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Abstract

For an arrangement of n lines in the real projective plane, we denote by
f the number of regions into which the real projective plane is divided
by the lines. Using Bojanowski’s inequality (2003), we establish a new
lower bound for f . In particular, we show that if no more than 2

3
n lines

intersect at any point, then f ≥ 1
6
n2.

1 Introduction

Let L be an arrangement of n ≥ 2 lines in the real projective plane RP
2 and let m

denote the maximum number of lines from L intersecting at one point. The lines
from L divide RP

2 into polygonal regions which are the connected components of
the complement of the union of the lines. Denote the number of regions by f . The
question we are interested in is: how many regions can be obtained (under all pos-
sible arrangements L of n lines)?

Below we collect some known lower bounds for f in terms of n and m.

• f ≥ 2n− 2, if m < n, Grünbaum [5];

• f ≥ 3n− 6, if m ≤ n− 2, Grünbaum [5];

• f ≥ m(n + 1−m), Arnol’d [1];

• f ≥ n(n−1)
2(m−1)

, if m > 2, Arnol’d [1];
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• f ≥ (m+ 1)(n−m), Arnol’d [1] and Purdy [9];

• f ≥ (r + 1)(n− r), if m ≤ n− r and n ≥ r2+r
2

+ 3 for some r ∈ Z, Shnurnikov
[10];

• f ≥ 2
(

n2−n+2m
m+3

)
, Shnurnikov [10];

• f ≥ (3m−10)n2+(m2−6m+12)n
m2+3m−18

+ 1, if 5 ≤ m < n− 2, Shnurnikov [11].

In this paper we use Bojanowski’s inequality [2] to establish a new lower bound
for f . This inequality, which we introduce in Section 2, was derived from the work of
Langer [12] and has taken some time to become widely known by the combinatorics
community [8, 13]. Our main result states that:

Theorem 1 Let L be an arrangement of n lines in the real projective plane such
that m ≤ 2

3
n. Then

f ≥ (m+ 2)n2 + (3m− 6)n

6m
+ 1 ≥ 1

6
n2.

We remark that to the best of our knowledge, if m(n) is a sublinear but increasing
function of n, then this is the first quadratic lower bound on f . For example consider
the case m =

√
n in the previously known inequalities given above.

2 Bounds for Number of Regions

For an arrangement of lines L in the projective plane we denote by tk, 2 ≤ k ≤
n−1, the number of intersection points where exactly k lines of the arrangement are
incident. The following are some known relations for values of tk.

• t2 ≥ 3 +
∑

k≥4(k − 3)tk, Melchior [7];

• t2 ≥ 6
13
n for n ≥ 8, Csima and Sawyer [3];

• t2 +
3
4
t3 ≥ n+

∑
k≥5(2k − 9)tk, if tn−1 = tn−2 = 0, Hirzebruch [6];

• t2 +
3
4
t3 ≥ n+

∑
k≥5

(
1
4
k2 − k

)
tk, if tk = 0 for k > 2

3
n, Bojanowski [2];

• t2 ≥ 1
2
n and t2 ≥ 3�1

4
n� for sufficiently large, even and odd n, respectively,

Green and Tao [4].

Perhaps it is worth mentioning here that both Bojanowski [2] and Hirzebruch [6]
inequalities hold for arrangements of complex lines in the complex projective plane
and consequently, they also hold for arrangements of lines in the real projective
plane. To the best of our knowledge, Bojanowski’s inequality [2] is the strongest
known inequality for line arrangements with m ≤ 2

3
n [8].
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Proof of Theorem 1. Let L be an arrangement of n lines. If we add lines one by
one, then the number of new regions created by each line is equal to the number of
intersection points with previously added lines. In this process, a point with k lines
passing through it is intersected k− 1 times. Thus, the number of regions, including
1 for the first line, is

f = 1 +

m∑
k=2

(k − 1)tk. (1)

Note that (1) can be obtained by using the fact that the Euler characteristic of the

real projective plane is 1. The number of pairs of lines in L is equal to n(n−1)
2

. In
a projective plane, every pair of lines intersects at exactly one point, and if k lines
meet at a point, we get k(k−1)

2
of such pairs which cross at that point. Since tk = 0

for k > m, we obtain

n(n− 1) =
m∑
k=2

k(k − 1)tk. (2)

Suppose we are given an inequality

m∑
k=2

αktk ≥ α0 (3)

where α0, α2, α3, . . . , αm are some real numbers, and suppose that for some c1, c2 > 0
the inequality

c1k(k − 1) + c2αk ≤ k − 1 (4)

is satisfied for all 2 ≤ k ≤ m. Multiply both sides of (4) by tk and sum up for
k = 2, 3, . . . , m to obtain

c1

m∑
k=2

k(k − 1)tk + c2

m∑
k=2

αktk ≤
m∑

k=2

(k − 1)tk

since tk ≥ 0. This is equivalent to

c1n(n− 1) + c2

m∑
k=2

αktk ≤ f − 1. (5)

Using (3) and (5) and the fact that c2 > 0, we obtain

f ≥ c1n(n− 1) + c2α0 + 1 (6)

for positive c1, c2, satisfying (4). For m ≤ 2
3
n we use Bojanowski’s inequality [2]

t2 +
3

4
t3 +

∑
k≥5

(
k − 1

4
k2

)
tk ≥ n
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in the form (3) to obtain the following

α0 = n, α2 = 1, α3 =
3

4
, α4 = 0, αk =

(
k − 1

4
k2

)
for k ≥ 5.

From (4) we get

1 ≥ 2c1 + c2, 2 ≥ 6c1 +
3

4
c2, 3 ≥ 12c1, for k = 2, 3, and 4, respectively,

0 ≥ c1k(k − 1) + c2

(
k − 1

4
k2

)
− (k − 1) for 5 ≤ k ≤ m.

For m ≥ 2, let us take the positive numbers

c1 =
m+ 2

6m
, c2 =

2(m− 1)

3m
.

Now we need to check these inequalities for 2 ≤ k ≤ m and for the given c1, c2. The
first three are easy to check, so we verify the last one for 5 ≤ k ≤ m. Thus,

c1k(k − 1) + c2

(
k − 1

4
k2

)
− (k − 1) =

0.5(k − 2)(k −m)

m
≤ 0,

because k ≤ m and k ≥ 5. So, we obtain (6) for the given c1, c2, and hence, the
inequality of the theorem. �

Note that lower bounds on f in the form (6) were obtained by Shnurnikov in
[11]. In [11] he applied Hirzebruch’s inequality [6] to obtain the result mentioned in
Section 1.

It is natural to ask under which assumptions the inequality of Theorem 1 is
stronger than previously known inequalities. The inequality in Theorem 1 is quadrat-
ic in n. So, it suffices to compare it to those inequalities mentioned in Section 1 that
are quadratic in n for some function m(n). In particular, the results of Arnol’d [1]
and Purdy [9] become quadratic in n if m(n) = n

p
where p is a real number greater

than 1. A simple calculation shows that Theorem 1 is weaker than those inequalities
when p ∈ (

3−√
3, 3 +

√
3
)
and it is also weaker than the second of the two listed

inequalities from Shnurnikov [10] when m ≤ 5. On the other hand, Theorem 1 is

stronger than all the inequalities mentioned in Section 1 whenever 7 ≤ m ≤ n

5
and

for m = 6 we have equality with Shnurnikov [11].
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