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Abstract

We revisit the periodic complexity function hw(n) introduced by Mignosi
and Restivo. This function gives the average of the first n local periods of
a recurrent infinite word w. Our method for computing the asymptotics
of the periodic complexity function is different than that of Mignosi and
Restivo. We apply it to the Thue–Morse word, the Rudin–Shapiro word,
and the period-doubling word.

1 Introduction

Mignosi and Restivo [3] introduced a new complexity measure for infinite words
called the periodic complexity. This function is defined based on the local period at
each position of the infinite word. Let w = w0w1w2 · · · be an infinite word. The
periodicity function pw(i) is defined as follows. The value of pw(i) is the length of
the shortest prefix u of wiwi+1wi+2 · · · such that either u is a suffix of w0 · · ·wi−1
or w0 · · ·wi−1 is a suffix of u, if such a word u exists. If no such u exists, then
pw(i) =∞. However, if w is recurrent (i.e., every factor of w occurs infinitely often
in w), which will always be the case in this paper, then pw(i) <∞ for all i.

For example, if w = 1011001011 · · · , then pw(4) = 6, since 001011 has suffix
1011, and pw(5) = 1, since 10110 has suffix 0.

Since the values of pw(i) can fluctuate wildly, it is not that suitable as a complexity
function. Mignosi and Restivo therefore defined the periodic complexity function
hw(i) as the average of the periodicity function; that is, if

Pw(i) =
i−1∑
j=0

pw(j)
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is the summatory function of pw(i), then hw(i) = (1/i)Pw(i) for i ≥ 1.

Mignosi and Restivo studied the periodicity function and the periodicity com-
plexity function for both the Thue–Morse word

t = 0110100110010110 · · ·

and the Fibonacci word
f = 0100101001001010 · · · .

They proved that ht(n) = Θ(n) and hf (n) = Θ(log n). (Recall that f(n) = Θ(g(n))
means that there are positive constants C and D such that Cg(n) ≤ f(n) ≤ Dg(n)
for n sufficiently large.) Schaeffer [5] studied the periodicity function of Sturmian
words using the Ostrowski representation of natural numbers.

In this paper we study pt(i) and ht(i) with the aid of the computer program
Walnut [4]. We get a more precise description of these functions than the ones given
in [3] and we show how to apply these techniques to other automatic sequences, such
as the Rudin–Shapiro sequence.

2 Periodic complexity of the Thue–Morse word

The Thue–Morse word t = t0t1t2 · · · is defined by

ti =

{
0 if the number of 1’s in the binary representation of i is even,

1 otherwise.

Table 1 shows some initial values of pt(i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pt(i) 1 3 1 6 2 12 1 12 1 24 1 24 2 24 1 24

Table 1: Initial values of pt(i)

Consider the following logical formulas:

φ1(i, j, n) := ∀k, k < n⇒ t[i+ k] = t[j + k]

φ2(i, n) := (i ≥ n ∧ φ1(i, i− n, n)) | (i < n ∧ φ1(0, n, i))

φ3(i, n) := n > 0 ∧ φ2(i, n) ∧ (∀m, (m > 0 ∧m < n)⇒ ¬φ2(i,m))

Then the pairs (i, pt(i)) are exactly the pairs that satisfy φ3.

We can get an automaton that computes the binary representation of pt(i) with
the following Walnut commands (see [6, Section 10.8.12]):

def tmEq "?msd_2 Ak (k<n) => T[i+k]=T[j+k]":

def tmRepWd "?msd_2 (i>=n & $tmEq(i,i-n,n)) | (n>i & $tmEq(0,n,i))":

def tmLocPer "?msd_2 (n>0) & $tmRepWd(i,n) & Am (m>0 & m<n) =>

~$tmRepWd(i,m)":



N. RAMPERSAD/AUSTRALAS. J. COMBIN. 85 (2) (2023), 150–158 152

This produces the automaton in Figure 1. By examining this automaton, one obtains
the following result, which is a more precise version of [3, Proposition 3.18].

0

[0,0] 1
[1,0]

2

[0,1]

[1,0] 3[0,0]

4[0,1]

5

[1,1]

[0,0], [1,0]

6[0,0]

[1,0]

7
[0,0]
[1,0]

[0,0]

Figure 1: Automaton for the pair (i, pt(i))

Proposition 2.1. We have

• pt(i) ∈ {1, 2} if i is even; and,

• pt(i) = 3 · 2t if i is odd and 2t ≤ i < 2t+1.

We can then bound the summatory function of pt(i).

Proposition 2.2. For n ≥ 1, we have

3

8
(n− 1)2 +

n

2
≤ Pt(n) ≤ 3

4
n2 + n+ 1.

Proof. We split the sum Pt(n) =
∑n−1

i=0 p(i) into even and odd indexed terms. By
Proposition 2.1, we have

n

2
≤

n−1∑
i=0
i even

p(i) ≤ n+ 1.

Again, by Proposition 2.1, we have

n−1∑
i=0
i odd

p(i) ≤
n−1∑
i=0
i odd

3i ≤ 3(n/2)2 =
3

4
n2.



N. RAMPERSAD/AUSTRALAS. J. COMBIN. 85 (2) (2023), 150–158 153

and
n−1∑
i=0
i odd

p(i) ≥
n−1∑
i=0
i odd

3i/2 ≥ (3/2)[(n− 1)/2]2 =
3

8
(n− 1)2.

Hence,
3

8
(n− 1)2 +

n

2
≤ Pt(n) ≤ 3

4
n2 + n+ 1.

This gives the following bounds on the periodic complexity of t, which are an
improvement on the inequalities from the proof of [3, Proposition 3.19].

Theorem 2.3. For n ≥ 1, we have

3n/8− 1/4 ≤ ht(n) ≤ 3n/4 + 2.

In particular, we have ht(n) = Θ(n).

In this case, we were fortunate that the automaton in Figure 1 was rather simple.
For more complicated sequences, this may not be the case, so next we explore other
methods for analyzing the asymptotics of Pt(i). To apply these methods, we first
need a linear representation for pt(i). That is, we need an integer row vector v, an
integer column vector w, and a pair of integer matrices M0 and M1, such that

pt(i) = vMi`−1Mi`−2
· · ·Mi0w,

where i`−1i`−2 · · · i0 is the binary representation of i. Walnut can produce a linear
representation for pt(i) with the command

eval tmLocPer_enum i "?msd_2 En $tmLocPer(i,n) & m<n & ~$tmLocPer(i,m)":

The output of this command is a Maple worksheet containing the following values
for v, w, M0 and M1.

v = [1, 0, 1, 0, 0, 0],

M0 =


1 0 1 0 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 2
0 1 0 1 0 0
0 0 0 0 0 2

 , M1 =


0 1 0 1 0 0
0 1 0 1 0 0
0 0 0 1 0 0
0 0 0 2 0 0
0 1 0 1 0 0
0 0 0 2 0 0

 ,

w = [1, 1, 0, 1, 1, 0]T .

Sequences defined by such linear representations are called 2-regular sequences (in
general, q-regular sequences). Dumas [1] obtained a description of the asymptotics of
the summatory function of q-regular sequences (also see Heuberger and Krenn [2]).
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To make use of these results, we need a number of definitions (see [2, Section 3.2]).
Let X(N) =

∑N−1
n=0 x(n) be the summatory function of a sequence x(n) for which

we have a linear representation consisting of a row vector v ∈ Cd, a column vector
w ∈ Cd, and q matrices M0, . . . ,Mq−1 ∈ Cd×d. That is,

x(n) = vMn`−1
Mn`−2

· · ·Mn0w, (1)

where n`−1n`−2 · · ·n0 is the base-q representation of n. Let ‖ · ‖ denote any norm
on Cd, as well as its induced matrix norm. Define M := M0 + M1 + . . . + Mq−1.
Choose R > 0 such that ‖Mr1Mr2 · · ·Mr`‖ = O(R`) holds for all ` ≥ 0 and all
r1, . . . , r` ∈ {0, . . . , q − 1}. That is, the number R is an upper bound for the joint
spectral radius of M0, . . . ,Mq−1. Let σ(M) denote the set of eigenvalues of M . For
λ ∈ C, if λ ∈ σ(M), let m(λ) denote the size of the largest Jordan block of M
associated with λ, and let m(λ) = 0 otherwise. The following result is essentially
[1, Theorem 1] as presented in the first part of [2, Theorem A].

Theorem 2.4. With the above definitions, we have

X(N) =
∑

λ∈σ(M)
|λ|>R

N logq λ
∑

0≤k<m(λ)

(logN)k

k!
Φλk(logqN)

+O
(
N logq R(logN)max{m(λ):|λ|=R}) ,

where the Φλk are certain 1-periodic continuous functions. The big O “error term”
can be omitted if there are no eigenvalues λ ∈ σ(M) with |λ| ≤ R.

Note that we have defined the linear representation of x(n) in terms of the most-
significant-digit first representation of n. It can also be defined using the least-
significant-digit first representation of n (as it is in [2]). One can easily convert from
one representation to the other by taking the transpose of v, M0, . . . ,Mq−1, w, and
the transpose of Equation 1. Since the eigenvalues of a matrix and its transpose are
the same, we can still apply Theorem 2.4, regardless of the choice of representation.

If we return to the linear representation of pt(i) that we computed earlier, we
have

M = M0 +M1 =


1 1 1 1 0 0
0 1 0 1 1 1
0 0 0 1 0 0
0 0 0 2 0 2
0 2 0 2 0 0
0 0 0 2 0 2

 .

The set of eigenvalues of M is σ(M) = {4, 2, 1, 0,−1}, where each eigenvalue has
multiplicity 1, except the eigenvalue 0, which has multiplicity 2. To compute R it is
convenient for us to choose the ‖ · ‖∞ norm on C6 (i.e., the maximum norm), which
induces the maximum row sum norm on C6×6. Since the maximum row sum of M0

and M1 is 2, we can take R = 2. This is enough information to apply Theorem 2.4
to Pt(n), which gives the following result.
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Theorem 2.5. We have

Pt(n) = n2Φ(log2 n) +O(n log n),

and
ht(n) = nΦ(log2 n) +O(log n),

for some 1-periodic continuous function Φ.

Without a precise description of the function Φ (which is beyond the scope of this
paper), the statement of Theorem 2.5 is not so satisfying, and indeed the estimates
of Proposition 2.2 and Theorem 2.3 are more informative. However, as we see in the
next section, Theorem 2.4 can often quickly give the asympototics in cases where we
cannot easily obtain precise estimates.

3 Periodic complexity of the Rudin–Shapiro sequence

We can determine the asymptotic growth of hx(n) for other automatic sequences x
by first using Walnut to compute a linear representation for px(i), and then applying
Theorem 2.4. Let

rs = r0r1r2 · · · = 0001001000011101 · · ·
be the Rudin–Shapiro sequence, defined by

ri =

{
0 if the number of 11’s in the binary representation of i is even,

1 otherwise.

If we use Walnut to compute a linear representation for prs(i), the matrices M0

and M1 that we get are 31 × 31, so we do not show them here. They each have
maximum row sum 2, so again we can take R = 2. The set of eigenvalues of the
matrix M := M0 + M1 is σ(M) = {4, 2, 1, 0,−1,−2}. From the Jordan form of M ,
we find m(4) = 1 and m(2) = m(−2) = 2. Applying Theorem 2.4 thus gives the
following result.

Theorem 3.1. We have

Prs(n) = n2Ψ(log2 n) +O(n log2 n),

and
hrs(n) = nΨ(log2 n) +O(log2 n),

for some 1-periodic continuous function Ψ.

4 Periodic complexity of the period-doubling sequence

Next we determine the asymptotic behaviour of Ppd(n) and hpd(n), where pd is the
period-doubling word, i.e., the fixed point of the morphism 0→ 01, 1→ 00. Table 2
shows some initial values of ppd(i).
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ppd(i) 1 2 4 1 1 8 2 2 2 2 16 1 1 4 4 1

Table 2: Initial values of ppd(i)

Our goal is to show that hpd(n) = Θ(log n) (i.e., its periodic complexity is rather
more like that of the Fibonacci word (see [3]) than the Thue–Morse word).

We begin by using Walnut to compute the automaton for the pair (i, ppd(i)),
which is given in Figure 2. This time, it is not so easy to see an analogue to Propo-

0

[0,0]

1

[1,0]

2
[0,1]

3[0,0]

4

[1,0]

5[1,1]

6[1,0]

[1,0] [0,0]

[0,1]

[1,0] [0,0]

[0,0]
[1,0]

[0,0]

Figure 2: Automaton for the pair (i, ppd(i))

sition 2.1 by direct inspection of the automaton, so let us proceed by analyzing the
corresponding linear representation:

v = [1, 0, 0, 0, 0, 0],

M0 =


1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 2
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0

 , M1 =


0 1 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 2 0 0 0

 ,

w = [1, 1, 1, 1, 1, 1]T .

Now, if we try to apply Theorem 2.4 to Ppd(n), we run into the following problem.
The maximum row sum of M0 and M1 is 2, so we could take R = 2, but the largest
eigenvalue of M := M0 + M1 is also 2 (with m(2) = 2), which means that in this
case the “error term” in Theorem 2.4 dominates, and we do not obtain the desired
asymptotics. However, using other methods, we can obtain the following bounds.



N. RAMPERSAD/AUSTRALAS. J. COMBIN. 85 (2) (2023), 150–158 157

Theorem 4.1. For n ≥ 1, we have

(1/3 log2 n− 1/18)n+ 4/9 ≤ Ppd(n) ≤ (4/3 log2 n+ 22/9)n+ 5/9

and
1/3 log2 n− 1/18 ≤ hpd(n) ≤ 4/3 log2 n+ 3.i

Proof. For ` ≥ 0, we have

Ppd(2`) =
∑
i<2`

p(i)

=
∑

i0,...,i`−1∈{0,1}

vMi`−1
· · ·Mi0w

= v(M0 +M1)
`w

= vM `w.

From the Jordan form of M we find that

vM `w = (A+B`)2` + C(−2)` +D + E(−1)`, (2)

for some constants A, . . . , E. To compute these constants, we compute vM `w (i.e.,
Ppd(2`)) for ` = 0, . . . , 4, which gives the values 1, 3, 8, 21, 52. We then substitute
these values into (2) to obtain a system of linear equations in the variables A, . . . , E.
When we solve this system of linear equations we get

A = 5/9, B = 2/3, C = 0, D = 1/2, E = −1/18.

Thus, we have

Ppd(2`) = (5/9 + (2/3)`)2` + 1/2− 1/18(−1)`,

and so

(5/9 + (2/3)`)2` + 4/9 ≤ Ppd(2`) ≤ (5/9 + (2/3)`)2` + 5/9.

Now write 2` ≤ n < 2`+1, so that ` ≤ log2 n < `+ 1. Then

(5/9 + (2/3)`)2` + 4/9 ≤ Ppd(n) ≤ (5/9 + 2/3(`+ 1))2`+1 + 5/9

(5/9 + 2/3(log2 n− 1))(n/2) + 4/9 ≤ Ppd(n) ≤ (5/9 + 2/3(log2 n+ 1))(2n) + 5/9

(1/3 log2 n− 1/18)n+ 4/9 ≤ Ppd(n) ≤ (4/3 log2 n+ 22/9)n+ 5/9,

and
1/3 log2 n− 1/18 ≤ hpd(n) ≤ 4/3 log2 n+ 3.

We note that we could have also applied this method to the Thue–Morse word to
obtain very similar bounds to those of Proposition 2.2 and Theorem 2.3, except with
different constants. In fact, with this method we get a slightly better upper bound
and a slightly worse lower bound.
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