)$, are colored yellow. This results in a set of 10 positions (the colored positions).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}a & b & c & d & e & f & g & h & i & j \\ \hline b & c & d & e & f & g & h & i & j & a \\ \hline c & d & e & f & g & h & i & j & a & b \\ \hline d & e & f & g & h & i & j & a & b & c \\ \hline e & f & g & h & i & j & a & b & c & d \\ \hline f & g & h & i & j & a & b & c & d & e \\ \hline g & h & i & j & a & b & c & d & e & f \\ \hline h & i & j & a & b & c & d & e & f & g \\ \hline i & j & a & b & c & d & e & f & g & h \\ \hline j & a & b & c & d & e & f & g & h & i\end{array}\right]$.

The resulting matrix of 100 's is not 123 -forcing as shown by the 123 -avoiding permutation matrix colored blue in (2) that does not intersect it.
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}a & b & c & d & e & f & g & h & i & j \\ \hline b & c & d & e & f & g & h & i & j & a \\ \hline c & d & e & f & g & h & i & j & a & b \\ \hline d & e & f & g & h & i & j & a & b & c \\ \hline e & f & g & h & i & j & a & b & c & d \\ \hline f & g & h & i & j & a & b & c & d & e \\ \hline g & h & i & j & a & b & c & d & e & f \\ \hline h & i & j & a & b & c & d & e & f & g \\ \hline i & j & a & b & c & d & e & f & g & h \\ \hline j & a & b & c & d & e & f & g & h & i\end{array}\right]$.

If, instead, we move the positions labeled f and g in row 1 to the positions colored red in (3), we obtain a 123 -forcing matrix:
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}a & b & c & d & e & f & g & h & i & j \\ \hline b & c & d & e & f & g & h & i & j & a \\ \hline c & d & e & f & g & h & i & j & a & b \\ \hline d & e & f & g & h & i & j & a & b & c \\ \hline e & f & g & h & i & j & a & b & c & d \\ \hline f & g & h & i & j & a & b & c & d & e \\ \hline g & h & i & j & a & b & c & d & e & f \\ \hline h & i & j & a & b & c & d & e & f & g \\ \hline i & j & a & b & c & d & e & f & g & h \\ \hline j & a & b & c & d & e & f & g & h & i\end{array}\right]$

We argue this as follows referring to the labels of the positions. Suppose that the matrix in (3) (illustrated there as a (0,1)-matrix with its 1 's in the empty positions) contains a 123 -avoiding permutation matrix Q. In row 1 , either position f or g must contain a 1 of Q since, by Lemma 2.3, $L_{10}^{10}(5,6)$ is a 123 -forcing matrix. Suppose first that the f in row 1 is a 1 of Q. Then, since Q is a 123 -avoiding permutation matrix, the submatrix determined rows $2,3,4,5,6$ and columns $7,8,9$ cannot contain a 1 of Q implying that Q has to have only 1 's on the Hankel diagonal of the 6×6 submatrix determined by rows and columns $1,2,3,4,5,6$; but the 0 in position f precludes that.

Now suppose that the position of g in row 1 is a 1 of Q. Then the submatrix of Q determined by rows $2,3,4,5,6$ and columns $7,8,9,10$ cannot contain a 1 of Q and the submatrix of Q determined by rows $8,9,10$ and columns $8,9,10$ must contain a 1 of Q. Since the Hankel diagonal of the 7×7 submatrix determined by rows and columns $1,2, \ldots, 7$ contains a 0 in position g, it now follows that the matrix in (3) is a 123 -forcing matrix.

The following result, Theorem 2.10 from [3], is important in characterizing the $n \times n 123$-forcing (0,1)-matrices with the minimum number n of 0 's.

Theorem 2.5 Let $n \geq 3$. If an $n \times n 123$-forcing (0,1)-matrix contains the minimum number n of 0 's, then it must contain one of the positions $(1, n)$ and $(n, 1)$; if it contains a 0 in position ($1, n$) (respectively, position $(n, 1)$), then it also contains a 0 in either the position $(1, n-1)$ or position $(2, n)$ (respectively, position $(n, 2)$ or position ($n-1,1$)).

In view of Theorem 2.5, by symmetry it is enough to consider minimum 123forcing $(0,1)$-matrices that contain a 0 in the positions $(1, n)$ and $(1, n-1)$, and we assume this throughout.

We now label the positions in an $n \times n$ matrix A with the integers $1,2, \ldots, n$ where the positions in row 1 are labeled, in order, $1,2, \ldots, n$ and the positions on the corresponding cyclic-Hankel permutation matrices have the same labels. We call this the standard labeling. For example, with $n=5$, the standard labeling is
$\left[\begin{array}{l|l|l|l|l}1 & 2 & 3 & 4 & 5 \\ \hline 2 & 3 & 4 & 5 & 1 \\ \hline 3 & 4 & 5 & 1 & 2 \\ \hline 4 & 5 & 1 & 2 & 3 \\ \hline 5 & 1 & 2 & 3 & 4\end{array}\right]$.

In what follows, A is an $n \times n$ matrix with the standard labeling and exactly n 0 's. We start with $A=L_{n}^{n}(a, b)$ where $a+b=n+1$ so that A contains a total of $n 0$'s. Let a^{\prime} and b^{\prime} be integers with $0 \leq a^{\prime}<a$ and $0 \leq b^{\prime}<b$. The L-shaped matrix $L_{n}^{k}\left(a-a^{\prime}, b-b^{\prime}\right)$ is obtained from $L_{n}^{n}(a, b)$ by removing the 0's in the first a^{\prime} positions in row 1 and the last b^{\prime} positions in column n leaving $k=n-a^{\prime}-b^{\prime} 0$'s. In order that we have a 123 -blocking matrix with exactly $n 0$'s, the ($\left.a^{\prime}+b^{\prime}\right) 0$'s that are removed from $L_{n}^{n}(a, b)$ need to be shifted to new positions on their corresponding cyclic-Hankel permutation matrices. This is what was done in Example 2.4 in two cases one of which gave a 123 -forcing matrix and one of which did not. We refer to matrices obtained in this way from an $L_{n}^{n}(a, b)$ as L-cyclic matrices.

We now set out to characterize the 123 -forcing $(0,1)$-matrices with the minimum number n of 0 's. The $k \times k$ leading Hankel principal submatrix of an $n \times n$ matrix A is the $k \times k$ submatrix of A determined by the first k rows and last k columns of A.

Lemma 2.6 Let A be an $n \times n$ 123-forcing (0,1)-matrix containing exactly $n 0$'s with $a 0$ in position $(1, n)$ and let $2 \leq k \leq n$. Then the $k \times k$ leading Hankel principal submatrix A_{k} of A is a $k \times k 123$-forcing matrix.

Proof. If there is a 123 -avoiding permutation matrix $P \leq A_{k}$, then since there is a 0 in position $(1, n)$ (and thus no more 0 's on the Hankel diagonal of A by Lemma 2.2), with the Hankel diagonal of the complementary $(n-k) \times(n-k)$ matrix, we obtain a 123 -avoiding permutation matrix in A, a contradiction.

Corollary 2.7 Let A be a 123-forcing matrix containing exactly $n 0$'s with a 0 in position ($1, n$). If A contains two 0 's in row n, then A is not a 123-forcing matrix.

Proof. If there are two 0's of A in row n, then the leading $(n-1) \times(n-1)$ Hankel principal submatrix contains at most $(n-2) 0$'s, and then with Lemma 2.2 this gives a contradiction of Lemma 2.6 with $k=n-1$.

Lemma 2.8 Let A an $n \times n(0,1)$-matrix with exactly $n 0$'s including 0's in the positions $(1,1)$ and $(1, n)$, but not the position $(1,2)$. Then A is not a 123-forcing matrix.

Proof. Suppose that A is a 123 -forcing matrix. We illustrate the argument with $n=10$. The positions $(1,1)$ and $(1, n)$ are in red below; the position $(1,2)$ with a b is in green. None of the other positions labeled a or j can be 0 by Lemma 2.2. Then the n positions colored green in (4) give a 123 -avoiding permutation matrix which cannot contain a 0 of A, no matter what the other positions of the 0 's in A.
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}a & b & c & d & e & f & g & h & i & j \\ \hline b & c & d & e & f & g & h & i & j & a \\ \hline c & d & e & f & g & h & i & j & a & b \\ \hline d & e & f & g & h & i & j & a & b & c \\ \hline e & f & g & h & i & j & a & b & c & d \\ \hline f & g & h & i & j & a & b & c & d & e \\ \hline g & h & i & j & a & b & c & d & e & f \\ \hline h & i & j & a & b & c & d & e & f & g \\ \hline i & j & a & b & c & d & e & f & g & h \\ \hline j & a & b & c & d & e & f & g & h & i\end{array}\right]$.

The following theorem is crucial for our characterization of the $n \times n 123$-forcing matrices with the minimum number n of 0 's. It implies, assuming (as we know we can) that position $(1, n)$ has a 0 in a 123 -forcing matrix, that every $n \times n 123$ forcing matrix with the minimum number n of 0 's is obtained from an $L_{n}(a, b)$ with $a+b=n+1$ by shifting, along the corresponding cyclic-Hankel permutation matrices, x initial zeros in row 1 of $L_{n}(a, b)$ and y terminal zeros in column n of $L_{(}(a, b)$ where $0 \leq x \leq a-1$ and $0 \leq y \leq b-1$. The problem then becomes how these should be shifted in order to obtain a 123 -forcing matrix. It may be useful here to recall our Example 2.4.

Theorem 2.9 Let $A=\left[a_{i j}\right]$ be an $n \times n 123$-forcing (0,1)-matrix with exactly $n 0$'s not all in a row or a column. Without loss of generality, assume that there is a 0 in position $(1, n)$. Then the 0 's of A in the first row are consecutive and the 0 's of A in the last column are consecutive.

Proof. Since the 123 -forcing property is preserved by reflecting with respect to the Hankel diagonal, we only need to show that the statement is true for the 0 's of A in the first row. Thus we need to show that there does not exist k with $1<k<n-1$
such that $a_{1, k-1}=0$ while $a_{1, k} \neq 0$. We prove the result by assuming that we have such a k and obtain a contradiction. Note that Lemma 2.8 shows the theorem is true for $k=2$. So we just need to show the theorem is true for $2<k \leq n-1$. If $n=3$, then there is nothing more to prove. We now proceed by induction on n using a 10×10 matrix to elucidate the general proof.

Referring to (5), suppose that the position $(1, k-1)$ (the d in row 1$)$ contains a 0 but the positions ($1, k$) and e.g., $(1, k+1)$ (the e and f in row 1) contain 1 's, with the positions $(1, k+2), \ldots,(1, n)$ also containing 0 's (those labeled g, h, i, j below). These zero positions are colored red in (5) below. (There could be more than just two positions e and f with 1's but the argument will be the same.)

There are two cases to consider.
(I) The position $(n, k-1)$ (the green c) does not contain a 0 . Then we can construct a 123 -avoiding permutation matrix as shown in (5) in color green since the positions of the green d 's cannot contain 0 's as we already have a 0 in the position labeled d in row 1 .

$$
\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}
a & b & c & d & e & f & g & h & i & j \\
\hline b & c & d & e & f & g & h & i & j & a \tag{5}\\
\hline c & d & e & f & g & h & i & j & a & b \\
\hline d & e & f & g & h & i & j & a & b & c \\
\hline e & f & g & h & i & j & a & b & c & d \\
\hline f & g & h & i & j & a & b & c & d & e \\
\hline g & h & i & j & a & b & c & d & e & f \\
\hline h & i & j & a & b & c & d & e & f & g \\
\hline i & j & a & b & c & d & e & f & g & h \\
\hline j & a & b & c & d & e & f & g & h & i
\end{array}\right] \rightarrow\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}
a & b & c & d & e & f & g & h & i & j \\
\hline b & c & d & e & f & g & h & i & j & a \\
\hline c & d & e & f & g & h & i & j & a & b \\
\hline d & e & f & g & h & i & j & a & b & c \\
\hline e & f & g & h & i & j & a & b & c & d \\
\hline f & g & h & i & j & a & b & c & d & e \\
\hline g & h & i & j & a & b & c & d & e & f \\
\hline h & i & j & a & b & c & d & e & f & g \\
\hline i & j & a & b & c & d & e & f & g & h \\
\hline j & a & b & c & d & e & f & g & h & i
\end{array}\right] .
$$

(II) The position $(n, k-1)$ (now the red c in (6)) contains a 0 .
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c}a & b & c & d & e & f & g & h & i & j \\ \hline b & c & d & e & f & g & h & i & j & a \\ \hline c & d & e & f & g & h & i & j & a & b \\ \hline d & e & f & g & h & i & j & a & b & c \\ \hline e & f & g & h & i & j & a & b & c & d \\ \hline f & g & h & i & j & a & b & c & d & e \\ \hline g & h & i & j & a & b & c & d & e & f \\ \hline h & i & j & a & b & c & d & e & f & g \\ \hline i & j & a & b & c & d & e & f & g & h \\ \hline j & a & b & c & d & e & f & g & h & i\end{array}\right]$

We now consider the $(n-1) \times(n-1)$ submatrix of (6) obtained by deleting the first column and last row. Since the position of the red c in the last row contains a 0 , this submatrix contains at most $n-10$'s. By induction this submatrix
contains an $(n-1) \times(n-1) 123$-avoiding permutation matrix which with the green j (which cannot contain a 0 since the position of the red j contains a 0) gives an $n \times n 123$-avoiding permutation matrix.

Thus the theorem holds by induction.

Lemma 2.10 Let A be an $n \times n(0,1)$-matrix with exactly $n 0$'s having a 0 in position $(1, n)$. Assume that positions $z_{1}=(i, k)$ and $z_{2}=(j, l)$ above the Hankel diagonal with $i<j$ and $l \leq k$ contain 0 's. Then A is not a 123-forcing matrix.

Proof. Let \mathcal{Z} be the set of positions of A with a 0 . Since both z_{1} and z_{2} are above the Hankel diagonal, then in our standard labeling, z_{1} has label $(i+k-1)$ and z_{2} has label ($j+l-1$). If $i+k<j+l-1$, we can always do a comparison using positions having consecutive labels between $i+k$ and $j+l-2$ inclusively with z_{1} and z_{2}. Thus without loss of generality, we assume that $i+k=j+l+1$ meaning that the labels of z_{1} and z_{2} are consecutive integers and the cyclic-Hankel permutation matrix corresponding to z_{1} immediately precedes the cyclic-Hankel permutation matrix corresponding to z_{2}.

For ease of understanding, we argue with a 12×12 matrix and two specific positions but the argument is easily seen to hold in general. Suppose that the positions of the red 8 and 9 in (7) contain a 0 . There are two possibilities to consider: (i) z_{1} and z_{2} are not in the same column, and (ii) z_{1} and z_{2} are in the same column.
(i) z_{1} and z_{2} are not in the same column, like the red positions in (7).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$.
(a) If the yellow 4 in (7) is not in \mathcal{Z}, then we can construct a 123 -avoiding permutation matrix as in (8) using the fact that we already have a 0 in a
position labeled with an 8 ,
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$
(b) If the yellow 6 in (7) is not in \mathcal{Z}, then we can construct a 123 -avoiding permutation matrix as in (9).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$
(c) If both the positions of the yellow 4 and yellow 6 in (7) are in \mathcal{Z}, then that \mathcal{Z} does not give a blocking follows directly from Corollary 2.7.
(ii) z_{1} and z_{2} are in the same column as in (10).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$.
(a) If the position of the yellow 5 in (10) is not in \mathcal{Z}, then we can construct a 123 -avoiding permutation matrix as shown in green in (11).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$
(b) If the yellow 5 (now colored red in (12)) is in \mathcal{Z}, then we take the $(n, 1)$ position and then consider the $(n-1) \times(n-1)$ submatrix, obtained by removing the first column and the last row, which contains at most $n-1$
positions in \mathcal{Z}.
$\left[\begin{array}{c||c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$

The matrix in (13) is this $(n-1) \times(n-1)$ matrix relabeled using our standard labeling.
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]$

We now have to consider several possibilities.
(i) If the position of the yellow 4 in (13) does not contain a 0 , we can construct an $(n-1) \times(n-1) 123$-avoiding permutation matrix as in the following matrix (14).
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]$
(ii) If the position of the yellow 3 in (15) contains a 0 , then we consider the $(n-2) \times(n-2)$ submatrix obtained by removing the first two columns and bottom two rows as in (15).
$\left[\begin{array}{c|c||c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$.
(iii) We can repeat this process if the position of the yellow 3 in (15) contains a 0 and continue until we arrive at the situation displayed in (16).
$\left[\begin{array}{c|c|c|c|c||c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$

The position of the yellow 12 in (16) is not in \mathcal{Z}, since the $(1, n)$ position is in \mathcal{Z}. We then obtain a 123 -avoiding permutation matrix
as shown in green in (17).
$\left[\begin{array}{c|c|c|c|c||c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 \\ \hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 \\ \hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 \\ \hline 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 \\ \hline 6 & 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ \hline 7 & 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \hline 8 & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}\right]$.

This completes the proof.
An analogous lemma holds for positions below the Hankel diagonal by reflection with respect to the Hankel diagonal with $i \leq j$ and $k<l$.

Lemma 2.11 Let A be an $n \times n(0,1)$-matrix with exactly $n 0$'s having a 0 in position $(1, n)$. Assume that positions $z_{1}=(i, k)$ and $z_{2}=(j, l)$ below the Hankel diagonal with $i \leq j$ and $k<l$ contain 0 's. Then A is not a 123-forcing matrix.

Before formulating the next lemma, we consider a revealing example.
Example 2.12 Consider $n=8$ and an 8×8123-forcing (0,1)-matrix A with 80 's with some of our standard labeling shown in (18). There are 0's assumed in the positions labeled $5,6,7,8,12$ as in $L_{8}^{6}(4,3)$. The positions 4 in row 1 and position 3 in column 8 are assumed not to contain 0 's. Suppose the position 4 in red contains a 0 .

Then none of the other positions labeled with a 4 can contain a 0 and, as demonstrated in (19), the positions colored yellow give a 123 -avoiding permutation matrix. Hence the position of the red 4 in the lower left submatrix of (18) cannot contain a

0 in a 123 -forcing matrix with $n=80$'s including those 0 's in an $L_{8}^{6}(4,3)$.
$\left[\begin{array}{c|c|c|c||c|c|c|c} & & & 4 & 5 & 6 & 7 & 8 \\ \hline & & 4 & & & & & \\ \hline & 4 & & & & & & 2 \\ \hline \hline 4 & & & & & & & \\ \hline 5 & & & & & & & 3 \\ \hline & & & & & & 4 & \\ \hline & & & & & 4 & & \\ \hline & & & & 4 & & & \end{array}\right]$

The preceding example illustrates the following lemma.
Lemma 2.13 Let A be an $n \times n$ 123-forcing (0,1)-matrix with exactly $n 0$'s where the 0 's in row 1 and column n are precisely the 0 's of an $L_{n}^{k}(a, b)$ where $a+b \leq n+1$ and $k=a+b$. Let X be the $(n-b) \times(n-a)$ submatrix of A formed by rows $b+1, b+2, \ldots, n$ and columns $1,2, \ldots, n-a$. Then A does not contain any 0 's in X.

Proof. We assume the standard labeling of the positions of A. If $a+b=n+1$, there is nothing to prove and so we assume that $a+b \leq n$. We prove the lemma by induction starting with the position labeled $n-a$ in the first row. Suppose the blocker uses a position α with label $n-a$ in X. Then we choose those positions labeled $n-a$ starting from row 1 down to, but not including, that position α. We then choose below α the positions on the cyclic Hankel-permutation matrix labeled $(n-a+1)$ down to column 1 , say in row p. We also choose the position in column n in the same row as α. We complete with the positions on the Hankel diagonal containing $(n-a)$ starting with row $p+1$ down to the last row to obtain a 123 -avoiding permutation matrix. This is illustrated with $n=10, a=3, b=3$ in (20).

							7	8	8	9		10
						7						1
					7							2
			7									
		7										
	7											5
7	8											
8												
										7		
									7			

We now proceed by induction.

Suppose the lemma holds for positions with labels $q+1, q+2, \ldots, n-a$, and we consider the position in row 1 with label q. Suppose the blocker uses a position α labeled q in X. We then choose the positions labeled q on the cyclic-Hankel diagonal with labels q starting from row 1 down to, but not including, position α. Below position α we choose the positions on the cyclic-Hankel permutation matrix labeled $q+1$ down to column 1 , say in row r. We also choose the position in column n in the same row as α. Finally, we choose the positions on the cyclic Hankel diagonal labeled q in the lower $(r+1) \times(r+1)$ submatrix. Using the induction hypothesis, we obtain a 123 -avoiding permutation matrix without any 0 's. This is illustrated in Example 2.14.

Example 2.14 To illustrate Lemma 2.13, let $n=12$ and consider a 123 -forcing $(0,1)$-matrix A given in (21) whose 0 's in row 1 and column 12 are those where $L_{12}^{6}(4,3)$ has 0 's (colored yellow). Suppose we know that A does not contain a 0 in positions labeled 7 within the lower left 9×8 matrix X, and consider the positions labeled 6. If A has a 0 in a position in X containing a 6 as shown in color green, we then choose the positions colored red as shown .
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline & & & & 6 & & & & & & & \\ \hline\end{array}\right.$

Since the position labeled 4 in the last column is not a 0 in the $L_{12}^{6}(4,3)$, and so is not a 0 in A, we get a 123-avoiding permutation matrix.

We now show that the properties given in Lemmas 2.10, 2.11, and 2.13 characterize the 123 -forcing (0,1)-matrices with the minimum number n of 0 's.

Theorem 2.15 Let A be an $n \times n(0,1)$ with exactly $n 0$'s with one 0 on each cyclic-Hankel permutation matrix where the position $(1, n)$ contains $a 0$. Let a and b be maximum such that $k=a+b \leq n+1$ and A has 0 's where $L_{n}^{k}(a, b)$ has 0 's. Then A is a 123-forcing matrix if and only if the following conditions hold:
(a) No other positions of A in row 1 and column n contain a 0 .
(b) A does not have 0 's in two positions $z_{1}=(i, k)$ and $z_{2}=(j, l)$ above the Hankel diagonal with $i<j$ and $k \leq l$.
(c) A does not have 0 's in two positions $z_{1}=(i, k)$ and $z_{2}=(j, l)$ below the Hankel diagonal with $i<j$ and $k \leq l$.
(d) The $(n-b) \times(n-a)$ submatrix of A formed by rows $b+1, b+2, \ldots, n$ and columns $1,2, \ldots, n-a$ does not contain any 0 's.

Proof. The assumption that the position $(1, n)$ contains a 0 is without loss of generality. The necessity follows from previous lemmas, and we now prove these properties are sufficient to guarantee that every permutation matrix $P \leq A$ contains a 123pattern.

We partition the $(0,1)$ matrix A as

$$
\left[\begin{array}{c||c}
A_{1} & A_{2} \\
\hline \hline A_{3} & A_{4}
\end{array}\right]
$$

where A_{2} is $b \times a$ and so A_{1} is $b \times(n-a), A_{3}=J_{n-b, n-a}$, and A_{4} is $(n-b) \times a$. Since A_{2} contains 0 's in the positions of the 0 's of $L_{n}^{k}(a, b)$, it follows from (a) that A_{2} has 0's only in positions of its first row and last column with those 0's in (a+b-1) cyclic-Hankel permutation matrices.

Since there is exactly one 0 in each cyclic-Hankel permutation matrix, A_{1} contains $p \leq n-(a+b-1)$ positions with a 0 . Thus there are $q=(n-(a+b-1)-p)$ columns of A_{1} not containing a 0 in A and thus this many positions with a 0 in A_{3}. Since the first row of A_{1} and the last column of A_{2} each contain a 1 of every permutation matrix $P \leq A$, a 123-avoiding permutation matrix $P \leq A$ cannot use a 1 in A_{2}. Thus to get a 123 -avoiding permutation matrix $P \leq A, P$ must contain a strictly decreasing sequence (subpermutation) of b 1's in A_{1} and a strictly decreasing sequence (subpermutation) of a 1's in A_{4}. An example of this situation is given in (22) with $n=15, a=6, b=4$, and $p=3$, where $x=0$ denotes 0 's of A_{1} (shifted from the red squares in row 1) and 0 's in A_{4} (shifted from the red squares in A_{4}).

In (22) we need to have a decreasing subpermutation of size 4 in the upper left 4×9 (a submatrix equal to a Hankel diagonal matrix $H_{k}, k=4$ in (22)) and a decreasing subpermutation of size 6 in the lower right 11×6 (so a submatrix equal to a Hankel diagonal matrix $H_{l}, l=6$ in (22)). We show examples of these in (22).

With the $x=0$'s on different cyclic-Hankel diagonals, it follows that the 1 (colored yellow) in the H_{k} in the last row of the upper left submatrix is in column $(n-b-1)$ or earlier (it is in column 3 in the example), and the 1 (also colored yellow) in row H_{l} is the first column of the lower right submatrix (it is in row 13 in the example).

Now consider the submatrix A^{\prime} determined by the rows and columns not yet containing a 1 (the 5×5 submatrix in two shades of blue in (22)). The positions in the submatrix of A_{3} determined by the columns of the $x=0$'s in A_{1} and the rows of the $x=0$'s in A_{4} (colored dark blue in the example) must contain only 0 's, otherwise with the two yellow 1's we get a 123 pattern. This gives an $l \times l$ zero submatrix of A^{\prime} ($l=3$ in the example) which violates the easy part of the Frobenius-König Theorem, and hence we cannot complete the 1's to a permutation matrix. Hence there does not exist a 123 -avoiding permutation matrix $P \leq A$, completing the proof.

There is an analogous theorem where in Theorem 2.15 we assume the position $(n, 1)$ contains a 0 , thereby taking care of all possibilities.

Acknowledgements

We are indebted to two referees for their extensive comments on this paper.

References

[1] M. Bóna, Combinatorics of Permutations, 2nd ed., CRC Press 2012, Chapter 4.
[2] R. A. Brualdi and L. Cao, Pattern-avoiding (0,1)-matrices and bases of permutation matrices, Discrete Appl. Math. 304 (2021), 196-211.
[3] R. A. Brualdi and L. Cao, Blockers of pattern avoiding permutation matrices, Australas. J. Combin. 83(2) (2022), 274-303.
[4] R. P. Stanley, Catalan Numbers, 2nd ed., Cambridge University Press, Cambridge, 2015.
(Received 23 July 2022; revised 20 Jan 2023, 1 Mar 2023)

