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Abstract
A function f : V (G)→ Z+∪{0} is a resolving broadcast of a graph G if,
for any distinct x, y ∈ V (G), there exists a vertex z ∈ V (G) with f(z) > 0
such that min {d(x, z), f(z) + 1} 6= min {d(y, z), f(z) + 1}. The broad-
cast dimension of G is the minimum of

∑
v∈V (G) f(v) over all resolving

broadcasts f of G. The concept of broadcast dimension was introduced
by Geneson and Yi in 2022 as a variant of metric dimension and has
applications in areas such as network discovery and robot navigation.

In this paper, we derive an asymptotically tight lower bound on the
broadcast dimension of an acyclic graph in the number of vertices, and we
show that a lower bound by Geneson and Yi on the broadcast dimension
of a general graph in the adjacency dimension is asymptotically tight.
We also study the change in the broadcast dimension of a graph under
a single edge deletion. We show that both the additive increase and
decrease of the broadcast dimension of a graph under edge deletion is
unbounded. Moreover, we show that under edge deletion, the broadcast
dimension of any graph increases by a multiplicative factor of at most 3.
These results fully answer three questions asked by Geneson and Yi.

1 Introduction

Let G = (V (G), E(G)) be a finite, simple, and undirected graph of order |V (G)|. The
distance dG(u, v) between two vertices u, v ∈ V (G) is the length of the shortest path
in the graph G between u and v if they belong to the same connected component
of G and infinity otherwise. We omit the subscript G if it is clear from the context.
For a positive integer k and vertices u, v ∈ V (G), we define

dk(u, v) := min{d(u, v), k + 1}.

A set S ⊆ V (G) is a resolving set of G if, for any distinct x, y ∈ V (G), there is
a vertex z ∈ S such that d(x, z) 6= d(y, z). Intuitively, a resolving set of G is a set
of landmark vertices, such that each vertex in V (G) is uniquely characterized by its
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distances to the landmarks. The metric dimension dim(G) of G is the cardinality of
a smallest resolving set of G.

Metric dimension was introduced by Slater [20] in 1975, in connection with the
problem of uniquely determining the location of an intruder in a network. Harary
and Melter independently introduced the same concept in [14]. Metric dimension
has since been heavily studied [1, 3, 4, 6] and has applications in diverse areas such
as chemistry [5], pattern recognition and image processing [19], and strategies for
the Mastermind game [7]. Khuller et al. [18] considered robot navigation as another
possible application of metric dimension. In that sense, a robot moving around in a
space modeled by a graph can determine its distance to landmarks located at some of
the vertices. The minimum number of landmarks required for the robot to uniquely
determine its location on the graph is the metric dimension of the graph.

A set A ⊆ V (G) is an adjacency resolving set of G if, for any distinct x, y ∈ V (G),
there is a vertex z ∈ A such that d1(x, z) 6= d1(y, z). The adjacency dimension
adim(G) of G is the cardinality of a smallest adjacency revolving set of G. The
concepts of adjacency resolving set and adjacency dimension were introduced by
Jannesari and Omoomi [17] in 2012 as a tool for studying the metric dimension of
lexicographic product graphs. The authors of [17] also considered robot navigation
as a possible application of adjacency dimension: the minimum number of landmarks
required for a robot moving from node to node on a graph to determine its location
from only the landmarks adjacent to it is the adjacency dimension of the graph.
Similarly, truncated metric dimension is a more general version of adjacency dimen-
sion [21], where dk is used instead of d1 as the distance metric, for some positive
integer k.

A function f : V (G)→ Z+ ∪ {0} is a resolving broadcast of G if, for any distinct
x, y ∈ V (G), there is a vertex z ∈ suppG(f) := {v ∈ V (G) : f(v) > 0} such that
df(z)(x, z) 6= df(z)(y, z). The broadcast dimension bdim(G) of G is the minimum
of cf (G) :=

∑
v∈V (G) f(v) over all resolving broadcasts f of G. The concepts of

resolving broadcast and broadcast dimension were introduced in 2020 by Geneson
and Yi [13], who noted that broadcast dimension also has applications in robot
navigation. In that sense, transmitters with varying range are located at some of
the vertices of a graph. A transmitter with range k has cost k for k ∈ Z+ ∪ {0}. A
robot moving around on the graph learns its distance to each transmitter that it is
within range of and learns that it is out of range of the others. The minimum total
cost of transmitters required for a robot to determine its location on the graph is the
broadcast dimension.

We say that a resolving set, adjacency resolving set, or resolving broadcast of G
is efficient if it achieves dim(G), adim(G), or bdim(G), respectively.

Example 1.1. The tree T in Figure 1 has different metric, adjacency, and broadcast
dimension.

In [13], Geneson and Yi proved an asymptotic lower bound of Ω(log n) on the ad-
jacency and broadcast dimension of graphs of order n, and they further demonstrated
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dim(T ) = 2 adim(T ) = 6 bdim(T ) = 5

Figure 1: Three copies of tree T . An efficient resolving set is shown with open circles
in the first copy; an efficient adjacency resolving set is shown with open circles in the
second copy; an efficient resolving broadcast is labeled on the third copy.

that this lower bound is asymptotically tight using a family of graphs from [22].

Theorem 1.2 ([13]). For all graphs G of order n, we have

n ≥ adim(G) ≥ bdim(G) = Ω(log n).

We improve the lower bound on the broadcast dimension of acyclic graphs of order
n from Ω(log n) to Ω(

√
n) and show that this improved lower bound is asymptotically

tight.

Theorem 1.3. For all acyclic graphs G of order n, we have bdim(G) = Ω(
√
n), and

this lower bound is asymptotically optimal.

Since the broadcast dimension is a generalization of the adjacency dimension, a
natural question is how these quantities relate. Theorem 1.2 gives that bdim(G) =
Ω (log (adim(G))). In the following question, Geneson and Yi ask whether or not
this lower bound is asymptotically optimal.

Question 1.4. ([13]). Is there a family of graphs {Gk}k∈Z+ with bdim(Gk) = Θ(k)
and adim(Gk) = 2Ω(k) for every k ∈ Z+?

We resolve Question 1.4 affirmatively by constructing such a family of graphs.
Thus, we complete the characterization of how the broadcast dimension of a graph G
can vary in the adjacency dimension of G: adim(G) ≥ bdim(G) = Ω(log(adim(G))),
where both sides are tight. Our construction directly implies the following theo-
rem.

Theorem 1.5. The lower bound bdim(G) = Ω (log (adim(G))) is asymptotically
optimal.

The question of the effect of vertex or edge deletion on the metric dimension of
a graph was raised by Chartrand and Zhang in [6] as a fundamental question in



E. ZHANG/AUSTRALAS. J. COMBIN. 85 (3) (2023), 313–339 316

graph theory. In [13], Geneson and Yi studied the effect of vertex deletion on the
broadcast dimension of a graph, and they ask two corresponding questions for edge
deletion.

Question 1.6. ([13]). Is there a family of graphs {Gk}k∈Z+ such that bdim(Gk)−
bdim(Gk − ek) can be arbitrarily large, where ek ∈ E(Gk)?

Question 1.7. ([13]). For any graph G and any e = uv ∈ E(G), is it true that
bdim(G− e)− bdim(G) ≤ dG−e(u, v)− 1?

Let e = uv denote an edge of a connected graph G such that G − e is also a
connected graph. We resolve the first question affirmatively and show that the bound
proposed in the second question can fail. In fact, the value bdim(G−e)−bdim(G) can
be arbitrarily larger than dG−e(u, v). We also show that while bdim(G−e)−bdim(G)

can be arbitrarily large, the ratio bdim(G−e)
bdim(G)

is bounded from above.

Theorem 1.8. The value bdim(G)− bdim(G− e) can be arbitrarily large.

Theorem 1.9. The value bdim(G − e) − bdim(G) can be arbitrarily larger than
dG−e(u, v).

Theorem 1.10. For all graphs G and any edge e ∈ E(G), we have bdim(G−e)
bdim(G)

≤ 3.

The rest of this paper is structured as follows. In Section 2, we introduce rel-
evant terminology and notation, and we record preliminary results on the metric,
adjacency, and broadcast dimension of graphs that are necessary for the rest of the
paper. In Section 3, we examine the broadcast dimension of paths and cycles. In
Section 4, we discuss results on the broadcast dimension of acyclic graphs and prove
Theorem 1.3. In Section 5, we resolve Question 1.4 affirmatively and prove Theo-
rem 1.5. In Section 6, we prove Theorems 1.8, 1.9, and 1.10. Finally in Section 7,
we conclude with some open problems about broadcast dimension.

2 Preliminaries

In this section, we first introduce relevant terminology and notation that we will
use throughout the paper. We then record some preliminary results on the metric,
adjacency, and broadcast dimension of graphs. For the rest of this section, we let
f : V (G)→ Z+ ∪ {0} for graph G = (V (G), E(G)).

We denote by Pn, Cn, and Kn the path, cycle, and complete graph on n vertices,
respectively. We say diam(G) = max {d(u, v) | u, v ∈ V (G)}. We denote by 1 the
vector with 1 for each entry and 2 the vector with 2 for each entry, where the length
of the vector is inferred from context. For an arbitrary set S, a totally ordered set
Y , and a function g : S → Y , we define argmaxx∈S g(x) to be any x∗ ∈ S such that
g(x) ≤ g(x∗) for all x ∈ S. We define argminx∈S g(x) analogously.

Definition 2.1. A vertex z ∈ suppG(f) resolves a pair of distinct vertices x, y ∈
V (G) if

df(z)(x, z) 6= df(z)(y, z).
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In order for a vertex z ∈ suppG(f) to resolve a pair of vertices x, y ∈ V (G),
we must have f(z) ≥ d(x, z) or f(z) ≥ d(y, z). We formally define this notion
below.

Definition 2.2. A vertex z ∈ suppG(f) reaches a vertex v ∈ V (G) with respect to
f if f(z) ≥ d(v, z), and the function f reaches a vertex v ∈ V (G) if there is a vertex
z ∈ suppG(f) that reaches v.

By definition, the function f is a resolving broadcast of G if and only if every pair
of distinct vertices in V (G) is resolved by a vertex in suppG(f). Thus, any resolving
broadcast f of G must reach all but at most one vertex in V (G). Equivalently,
the function f is a resolving broadcast of G if and only if every vertex of G is
distinguished ; that is, every vertex of G is uniquely characterized by its distances to
the vertices in suppG(f) that reach it. We formally define this term below.

Definition 2.3. Let k = |suppG(f)|. The broadcast representation of a vertex v ∈
V (G) with respect to f is the k-vector bf (v) =

(
df(u1)(v, u1), . . . , df(uk)(v, uk)

)
for

ui ∈ suppG(f). We say that a vertex v ∈ V (G) is distinguished if it has a unique
broadcast representation bf (v).

The following observations give insight into how the metric, adjacency dimension,
and broadcast dimension of graphs are related and will be useful throughout the rest
of the paper.

Observation 2.4. ([13]). The following properties hold for any graph G.

1. We have dim(G) ≤ bdim(G) ≤ adim(G).
2. If diam(G) ≤ 2, then we have dim(G) = bdim(G) = adim(G).

The closed neighborhood of a vertex v ∈ V (G) is N [v] = {u ∈ V (G) : uv ∈
E(G)} ∪ {v}. Two distinct vertices u, v ∈ V (G) are called twin vertices if N [u] =
N [v].

Observation 2.5. If u, v ∈ V (G) are twin vertices, then the following properties
hold.

1. [16] For any resolving set S of G, we have that u ∈ S or v ∈ S.
2. [17] For any adjacency resolving set A of G, we have that u ∈ A or v ∈ A.
3. [13] For any resolving broadcast f of G, we have that u ∈ suppG(f) or v ∈

suppG(f).

3 Paths and Cycles

Here we restrict our attention to path and cycle graphs. It is easy to see that
dim(Pn) = 1 and dim(Cn) = 2 for every integer n ≥ 3. The adjacency dimension
and the broadcast dimension, respectively, of paths and cycles were determined in
[17] and [13].

Theorem 3.1 ([17]). For every integer n ≥ 4, we have adim(Pn) = adim(Cn) =⌊
2n+2

5

⌋
.
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Theorem 3.2 ([13]). For every integer n ≥ 4, we have bdim(Pn) = bdim(Cn) =⌊
2n+2

5

⌋
.

In this section, we prove the following result on efficient resolving broadcasts of
paths and cycles.

Proposition 3.3. For every n ∈ Z+ and G ∈ {Pn, Cn}, if f is an efficient resolving
broadcast of G, then f(v) ≤ 2 for all v ∈ V (G).

We begin with two lemmas. In the proof of Theorem 3.2, Geneson and Yi proved
the following useful fact, which we state here as a lemma. We include the proof for
completeness.

Lemma 3.4 ([13]). For every n ∈ Z+ and every efficient resolving broadcast f of
G ∈ {Pn, Cn}, there is an efficient resolving broadcast f ′ of G with the following
properties.

1. Every vertex reached by f is also reached by f ′.
2. For all v ∈ V (G), we have f ′(v) ≤ 1.

Proof. Let G be the path v1, . . . , vn or the cycle v1, . . . , vn, v1. Let f0 be any efficient
resolving broadcast of G. If f0(v) ≤ 1 for all v ∈ V (G), then we are done. Other-
wise, we repeatedly modify fi to obtain a new efficient resolving broadcast fi+1 that
satisfies the following monovariant: for integer k, let Uk = {v ∈ V (G) : fk(v) > 1}
and Sk =

∑
v∈Uk

fk(v), then Si+1 < Si.

Let vj ∈ V (G) be any vertex with x := fi(vj) > 1. If vj is a leaf and x = 2,
we set fi+1(vj) = 1 and fi+1(u) = max{fi(u), 1}, where u is the vertex adjacent
to vj. Otherwise, we set fi+1(vj) = x − 2, and we let u1 and u2 be the vertices
v(j+x−1) mod n and v(j−x+1) mod n, respectively. We set fi+1(u1) = max{fi(u1), 1} and
fi+1(u2) = max{fi(u2), 1}. The maximum value is used for vertices assigned multiple
values for fi+1, and fi+1(v) = fi(v) for any vertex v not assigned any value for fi+1.
This process will terminate after finitely many steps because of the monovariant on
Si, yielding a resolving broadcast that satisfies the description of f ′.

The proof of Lemma 3.7 uses some ideas from observations made in [2] about the
metric dimension of a wheel Wn = Cn +K1 for integers n ≥ 3. To state the lemma,
we need the following definition.

Definition 3.5. For a graph G, the value b̂dim(G) is the minimum of
∑

v∈V (G) f(v)

over all resolving broadcasts f of G such that every vertex v ∈ V (G) is reached by
at least one vertex z ∈ suppG(f). This differs from bdim(G) because one vertex may
be unreached by a resolving broadcast.

Observation 3.6. For all graphs G, we have

b̂dim(G) = bdim(G ∪K1) and bdim(G) ≤ b̂dim(G) ≤ bdim(G) + 1.

Lemma 3.7. For every integer n ≥ 4, we have b̂dim(Pn) = b̂dim(Cn) =
⌊

2n+3
5

⌋
.
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Proof. Let G be the path v1, . . . , vn or the cycle v1, . . . , vn, v1. First, we will show

that b̂dim(G) = bdim(G) for n 6≡ 1 (mod 5). Define g : V (G) → Z+ ∪ {0} as
follows: g(vi) is 1 if i ≡ 2 (mod 5) or i ≡ 4 (mod 5) and 0 otherwise. Note that g is
a resolving broadcast of G that achieves bdim(G) given in Theorem 3.2 and that g
reaches all of the vertices of G when n 6≡ 1 (mod 5).

Now, we will show that b̂dim(G) = bdim(G)+1 for n ≡ 1 (mod 5). Let n = 5x+1
for some positive integer x; then, we have bdim(G) =

⌊
10x+4

5

⌋
= 2x. It suffices to

show that for any efficient resolving broadcast f of G, there is a vertex not reached
by f . By Lemma 3.4, there is an efficient resolving broadcast f ′ of G with f ′(v) ≤ 1
for all v ∈ V (G) that reaches all of the vertices reached by f . For the sake of
contradiction, we assume that f ′ reaches all of the vertices, and so there is no vertex
v ∈ V (G) with bf ′(v) = 2.

A gap of graph G is a maximal connected subgraph of G that only consists of
vertices that are not in suppG(f ′). If two gaps are adjacent to the same vertex in
suppG(f ′), then we call them neighboring gaps. No gap can contain three vertices,
since the vertex in the middle of the gap would have broadcast representation 2.
Additionally, any neighboring gap of a gap that contains two vertices must contain
only one vertex, since otherwise there exists five consecutive vertices of G where the
vertex m in the middle is the only one in suppG(f ′), and the two vertices adjacent
to m would have the same broadcast representation.

If G is Cn, then of the bdim(G) gaps, at most
⌊

bdim(G)
2

⌋
gaps contain two vertices,

and none contain three vertices. Thus, n ≤ 2 bdim(Cn) +
⌊

bdim(Cn)
2

⌋
= 5x. Similar

reasoning yields n ≤ 5x if G were instead Pn. Since G is a graph of order 5x+ 1, we
have reached a contradiction.

With the above lemma, we are now able to prove Proposition 3.3.

Proof of Proposition 3.3. Let G be the path v1, . . . , vn or the cycle v1, . . . , vn, v1, and
let f be an efficient resolving broadcast of G. If n ≤ 6, then bdim(G) ≤ 2 by
Theorem 3.2, so f(v) ≤ 2 for all v ∈ V (G). Thus, we consider n ≥ 7.

Let vi = argmaxv∈V (G)(f(v)). For the sake of contradiction, we assume that
f(vi) ≥ 3. If vertex vi were a leaf (say i = 1), then a function g that is identical to
f , except with g(v3) = f(v1) − 2 and g(v1) = 1, is a resolving broadcast of G with
cg(G) < cf (G), contradicting the efficiency of f . Thus, vi has two neighbors. At
least one of the neighbors of vi must be reached by some other vertex vj 6= vi or else
the two neighbors of vi would not be distinguished.

First, we will show that f is inefficient if f(vj) ≥ 2. Let T be the set of vertices
that are reached by vi or vj. Note that |T | ≤ 2f(vi) + f(vj) + 2. By Lemma 3.7, the

vertices in T can be reached and distinguished with a total cost of
⌊

2|T |+3
5

⌋
, which

is less than f(vi) + f(vj) when f(vi) ≥ 3 and f(vj) ≥ 2.
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Thus, we must have f(vj) = 1, so |T | ≤ 2f(vi) + 1 since vj cannot reach any
vertex that vi does not reach. By Lemma 3.7, the vertices in T can be reached and
distinguished with a total cost of⌊

2|T |+ 3

5

⌋
≤ 4f(vi) + 5

5
< f(vi) + 1 = f(vi) + f(vj).

This contradicts the efficiency of resolving broadcast f .

4 Results on Acyclic Graphs

In this section, we discuss some results on the broadcast dimension of acyclic graphs,
and we prove Theorem 1.3. We make use of standard terminology for trees: a major
vertex in a tree T is a vertex of degree at least three, and a leaf of T is a vertex of
degree one.

For any graph G, showing that a function g : V (G) → Z+ ∪ {0} is a resolving
broadcast of G gives an upper bound of cg(G) on bdim(G). On the other hand, ob-
taining a nice lower bound on bdim(G) is oftentimes less straightforward. The result
on twin vertices from Observation 2.5 is a useful tool for lower bounding bdim(G).
In this section, we use a different approach to derive a lower bound on the broadcast
dimension of trees: we consider the number of unique broadcast representations of
the vertices of a tree T with respect to various functions f : V (T )→ Z+ ∪{0}. This
motivates the following definition.

Definition 4.1. For a graph G of order n and a function f : V (G)→ Z+ ∪ {0}, we
say that BG(f) is the number of unique broadcast representations of the vertices of
G with respect to f . That is,

BG(f) = |{bf (v) | v ∈ V (G)}| .

Note that BG(f) = n if and only if f is a resolving broadcast of G.

The following lemma will be useful in the proof of Theorem 4.3.

Lemma 4.2. Let T be a tree with resolving broadcast f , and let a, b, v, x ∈ V (T )
such that the following inequalities hold:

f(a)− d(a, x) ≥ f(v)− d(v, x),

f(b)− d(b, x) ≥ f(v)− d(v, x),

f(a)− d(a, v) ≥ f(b)− d(b, v).

Then every vertex of T that is reached by both b and v is also reached by a.

Proof. We consider four possible orientations of the vertices a, b, and v (see Figure 2).

Case 1. There is not a path in T through vertices a, b, and v.
Let c be the major vertex of T such that the path from c to a, the path from c to b,
and the path from c to v do not share any edges.
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In this case, f(a)− d(a, v) ≥ f(b)− d(b, v) implies that

f(a)− d(a, c) ≥ f(b)− d(b, c). (1)

If the path from x to a does not go through c, then both the path from x to b and
the path from x to v must pass through c, so f(b)− d(b, x) ≥ f(v)− d(v, x) implies
that f(b)− d(b, c) ≥ f(v)− d(v, c). Combining this inequality with (1), we have

f(a)− d(a, c) ≥ f(v)− d(v, c). (2)

Alternatively, if the path from x to a does go through c, then f(a) − d(a, x) ≥
f(v)−d(v, x) directly implies (2). Thus, the inequality in (2) holds no matter where
vertex x is.

The inequality in (1) shows that any vertex reached by b with a path to b that
goes through c is reached by a. Similarly, the inequality in (2) shows that any vertex
reached by v with a path to v that goes through c is reached by a. Thus, any vertex
that is reached by both b and v is also reached by a.

Case 2. d(a, v) + d(v, b) = d(a, b).
If the path from x to b does not go through v, then

f(a)− d(a, x) ≥ f(v)− d(v, x) =⇒ f(a) ≥ d(a, v) + d(v, x) + f(v)− d(v, x)

=⇒ f(a)− d(a, v) ≥ f(v).

Alternatively, if the path from x to b does go through v, then replacing a with b in the
above inequalities, we get f(b)− d(b, v) ≥ f(v), which implies that f(a)− d(a, v) ≥
f(v).

Thus, no matter where vertex x is, we have f(a) − d(a, v) ≥ f(v), which shows
that a reaches all of the vertices reached by v.

Case 3. d(b, a) + d(a, v) = d(b, v).

Case 4. d(a, b) + d(b, v) = d(a, v).

It is easy to see that the lemma is true for Cases 3 and 4 by direct observation or
by performing analysis similar to the analysis shown for Cases 1 and 2.

Theorem 4.3. For all trees T of order n, we have bdim(T ) ≥
√

n
6
.

Proof. Let T be a tree of order n, and let f be any resolving broadcast of T . We
define f ′ : V (T ) → Z+ ∪ {0} such that f ′(v) = 0 for all v ∈ V (T ). Note that
BT (f ′) = 1. Let x ∈ V (T ) be any vertex. We order the vertices in suppT (f) so
that vertex v ∈ suppT (f) comes before vertex u ∈ suppT (f) in the ordering only
if f(v) − d(v, x) ≥ f(u) − d(u, x). We update the value of f ′(v) from 0 to f(v)
(notationally, f ′(v)← f(v)) one vertex v ∈ suppT (f) at a time in the defined order
until f ′ = f , and we consider the increase in BT (f ′) on each update.
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S1b

c

a v

S1

a v b

Case 1 Case 2

b a v

S1

a b v

Case 3 Case 4

Figure 2: The four cases from the proof of Lemma 4.2 and the proof of Theorem 4.3.
Note that all vertices may have larger degree than what is shown. Any non-pictured
vertex of the tree that is in S (defined in the proof of Theorem 4.3) and adjacent to
a vertex in S1 is also in S1.

For a vertex v ∈ suppT (f), let W (v) be the set of vertices that can reach (with
respect to f ′) at least one vertex u ∈ V (T ) that is reached by v (with respect to f).
That is,

W (v) = {w | w 6= v, w ∈ suppT (f ′), u ∈ V (T ), f ′(w) ≥ d(u,w), f(v) ≥ d(u, v)} .

If W (v) = ∅, then updating f ′(v) ← f(v) increases BT (f ′) by at most f(v) + 1,
which is upper bounded by 2 (f (v))2 since f(v) ≥ 1.

If |W (v)| = 1, then we can make the following observations about the broadcast
representation bf ′(u) of any vertex u reached by v after the update f ′(v) ← f(v).
There are f(v) + 1 possible values for the entry of bf ′(u) corresponding to vertex v
and 2f(v) + 1 possible values for the entry of bf ′(u) corresponding to the vertex in
W (v). The rest of the entries of bf ′(u) must be the maximal possible value for that
entry. Thus, BT (f ′) increases by at most (f(v) + 1) (2f(v) + 1) ≤ 6 (f (v))2 in this
case.

Now we consider |W (v)| > 1. Let a = argmaxu∈W (v) (f ′(u)− d(u, v)) and b ∈
W (v)− {a}. Let δ ≥ 0 such that the update f ′(v)← f(v) increases BT (f ′) by δ.

Claim. If f ′(b) were instead zero, then the update f ′(v)← f(v) would still increase
BT (f ′) by at least δ.

Proof of claim. Let S be the set of vertices reached by both b and v, and let S0 =
V (T ) − S. We consider four possible orientations of the vertices a, b, and v (see
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Figure 2), and we show that, in each case, the vertices in S can be split into two
(possibly empty) sets S1 and S2 such the three properties listed below are satisfied.
Note that showing this proves the claim.

Property 1. Before updating f ′(v)← f(v), every vertex in S1 has a different broad-
cast representation from every vertex in V (T )− S1.

Property 2. Updating f ′(v)← f(v) does not increase |{bf ′(v) | v ∈ S1}|.
Property 3. If f ′(b) were instead zero, updating f ′(v) ← f(v) would increase

|{bf ′(v) | v ∈ S2 ∪ S0}| by at least δ.

Since we made the updates f ′(a) ← f(a) and f ′(b) ← f(b) before the update
f ′(v) ← f(v), we have f(a) − d(a, x) ≥ f(v) − d(v, x) and f(b) − d(b, x) ≥ f(v) −
d(v, x). Because of the way we chose vertex a, we have f(a)−d(a, v) ≥ f(b)−d(b, v).
Thus, by Lemma 4.2, vertex a also reaches all of the vertices in S.

Because every vertex in S0 is not reached by b or not reached by v, the increase
in |{bf ′(v) | v ∈ S0}| after updating f ′(v)← f(v) would be at least the same if f ′(b)
were instead zero. In all four cases, if S1 = ∅, Properties 1 and 2 are trivially satisfied,
and if S2 = ∅, Property 3 is trivially satisfied.

Case 1. There is not a path in T through vertices a, b, and v.
Let c be the major vertex of T such that the path from c to a, the path from c to
b, and the path from c to v do not share any edges. Let S1 be the set of vertices in
S with a path to b that does not go through c, and S2 = S − S1. Let u1 ∈ S1. All
other vertices with distance d(u1, a) to a and d(u1, b) to b are also in S1 (Property 1)
and have the same distance d(u1, a)− d(a, c) + d(c, v) to vertex v (Property 2). Let
u2 ∈ S2. All of the vertices in S2 that are distance d(u2, a) to vertex a and distance
d(u2, v) to vertex v have the same distance to vertex b (Property 3).

Case 2. d(a, v) + d(v, b) = d(a, b).
Let S1 = S and S2 = ∅. Let u1 ∈ S1. All other vertices that are distance d(u1, a)
from vertex a and distance d(u1, b) from vertex b are also in S1 (Property 1) and are
the same distance from vertex v (Property 2). Property 3 is trivially satisfied.

Case 3. d(b, a) + d(a, v) = d(b, v).
Let S1 be the set of vertices in S with a path to b that does not go through a, and
S2 = S − S1. Let u1 ∈ S1. All other vertices with distance d(u1, a) to a and d(u1, b)
to b are also in S1 (Property 1), and they all have the same distance d(u1, a)+d(a, v)
to vertex v (Property 2). Let u2 ∈ S2. All of the vertices in S2 that are distance
d(u2, a) to vertex a have the same distance d(u2, a)+d(a, b) to vertex b (Property 3).

Case 4. d(a, b) + d(b, v) = d(a, v).
Let S1 = ∅ and S2 = S. Properties 1 and 2 are trivially satisfied. Let u2 ∈ S2. All of
the vertices with distance d(u2, a) to vertex a and distance d(u2, v) to vertex v have
the same distance to vertex b (Property 3).

The claim implies that the change in BT (f ′) after updating f ′(v) ← f(v) when
|W (v)| > 1 is upper bounded by the change in BT (f ′) after updating f ′(v) ← f(v)
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if we instead had W (v) = {a}. Thus, every update increases BT (f ′) by at most
6 (f(v))2, and the very first update increases BT (f ′) by at most 2 (f(v))2. Since we
started out with BT (f ′) = 1, and we must have BT (f ′) = n after finishing all of the
updates, we have that cf (T ) ≥

√
n
6

for any resolving broadcast f of T .

Because the broadcast dimension of a disconnected graph is at least the sum of
the broadcast dimensions of all of its connected components, Theorem 4.3 directly
implies the following corollaries.

Corollary 4.4. For all acyclic graphs G of order n, we have bdim(G) = Ω(
√
n).

Corollary 4.5. For all acyclic graphs G of order n, we have adim(G) = Ω(
√
n).

Corollary 4.6. For all acyclic graphs G of order n, we have adim(G) = O
(
(bdim(G))2).

Now we will show that the bound from Theorem 4.3 is sharp up to a constant
factor and that the asymptotic bounds from Corollary 4.4 and Corollary 4.6 are
asymptotically optimal. We do so by finding a family of trees that achieves these
bounds up to a constant factor. This family of graphs will also be used to study edge
deletion in Section 6.

Definition 4.7. For every k ∈ Z+∪{0}, graph Lk is the path v0, . . . , vk. The graph
Fk is Lk with a path Pi connected to vi for each 1 ≤ i ≤ k. (See Figure 3 for the
graph F3.)

v0 v1 v2 v3

Figure 3: The graph F3.

Theorem 4.8. For every k ∈ Z+∪{0}, tree Fk of order Θ(k2) has bdim(Fk) = O(k)
and adim(Fk) = Θ(k2).

Proof. The function fk : V (Fk)→ Z+∪{0} with fk(v0) = fk(vk) = 2k and fk(v) = 0
for all other vertices v ∈ V (Fk) is a resolving broadcast of Fk with cfk(Fk) = 4k, so
bdim(Fk) ≤ 4k = O(k).

The size of any adjacency resolving set of Fk must be linear in the number of
vertices in order for all of the vertices on the paths attached to Lk to be distinguished.
Since tree Fk has order Θ(k2), we have adim(Fk) = Θ(k2).

Combining Corollary 4.4 and Theorem 4.8, we have proven Theorem 1.3.
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In [13], Geneson and Yi showed that, for two connected graphs G and H such that

H ⊂ G, the ratios dim(H)
dim(G)

, adim(H)
adim(G)

, and bdim(H)
bdim(G)

can be arbitrarily large. In the next
result, we show that this can only be true when the graph G is not acyclic.

Proposition 4.9. For two trees T1 and T2 such that T1 ⊆ T2, we have that dim(T1) ≤
dim(T2), adim(T1) ≤ adim(T2), and bdim(T1) ≤ bdim(T2).

Proof. Let T be a tree with efficient resolving broadcast f : V (T ) → Z+ ∪ {0}.
Let v ∈ V (T ) be a leaf of T , and let uv ∈ E(T ). If v 6∈ suppT (f), then g :
V (T − v) → Z+ ∪ {0} with g(w) = f(w) for every w ∈ V (T − v) is a resolving
broadcast of graph T − v. If v ∈ suppT (f), then g : V (T − v) → Z+ ∪ {0} with
g(u) = max{f(v) − 1, f(u)} and g(w) = f(w) for every w ∈ V (T − v) − {u} is a
resolving broadcast of T −v. Thus, bdim(T −v) ≤ bdim(T ) for any leaf v of T . Tree
T2 can be pruned into tree T1 by repeatedly deleting leaves that are not in T1. Thus,
bdim(T1) ≤ bdim(T2). The results dim(T1) ≤ dim(T2) and adim(T1) ≤ adim(T2)
follow with similar reasoning.

5 Comparing adim(G) and bdim(G)

Geneson and Yi [13] showed that, for the the d-dimensional grid graph Gk = Πd
i=1Pk,

we have bdim(Gk) = Θ(k) and adim(Gk) = Θ(kd) for every k ∈ Z+ and any d ≥ 1,
where the constants in the bounds depend on d. In this section, we prove the following
theorem.

Theorem 5.1. There exists a family of graphs {Gk}k∈Z+ with bdim(Gk) = Θ(k)
and adim(Gk) = 2Ω(k) for every k ∈ Z+.

First, we recall the following graph notation. We denote byG[S] the subgraph ofG
induced by S ⊆ V (G). The Cartesian product of graphs G and H, denoted by G�H,
is the graph with vertex set V (G) × V (H) := {(u1, u2) | u1 ∈ V (G), u2 ∈ V (H)},
where (u1, u2) is adjacent to (v1, v2) whenever u1 = v1 and u2v2 ∈ E(H), or u2 = v2

and u1v1 ∈ E(G).

We prove Theorem 5.1 by finding a family of graphs with the desired properties.
This family of graphs is defined as follows:

Definition 5.2. Graph X̂0 is the path a, b, c, and graph X̂ is the graph with vertex
set {a, b, c} and edge set {ab}. For i ∈ Z+, we let

X̂i = X̂0� X̂�X̂ . . .�X̂︸ ︷︷ ︸
i times

.

For i ∈ Z+ ∪ {0}, graph Xi is X̂i with one modification: for every 0 ≤ j ≤ i, graph
Xi has an additional vertex sj that is adjacent to every vertex with a as the (j+1)st
coordinate. (See Figure 4 for the graph X1.)

Lemma 5.3. We have bdim(Xk) = Θ(k) for all k ∈ Z+.
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s0

(a, a)

s1

(a, b)

(a, c)

(b, a) (c, a)

(b, b) (c, b)

(b, c) (c, c)

Figure 4: The graph X1.

Proof. Let k ∈ Z+ be given. For i ∈ Z+ ∪ {0}, we define Si = {sj | 0 ≤ j ≤ i}.

For i ∈ Z+ ∪ {0}, we define the function fi : V (Xi) → Z+ ∪ {0} as follows:
fi(s0) = 3, fi(sj) = 2 for every 1 ≤ j ≤ i, and fi(v) = 0 for all other vertices v. We
claim that fi is a resolving broadcast of Xi for all i ∈ Z+∪{0}. We proceed to prove
this claim by induction.

In the base case i = 0, we have that X0 is the path s0, a, b, c. It is easy to see that
that function f0 with f0(s0) = 3 is a resolving broadcast of X0. Assuming that fk−1

is a resolving broadcast of graph Xk−1, we will show that fk is a resolving broadcast
of graph Xk.

Let u1, u2 ∈ V (Xk−1) and v1, v2 ∈ {a, b, c} such that (u1, v1) and (u2, v2) are two
distinct vertices in V (Xk). If u1 6= u2, then (u1, v1) and (u2, v2) are resolved by
the vertex in Sk−1 that resolved u1 and u2 in Xk−1. Alternatively, if u1 = u2, then
v1 6= v2, and (u1, v1) and (u2, v2) are resolved by sk. Thus, function fk is a resolving
broadcast of Xk.

Now we can upper bound the broadcast dimension of Xk:

bdim(Xk) ≤ cfk(Xk) = 3 + 2k =⇒ bdim(Xk) = O(k).

By Theorem 1.2, we have bdim(Xk) = Ω(k). Thus, we have bdim(Xk) = Θ(k).

Lemma 5.4. We have adim(Xk) = 2Ω(k) for all k ∈ Z+.

Proof. Let k ∈ Z+ be given. For i ∈ Z+ ∪ {0}, we define Si = {sj | 0 ≤ j ≤ i}.

We claim that the following statement is true for all i ∈ Z+ ∪ {0}: for any
adjacency resolving set Ai of Xi, we have that |(V (Xi)− Si)∩Ai| ≥ 2i. We proceed
to prove this claim by induction.

In the base case i = 0, for any adjacency resolving set A0 of X0 = P4, we have by
Theorem 3.1

|(V (X0)− {s0}) ∩ A0| ≥
⌊

2(4) + 2

5

⌋
− 1 = 1.
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Now we assume that |(V (Xk−1)− Sk−1) ∩ Ak−1| ≥ 2k−1 for any adjacency resolving
set Ak−1 of Xk−1.

Let H be Xk−1[V (Xk−1)−Sk−1], the subgraph induced in Xk−1 by V (Xk−1)−Sk−1.
The induced subgraph Xk[V (Xk)−Sk] contains three copies of H as subgraphs. Let
H1, H2, and H3 be the copies of H in Xk[V (Xk) − Sk] that are induced by the
sets of vertices {(v, a) | v ∈ V (H)}, {(v, b) | v ∈ V (H)}, and {(v, c) | v ∈ V (H)},
respectively.

Let v ∈ V (H). Vertex (v, c) ∈ V (H3) is only adjacent to vertices in V (Xk)−V (H3)
that are in Sk−1. In particular, the vertices (v, c) ∈ V (H3) and u ∈ Sk−1 are adjacent
in Xk if and only if v and u are adjacent in Xk−1. Thus, we have |V (H3) ∩ Ak| ≥ 2k−1

for any adjacency resolving set Ak of Xk by the inductive hypothesis.

If |V (H1) ∩ Ak| = 0, then we must have |V (H2) ∩ Ak| ≥ 2k−1, in order to distin-
guish all of the vertices in H2. If instead |V (H1) ∩ Ak| = x for some positive integer
x, then we must have |V (H2) ∩ Ak| ≥ 2k−1 − x, since every vertex in V (H1) ∩ Ak

reaches at most one vertex in H2. Thus, any adjacency resolving set Ak of Xk must
have at least 2k−1 vertices in V (H1) ∪ V (H2). We have

|(V (Xk)− Sk) ∩ Ak| = |V (H3) ∩ Ak|+ |(V (H1) ∪ V (H2)) ∩ Ak| ≥ 2k

for any adjacency resolving set Ak of Xk, which completes the induction.

Thus, we have |Ak| ≥ 2k for any adjacency resolving set Ak of Xk, so adim(Xk) =
2Ω(k).

Combining Lemma 5.3 and Lemma 5.4, we have proven Theorem 5.1. We note
that our construction of graph Xk has broadcast dimension that is asymptotically
optimal in both its order and its adjacency dimension:

Remark 5.5. There does not exist a family of graphs {Gk}k∈Z+ with bdim(Gk) =
Θ(k) and adim(Gk) = 2ω(k) for every k ∈ Z+ because bdim(G) = Ω(log n) for all
graphs G of order n by Theorem 1.2.

Our result in Theorem 5.1 directly implies Theorem 1.5 and resolves Question 1.4
affirmatively. Furthermore, we can also answer Question 1.4 for acyclic graphs:

Remark 5.6. By Corollary 4.6, there does not exist a family of acyclic graphs
{Gk}k∈Z+ with bdim(Gk) = Θ(k) and adim(Gk) = 2Ω(k) for every k ∈ Z+.

6 Edge Deletion

Throughout this section, we let v and e, respectively, denote a vertex and an edge of
a connected graph G such that G− v and G− e are also connected graphs. Geneson
and Yi [13] constructed families of graphs that demonstrated that both bdim(G)

bdim(G−v)
and

bdim(G−v)−bdim(G) can be arbitrarily large. In this section, we prove analogues of
their results for the effect of edge deletion on the broadcast dimension of a graph. We
prove Theorem 1.8 and Theorem 1.9, which state that both bdim(G)− bdim(G− e)
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e

A B

zk

z1
x1

xk

yk

y1
L1

Lk

zi

Gk Ti

Figure 5: A graph Gk such that bdim(Gk) − bdim(Gk − e) = Ω(k). For every
1 ≤ i ≤ k, vertex zi is the root of a copy of tree Ti, shown on the right, so |Li| = 22
and the degree of zi is 5 for each 1 ≤ i ≤ k.

and bdim(G− e)−bdim(G)− dG−e(u, v) can be arbitrarily large for e = uv ∈ E(G).
We do so by finding families of graphs that demonstrate these results. We also show
that the ratio bdim(G−e)

bdim(G)
is bounded from above by 3, proving Theorem 1.10.

In the following theorem, we resolve Question 1.6 affirmatively by constructing
a family of graphs that uses ideas from a graph constructed by Eroh et al. in [10],
which they used to show that dim(G)− dim(G− e) can be arbitrarily large.

Theorem 1.8. The value bdim(G)− bdim(G− e) can be arbitrarily large.

Proof. Let k ≥ 2 be an integer, and let Gk be the graph in Figure 5 with e = AB.
For each 1 ≤ i ≤ k, let layer Li be the set of vertices indicated in Figure 5.

We define function g : V (Gk − e)→ Z+ ∪ {0} as follows:

g(v) =


3 if v = A,

4 if v = zi for 1 ≤ i ≤ k,

1 if v is a vertex on tree Ti shown with an open circle in Figure 5,

0 otherwise.

Because g is a resolving broadcast of graph Gk−e, we can upper bound the broadcast
dimension of graph Gk − e: we have bdim(Gk − e) ≤ cg(Gk − e) = 3 + 9k.

Let f : V (Gk)→ Z+∪{0} be a resolving broadcast of the graph Gk. For every pair
of distinct vertices u1, u2 ∈ V (Gk) with d(u1, A) = d(u2, A) and d(u1, B) = d(u2, B),
at least one of u1 or u2 must be reached by a vertex in suppGk

(f) that is on the same
layer since otherwise we would have bf (u1) = bf (u2). Thus, at most

max
u,v∈V (Gk)

(d(u,A) + 1)(d(v,B) + 1) + 1 = O(1)
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layers of graph Gk can have a vertex that is not reached by any vertex on the same
layer. The following properties must hold for the remaining k −O(1) layers Li.

1. Every vertex v ∈ Li is reached by a vertex in Li ∩ suppGk
(f).

2. We have suppGk
(f) ∩ (Li − V (Ti)) 6= ∅, since otherwise bf (xi) = bf (yi).

3. Any distinct u, v ∈ V (Ti) with d(u, zi) = d(v, zi) must be resolved by a vertex
in Li since d(u,A) = d(v,A) and d(u,B) = d(v,B).

zi

v1

v4a v4b

v3a v3b

v2

Figure 6: Tree Ti labeled for casework reference.

Refer to Figure 6 for the remainder of the proof. There are three pairs of twin
vertices on tree Ti (see dotted rectangular boxes). By Observation 2.5, at least one of
the vertices in each of these pairs must be in suppGk

(f). Without loss of generality,
let the three vertices that are denoted with an open circle be in suppGk

(f). The
total value assigned to each of the two groups of five vertices identified by dashed
trapezoidal boxes must be at least 2 in order for the three vertices that are the same
distance away from zi in each of those groups to be distinguished.

Any assignment of a total value of 5 to Ti subject to the above constraints leaves
at least four unreached vertices: v1, v2, v3a or v3b, and v4a or v4b. These four vertices
must be reached by assigning an additional total value of at least 4 to the vertices
on tree Ti (in addition to the positive value assigned to some vertex in Li − V (Ti)),
or by assigning an additional total value of c < 4 to the vertices on tree Ti and at
least 5− c to a vertex v ∈ Li−V (Ti). In either case, a total value of at least 10 must
be assigned to the vertices on such a layer Li.

Because a total value of at least 10 is assigned to at least k − O(1) layers of Gk

by any resolving broadcast f of Gk, we have bdim(Gk)−bdim(Gk− e) ≥ 10k− 9k−
O(1) = Ω(k).

We will prove Theorem 1.9 by constructing a family of graphs that shows that
bdim(G− e)− bdim(G) can be arbitrarily larger than dG−e(u, v), thus showing that
the bound proposed in Question 1.7 can fail. Since we use both spider graphs and
the graph Fk (see Definition 4.7) in the graph construction, we begin with two lem-
mas: a lemma about graphs containing spiders as subgraphs and a lemma about the
graph Fk.



E. ZHANG/AUSTRALAS. J. COMBIN. 85 (3) (2023), 313–339 330

As we will be working with a specific family of spider graphs in the proof of
Theorem 1.9, we introduce our notation for spider graphs:

Definition 6.1. A tree is called a spider if every vertex, except for one vertex
known as the center vertex, has degree at most two. A leg of a spider graph is a

path connected to the center vertex. We denote by SP
(
`

(x1)
1 , . . . , `

(xm)
m

)
a spider of

order n with xi legs of length `i for every 1 ≤ i ≤ m, where `1 ≤ `2 ≤ · · · ≤ `m and
1 +

∑m
i=1 `ixi = n.

Lemma 6.2. For any integer k > 1, let G be a graph that contains spider SP
(
3k(6k)

)
with center c as a subgraph such that c is the only vertex on the spider that is adjacent
to any vertex of the graph that is not on the spider. If a resolving broadcast f of G
is efficient, then there exists a vertex z ∈ suppG(f) with f(z)− d(c, z) ≥ 3k − 2.

Proof. For the sake of contradiction, consider an efficient resolving broadcast f where
there is not a z ∈ suppG(f) with f(z)− d(c, z) ≥ 3k − 2. On each leg of the spider
SP

(
3k(6k)

)
, the three vertices farthest from c are only reached by vertices on the

same leg.

Let u, v ∈ V (G) be two distinct vertices on the legs of the spider with d(u, c) =
d(v, c). If neither u nor v are reached by a vertex that is on the same leg as u or
v, then bf (u) = bf (v). Thus, every vertex on the legs of the spider, except at most
3k of them (one vertex of each distinct distance from c) must be reached by another
vertex on the same leg. On at least 6k− 3k = 3k legs of the spider, all vertices need
to be reached by a vertex on the same leg; let L be the set of these legs.

A vertex v ∈ suppG(f) on a leg of the spider can reach at most 2f(v) + 1 vertices
on the same leg, and we have that 2f(v) + 1 ≤ 3f(v) with equality if and only if
f(v) = 1. Because all of the vertices on a leg ` ∈ L need to be reached by a vertex
on `, the total value v` assigned to the 3k vertices on ` must be at least k. If v` = k,
then we must have the following assignment: the vertices on ` that are distance 3i−1
from c for 1 ≤ i ≤ k are assigned a value of 1, and the rest of the vertices on ` are
assigned 0. However, with this assignment, there are two vertices on ` that have
the same broadcast representation: the vertex that is distance 3k − 2 from c and
the vertex that is distance 3k from c are only reached by the vertex between them.
Thus, v` ≥ k + 1 for every ` ∈ L.

Consider function f ′ : V (G)→ Z+ ∪ {0} defined as follows. Let f ′(v) = f(v) for
all vertices that are not on a leg in L, and let f ′(c) = 3k−2. The vertices on a leg in
L that are distance 3i− 1 from c for 1 ≤ i ≤ k are assigned a value of 1, and the rest
of the vertices on a leg in L are assigned 0. We note that f ′ is a resolving broadcast
of G. Moreover, we have cf ′(G) < cf (G) because f ′(c) − f(c) ≤ 3k − 2, and for
each of the 3k legs ` ∈ L, we have

∑
v∈` f(v)−

∑
v∈` f

′(v) ≥ 1. This contradicts the
efficiency of f .
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Lemma 6.3. For any resolving broadcast f of Fk (see Definition 4.7) with f(vk) ≥ k,
we have ∑

v∈V (Fk)

f(v) ≥ f(vk) + 2k −O(1).

Proof. Let f be a resolving broadcast of Fk that minimizes
∑

v∈V (Fk) f(v), under the

constraint that f(vk) ≥ k. For u ∈ V (Fk), we define p(u) := argmini∈[0,k] d (u, vi).

Case 1. f(w)− d
(
w, vp(w)

)
≤
⌈
k
2

⌉
for all w ∈ V (Fk)− {vk}.

Define f ′ : V (Fk) → Z+ ∪ {0} such that f ′(vk) = f(vk) and f ′(v) = 0 for all other
v ∈ V (Fk). The number of unique broadcast representations of the vertices of Fk

with respect to function f ′, denoted BFk
(f ′), is k+1. Updating f ′(w)← f(w) for any

w ∈ suppFk
(f)−{vk} introduces at most f(w) new unique broadcast representations

to the vertices u with p(u) < p(w). Thus, every update f ′(w) ← f(w) for some
w ∈ suppFk

(f)− {vk} increases BFk
(f ′) by at most

O (f(w)) +

f(w)∑
i=1

i ≤ f(w)

(
k

4
+O(1)

)
.

Since we must have k2

2
+O(k) unique broadcast representations, the lemma holds in

this case.

Case 2. There is a vertex w 6= vk with f(w)− d
(
w, vp(w)

)
>
⌈
k
2

⌉
.

Let t be the vertex on Fk farthest from vertex v0. We must have d(w, t)−f(w) = O(1),
since otherwise there would be ω(1) vertices u with p(u) ≥ p(w) not reached by w.
These vertices would be most efficiently distinguished by increasing f(w), contra-
dicting the efficiency of f . The vertices u with p(u) < p(w) must be distinguished
with an additional total cost of at least p(w)−O(1). Thus,∑

v∈V (Fk)

f(v) ≥ f(vk) + d(w, t) + p(w)−O(1) ≥ f(vk) + 2k −O(1),

as desired.

With Lemma 6.2 and Lemma 6.3, we can prove Theorem 1.9.

Theorem 1.9. The value bdim(G − e) − bdim(G) can be arbitrarily larger than
dG−e(u, v), where e = uv ∈ E(G).

Proof. For integer k ≥ 2, let Hk be the graph in Figure 7, and let e = vivi+1, where
i =

⌊
3k−2

2

⌋
. Let S1 and S2 be the spider SP

(
3k(6k)

)
centered at v0 and v3k−2,

respectively. For u ∈ V (Hk), we define p(u) := argmini∈[0,k] dHk
(u, vi). We will show

that for sufficiently large k, we have

bdim (Hk − e)− bdim(Hk) = dHk−e(vi, vi+1) + Ω(k) =
k

2
+ Ω(k).
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P3k P3k

×6k ×6k

e

v0 v1 v2 vi vi+1 v3k−2vi−1

Figure 7: A graph Hk such that bdim(Hk − e)− bdim(Hk) can be arbitrarily larger
than dHk−e(vi, vi+1), where e = vivi+1 and i =

⌊
3k−2

2

⌋
. The vertices v0, . . . , v3k−2

are on a path. Additionally, each vj with 1 ≤ j ≤ i − 1 is connected to a path Pj ;
each vj with i + 2 ≤ j ≤ 3k − 3 is connected to a path P3k−2−j , and vertices vi and
vi+1 are on a cycle of length

⌊
k
2

⌋
. Finally, v0 and v3k−2 are both centers of a copy of

spider SP
(
3k(6k)

)
.

Let B = bdim
(
SP

(
3k(6k)

))
. Let g : V (Hk) → Z+ ∪ {0} be the function that

applies an efficient resolving broadcast of SP
(
3k(6k)

)
to S1 and S2 on graph Hk. By

Lemma 6.2, there are vertices z′1 on S1 and z′2 on S2 with g(z′1)−dHk
(v0, z

′
1) ≥ 3k−2

and g(z′2)− dHk
(v3k−2, z

′
2) ≥ 3k − 2. Function g is a resolving broadcast of Hk since

every pair of distinct vertices in V (Hk) that are on the same spider is clearly resolved,
and every other pair of vertices is resolved by either z′1 or z′2. Thus, bdim(Hk) ≤ 2B.

Let f be an efficient resolving broadcast of the graph Hk − e. By Lemma 6.2,
we must have vertices z1, z2 ∈ suppG(f) with f(z1) − dHk−e(v0, z1) ≥ 3k − 2 and
f(z2)− dHk−e(v3k−2, z2) ≥ 3k − 2.

Case 1. There does not exist a vertex z with

f(z)− dHk−e(v0, z) ≥ 3k − 2 and f(z)− dHk−e(v3k−2, z) ≥ 3k − 2.

In this case, z1 and z2 are distinct vertices. We define c1 := f(z1) − 3k + 2 and
d1 := p(z1), and we similarly define c2 := f(z2) − 3k + 2 and d2 := 3k − 2 − p(z2).
Note that c1 ≥ d1 and c2 ≥ d2 by Lemma 6.2.

If d1 > 0, let T1 be the Fd1 subgraph induced by the vertices u with p(u) ≤ d1



E. ZHANG/AUSTRALAS. J. COMBIN. 85 (3) (2023), 313–339 333

that are not on a leg of spider S1. Otherwise, let T1 be the graph that consists of
the singular vertex z1. Let y1 = argmaxV (S1)−{v0}(f(y) − d(y, v0)). By Lemma 6.3,
we must have

f(y1)−d(y1, v0)+
∑

v∈V (T1)

f(v) ≥ f(z1)+2d1 +max {f(y1)− d(y1, v0)− 2d1, 0}−O(1)

(3)
in order to distinguish the vertices of T1.

On spider S1, assigning vertex y1 the value f(y1) only distinguishes at most
d(y1, v0) + f(y1) vertices on the same leg of S1. In an efficient resolving broad-
cast of S1, those d(y1, v0) + f(y1) vertices would have instead been distinguished

with a total cost of at most
⌈
d(y1,v0)+f(y1)

3

⌉
by assigning a value of 1 to every third

vertex (see proof of Lemma 6.2). Thus, we can obtain the following bound on the
total value assigned to the vertices in set U1 = V (S1)− {v0, y1, z1}:∑

v∈U1

f(v) ≥ B − g(z′1)− d(y1, v0) + f(y1)

3
−O(1). (4)

Using (3) and (4), we lower bound the total value assigned to all of the vertices u
with p(u) ≤ d1:

f(y1) +
∑

v∈V (T1)

f(v) +
∑
v∈U1

f(v)

≥ f(z1) + 2d1 + max {f(y1)− d(y1, v0)− 2d1, 0}+ d(y1, v0) +B − 3k

− d(y1, v0) + f(y1)

3
−O(1)

≥ c1 + 2d1 + d(y1, v0) +B − d(y1, v0) + (d(y1, v0) + 2d1)

3
−O(1)

≥ c1 +
4d1

3
+B −O(1).

In this case, the sum of the values assigned to vertices u with p(u) > d1 must be
at least B in order to distinguish the vertices of spider S2. Thus, we have

bdim(Hk − e)− bdim(Hk) ≥

 ∑
v∈V (Hk−e)

f(v)

− 2B ≥ c1 +
4

3
d1 −O(1).

If d1 ≥ k
4
, then we have

bdim(Hk−e)−bdim(Hk) ≥ c1 +
4d1

3
−O(1) ≥ 7d1

3
−O(1) ≥ 7k

12
−O(1) =

k

2
+Ω(k),

as desired. By symmetry, if d2 ≥ k
4
, then we are also done.
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Now, we consider d1, d2 <
k
4
. The k2

2
± O(k) vertices in region A2 (see Figure 8)

are all reached by z2, and all but O(k) of them must be reached by another vertex
that is not in B2 in order to be distinguished. Additionally, at least k2

2
−O(k) of the

vertices in A1 must be reached by vertices not in B1 in order to be distinguished.
Vertex z1 reaches at most (c1 + d1 +O(1))k of the vertices in A2, and the total value
assigned to the vertices in B1 is at least B + c1 + 4

3
d1 − O(1). Similarly, vertex z2

reaches at most (c2 + d2 +O(1))k of the vertices in A1, and the total value assigned
to the vertices in B2 is at least B + c2 + 4

3
d2 −O(1). Any vertex v that is not in B1

or B2 has g(v) = 0 and reaches at most k · f(v) + O(1) of the vertices in A1 ∪ A2.
Thus, in this case we have

bdim(Hk − e)− bdim(Hk) ≥ 1

k
(|A1 ∪ A2| −O(k)) = k −O(1) =

k

2
+ Ω(k).

v0 vi vi+1 v3k−2v( k

2
±O(1)) v( 5k

2
±O(1))

A1 A2

B1 B2

Figure 8: A geometric interpretation of graph Hk − e. The spiders centered at v0

and v3k−2 (not pictured) are also in B1 and B2, respectively.

Case 2. There exists a vertex z with

f(z)− dHk−e(v0, z) ≥ 3k − 2 and f(z)− dHk−e(v3k−2, z) ≥ 3k − 2.

The assumption in this case directly implies that

f(z) ≥ dHk−e(v0, v3k−2)

2
+ 3k −O(1) = 4.75k −O(1).

Without loss of generality, we assume p(z) ≥ i. Let T1 be the Fi−1 subgraph induced
by the vertices u with p(u) ≤ i− 1 that are not on a leg of spider S1. By the same
reasoning as in the first case, in order for the vertices on T1 to be distinguished, an
additional total value of 4

3
·d(v0, vi−1)−O(1) must be assigned to the vertices u with

p(u) < i. Thus, we have

bdim(Hk − e)− bdim(Hk) ≥ f(z)− g(z′1)− g(z′2) +
4

3
· 3k

2
−O(1)

≥ 4.75k − 6k + 2k −O(1)

=
k

2
+ Ω(k),

as desired.
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While the value bdim(G−e)−bdim(G) can be arbitrarily large, the ratio bdim(G−e)
bdim(G)

is bounded. We prove this below, using some ideas from the proof that dim(G−e) ≤
dim(G)+2 in [10]. Recall that a geodesic is a shortest path between two points.

Theorem 1.10. For all graphs G and any edge e ∈ E(G), we have bdim(G−e)
bdim(G)

≤ 3.

Proof. Let f be an efficient resolving broadcast of G, and let vertices u and v be the
endpoints of edge e. Let b = maxv∈V (G) f(v). We will show that function f ′, which
is identical to f , except with f ′(u) = f ′(v) = b, is a resolving broadcast of G − e.
Then, we will be done since

3 bdim(G) = 3
∑

w∈V (G)

f(w) ≥
∑

w∈V (G−e)

f ′(w) ≥ bdim(G− e).

Let z ∈ suppG(f), and let x and y be two vertices with df(z)(x, z) 6= df(z)(y, z) in
graph G. Suppose that x and y are no longer resolved by z after the edge e is deleted;
that is, df(z)(x, z) = df(z)(y, z) in graphG−e. Then, we must have dG(u, z) 6= dG(v, z)
since removing edge e = uv increases the distance from z to at least one vertex in
the graph. Without loss of generality, we assume that dG(v, z) < dG(u, z).

We consider two cases and show that u resolves x and y in graph G − e in both
cases; that is, we show that we have df ′(u)(x, u) 6= df ′(u)(y, u) in graph G− e in both
cases.

Case 1. Removing edge e only increases the distance from z to one of x and y
(say x).
Edge e must lie on every x− z geodesic in G. Since dG(v, z) < dG(u, z), we have an
x− u geodesic in G that does not go through edge e. Moreover, we have

f ′(u) ≥ f(z) ≥ min {dG(x, z), dG(y, z)} = dG(x, z) ≥ dG(x, u) = dG−e(x, u).

The above inequality shows that u reaches x with respect to f ′ in graph G−e. Thus,
it remains to be shown that dG−e(x, u) 6= dG−e(y, u) in this case.

Subcase 1. f(z) ≥ dG(y, z) = dG−e(y, z).
In this subcase, df(z)(x, z) = df(z)(y, z) in graph G − e implies that dG−e(x, z) =
dG−e(y, z), and so

dG−e(x, u) = dG(x, u) = dG(x, z)− dG(z, u) < dG−e(x, z)− dG(z, u)

= dG−e(y, z)− dG(z, u) = dG(y, z)− dG(z, u) ≤ dG(y, u)

≤ dG−e(y, u).

Subcase 2. f(z) < dG(y, z) = dG−e(y, z).
If dG−e(x, u) = dG−e(y, u), then we have

dG(y, z) ≤ dG(y, u) + dG(u, z) ≤ dG−e(y, u) + dG(u, z)

= dG−e(x, u) + dG(u, z) = dG(x, u) + dG(u, z)

= dG(x, z) ≤ f(z),
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a contradiction.

Case 2. Removing edge e increases the distance from z to both x and y.
Edge e must lie on every x− z geodesic and every y − z geodesic in graph G. Since
dG(v, z) < dG(u, z), we have dG(u, x) < dG(v, x) and dG(u, y) < dG(v, y). Because z
resolves x and y in G, at least one of x and y (say x) is reached by z in G. Then,

f ′(u) ≥ f(z) ≥ dG(x, z) ≥ dG(x, u) = dG−e(x, u)

and
dG−e(x, u) = dG(x, u) 6= dG(y, u) = dG−e(y, u),

so vertex u resolves vertices x and y in graph G− e.

7 Future Work

In Corollary 4.5, we showed that adim(G) = Ω(
√
n) for all acyclic graphs G of order

n. To our knowledge, the best such lower bound before our work is the Ω(log n)
bound on the adjacency dimension of general graphs of order n given by Geneson
and Yi in Theorem 1.2, which they showed to be asymptotically optimal using a
family of graphs constructed by Zubrilina in [22]. We ask if our lower bound on the
adjacency dimension of acyclic graphs is asymptotically optimal.

Question 7.1. Is there a family of acyclic graphs {Gk}k∈Z+ with adim(Gk) =

Θ
(√
|V (Gk)|

)
for every k ∈ Z+?

The bounds that we derived in Theorem 4.3 and Theorem 1.10 are sharp up to
a constant factor. Sharper bounds may be obtained by examining the steps of the
proofs more carefully. Additionally, it would be interesting to determine the exact
broadcast dimension of some special graphs for which the broadcast dimension is
currently only known up to a constant factor.

Question 7.2. What is the broadcast dimension of the grid graph Pm�Pn?

Question 7.3. What is the broadcast dimension of the graph Fk from Definition 4.7?

We note that the broadcast dimension of the grid graph Pm�Pn is at most 2m+2n:
for paths Pm : x1, x2, . . . xm and Pn : y1, y2, . . . yn, the function f that assigns m+n to
(x1, y1) and (x1, yn) and assigns 0 to the rest of the vertices is a resolving broadcast
of Pm�Pn. Additionally, the broadcast dimension of Fk is at most 3k: function f
with f(v0) = 2k, f(vk) = k, and f(w) = 0 for all w ∈ V (Fk)− {v0, vk} is a resolving
broadcast of Fk. Lemma 6.3 makes partial progress towards finding the broadcast
dimension of Fk.

In Section 6, we show that both bdim(G−e)−bdim(G) and bdim(G)−bdim(G−e)
can be arbitrarily large and that bdim(G−e)

bdim(G)
≤ 3 for all graphs G and any edge e ∈

E(G). These results naturally lead us to ask the following question:
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Question 7.4. Is bdim(G)
bdim(G−e) bounded from above for all graphs G and any edge

e ∈ E(G)?

On a similar note, Geneson and Yi showed in [13] that both bdim(G)
bdim(G−v)

and

bdim(G − v) − bdim(G) can be arbitrarily large. The corresponding problem for
bdim(G−v)

bdim(G)
remains open.

Question 7.5. Is bdim(G−v)
bdim(G)

bounded from above for all graphs G and any vertex

v ∈ V (G)?

To better understand how metric dimension and broadcast dimension compare to
each other, it would be interesting to derive more properties of broadcast dimension
that are analogues to known properties of metric dimension. For example:

Question 7.6. For a graph G and n ∈ Z+, bound bdim(G�Pn) and bdim(G�Cn)
in terms of some function of G and n.

Question 7.7. For graphs G and H, bound bdim(G�H) in terms of some function
of G and H.

Question 7.8. Is determining the broadcast dimension of a graph an NP-hard prob-
lem?

It is NP-hard to determine the metric dimension and adjacency dimension of a
general graph (see [12], [11], respectively). Determining the domination number of
a general graph is also an NP-hard problem [12]. Heggernes and Lokshtanov [15]
found a polynomial-time algorithm for computing the broadcast domination number
of arbitrary graphs, and both the domination number and broadcast domination
number of a tree can be determined in linear time (see [8],[9], respectively). We ask
the corresponding question for the broadcast dimension of trees.
Question 7.9. Is there a polynomial-time algorithm for determining the value of
bdim(T ) for every tree T?

We refer to [13] for more open questions about broadcast dimension. Finally, we
note that it would also be interesting to study the broadcast dimension of directed
graphs and graphs with weighted edges.
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