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Abstract

The symmetric Grothendieck polynomials generalize Schur polynomi-
als and are Schur-positive by degree. Combinatorially this is mani-
fested as the generalization of semistandard Young tableaux by set-valued
tableaux. We define a (weak) symmetric P -Grothendieck polynomial
which generalizes P -Schur polynomials in the same way. Combinatori-
ally this is manifested as the generalization of shifted semistandard Young
tableaux by a new type of tableau which we call shifted multiset tableaux.

1 Introduction

1.1 Overview

In this paper we will discuss certain families of polynomials in a set of indetermi-
nants x1, . . . , xn. Each of these families will be indexed by either partitions or else
strict partitions (the subset of partitions with no two parts equal). Moreover, the
polynomials in each family are symmetric under permutations of the indeterminants
x1, . . . , xn. The most basic of these families will be the Schur polynomials. These
polynomials appear in many areas of algebra and combinatorics and have a number
of important properties: they form a basis for the space of symmetric polynomi-
als in x1, . . . , xn, which is graded by degree, they are self-dual under the Hall inner
product, they describe the characters of polynomial representations of GL(n,C), and
any product of Schur polynomials can be expressed as a nonnegative integral linear
combination of other Schur polynomials.

P -Schur polynomials, like Schur polynomials, are homogeneous of degree equal to
the size of the indexing partition. Since they are only defined for strict partitions they
cannot form a basis for the space of symmetric polynomials, although they do form a
linearly independent set. Also, like Schur polynomials they describe the characters of
certain representations. Further, any product of P -Schur polynomials can be written
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as a nonnegative integral linear combination of other P -Schur polynomials. Finally,
we note that P -Schur polynomials themselves can be written as nonnegative integral
linear combinations of Schur polynomials.

Symmetric Grothendieck polynomials and weak symmetric Grothendieck poly-
nomials are K-theoretical generalizations of Schur polynomials. In particular, the
lowest degree part of a (weak) symmetric Grothendieck polynomial associated to a
certain partition returns the Schur polynomial indexed by the same partition. Like
Schur and P -Schur polynomials, they form important linearly independent sets in
the ring of symmetric polynomials from algebraic as well as geometric perspectives.
Although symmetric Grothendieck polynomials and their weak versions share many
properties (e.g., they both can be written as nonnegative integral linear combinations
of Schur polynomials), an essential difference between the two is that whereas the
former are bounded in degree (by for instance n|λ| where |λ| means the size of the
partition to which the polynomial is associated) the latter are not (and are actually
formal power series rather than polynomials, strictly speaking).

We will have occasion to study the weak version in this paper, and will define new
polynomials that complete the analogy “Schur polynomials are to weak symmetric
Grothendieck polynomials as P -Schur polynomials are to . . .” in a way that makes
sense on as many levels as possible. These polynomials will be “defined” in two ways
(formally, one may take either to be the definition and the other as a consequence).
The first definition will be a determinantal definition which is in analogy to the
classical definition of Schur polynomials. It can be seen from this definition that our
“polynomial” is really a formal power series, because, for instance, its degree is not
bounded. The second definition will be a combinatorial one, given as a generating
function over certain tableaux. These tableaux will be of shifted shape, contain both
primed and unprimed entries, and allow more than one entry per box. Our interest
in these polynomials and their potential importance will be discussed in the next two
subsections.

1.2 Motivation

On the most basic level our goal is to complete the following diagram of impor-
tant (see next subsection) polynomials in a way that makes as much algebraic and
combinatorial sense as possible:

Schur polynomials
Type A to Type B−−−−−−−−−−−→ P -Schur polynomialsyK-theory

yK-theory

Grothendieck polynomials
Type A to Type B−−−−−−−−−−−→ TBD

Here we are actually referring to the weak symmetric version of Grothendieck
polynomials. In order to define the missing polynomials we take algebra as our
starting point rather than geometry or combinatorics because, as we will see, there
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is more or less a unique (up to certain dualities) solution to the problem considered
from this point of view. We then work out a combinatorial model that fits this choice.
This amounts to completing the following additional diagram:

Semistandard Young tableaux
straight to shifted−−−−−−−−−−−→ Semistandard shifted tableauxyelement to set

yelement to set

Multiset valued tableaux
straight to shifted−−−−−−−−−−−→ TBD

1.3 Background and Goals

Symmetric Grothendieck polynomials and weak symmetric Grothendieck polynomi-
als are families of nonhomogeneous symmetric polynomials indexed by partitions.
They are related to both the more general Grothendieck polynomials of Lascoux and
Schützenberger [13, 14] as well as the stable Grothendieck polynomials of Fomin and
Kirillov [2, 3]. These relationships are explicated in places such as [15] and [7]. For
these reasons symmetric and weak symmetric Grothendieck polynomials are funda-
mental building blocks in the subject of nonhomogeneous symmetric functions.

Moreover, they are natural generalizations of Schur polynomials to nonhomo-
geneous symmetric polynomials: The Schur polynomial sµ can be defined as the
determinant of a certain matrix, M = {Mij}, divided by the Vandermonde deter-
minant. If each entry Mij of this matrix is multiplied by (1 + xi)

µj this process
instead gives the symmetric Grothendieck polynomial; if divided by (1 − xi)

µj it
instead gives the weak symmetric Grothendieck polynomial. On the combinatorial
side, the definitions of symmetric Grothendieck polynomials and weak symmetric
Grothendieck polynomials are obtained by generalizing the concept of semistandard
Young tableaux to set-valued tableaux [8] or multiset-valued tableaux [12], respec-
tively. Interestingly, both symmetric Grothendieck polynomials and weak symmetric
Grothendieck polynomials are in turn themselves Schur positive by degree (see [15]
and [7] for crystal interpretations of these facts).

Since the P -Schur function Pµ also has a determinantal definition, it is a natural
question to ask whether these phenomena occur if we try to generalize P -Schur
functions in the same manner (i.e., multiplying entries of the relevant matrix by
(1 +xi)

µj or dividing them by (1−xi)µj). In this paper, we give an in depth analysis
of the second case. We call the resulting polynomial Pµ(x). The most interesting
results are that, in analogy to the symmetric and weak symmetric Grothendieck case:

(1) Pµ(x) is P -Schur positive by degree.

(2) There is a combinatorial definition for Pµ(x) generalizing that of Pµ(x).

The combinatorial definition employs a new type of (rather unexpected) tableaux,
which we call shifted multiset tableaux. We give the P -Schur expansion of Pµ(x)
explicitly using certain “maximal” shifted multiset tableaux.
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The properties above hint that our polynomials are natural analogs to weak sym-
metric Grothendieck polynomials and therefore likely to be useful in the analogous
settings to many of the settings in which the latter are useful. Moreover, the new
tableaux themselves should be of combinatorial interest. Indeed the fact that Pµ(x)
is Schur P -positive implies that the set of shifted multiset tableaux can be given a
certain combinatorial structure known as a crystal. The paper leaves as an open prob-
lem the task of giving a realization of these crystals through explicit combinatorial
rules on the set of shifted multiset tableaux. Similar endeavors have been undertaken
successfully for other types of tableaux; in particular we mention [4, 6, 7, 9, 15].

In the paper we study both the well-known weak symmetric Grothendieck polyno-
mial, Jµ(x), as well as the new Pµ(x) in order to highlight the similarities. Although
the analysis of Jµ(x) is not entirely new, we also introduce a new multiparameter
t = t1, . . . , t` deformation Jµ(x, t)1. Finally we give a similar deformation, Pµ(x, t),
of Pµ(x). These deformations are given because they are natural both from the al-
gebraic and combinatorial definitions of the polynomials, and clarify the relationship
between the two definitions.

We note that similar generalizations of P -Schur polynomials such as in [10] and [5]
have been made, but are distinct from Pµ(x) (for example, they are not P -Schur
positive and are not constructed by generalizing the determinantal definition of the
P -Schur function).

2 Lemma

We begin with a basic lemma about how to multiply symmetric polynomials by a
sequence of homogeneous symmetric polynomials in a weakly increasing number of
variables.

Let µ = (µ1, . . . , µn) be a partition into distinct parts of some positive integer
and fix integers n ≥ c` ≥ · · · ≥ c1. Now consider µ as being represented by its Young
diagram. In what follows we will successively append boxes to the right side of this
diagram in ` steps. In what follows we consider a list of ` nonnegative integers,
T = T1, . . . , T`. In step h, Th boxes will be appended and these boxes must be
appended in rows at or above row ch (note that this process may result in the diagram
ceasing to be a partition if a row becomes longer than the row above it, in this case
we refer to the shape using the more general term “composition”). More precisely,
define a T-extension of µ to be a sequence of diagrams, λ = λ` ⊇ · · · ⊇ λ1 ⊇ λ0 = µ
such that |λh|−|λh−1| = Th and λhk = λh−1

k for k > ch for all h ∈ [1, `]. A T-extension

1It should also be mentioned that the t-deformation, Jµ(x, t), has combinatorial significance in
terms of the crystal structure on multiset tableaux as given in [7]. In particular, the combinatorial
statistics on multiset tableaux that determine the exponents of t in the combinatorial definition of
Jµ(x, t) are constant on each connected component of the crystal of [7]. One would expect in turn
that a natural crystal structure on shifted multiset tableaux ought to preserve the combinatorial
statistics on shifted multiset tableaux that determine the exponents of t in the combinatorial defi-
nition of Pµ(x, t) given in this paper. This should provide clues on how to properly construct said
crystal.
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of µ is called good if λhk < λh−1
k−1 for k ∈ [2, ch] for all h ∈ [1, `]. A T-extension which

is not good is called bad. In particular, every diagram in a good T-extension is a
partition.

Example 2.1 Let µ = (4, 3, 2, 1) with (c1, c2, c3, c4) = (2, 3, 3, 4) and T = (4, 6, 4, 7).

Boxes are added in the steps below to form the T-extension shown above.

(1) T1 = 4 (green) boxes added on or above row c1 = 2 to form λ1 = (6, 5, 2, 1).

(2) T2 = 6 (yellow) boxes added on or above row c2 = 3 to form λ2 = (8, 5, 6, 1).

(3) T3 = 4 (orange) boxes added on or above row c3 = 3 to form λ3 = (8, 8, 7, 1).

(4) T4 = 7 (red) boxes added on or above row c4 = 4 to form λ4 = (9, 9, 8, 5).

This T-extension is bad because, for instance, we have λ3
3 = 7 ≥ 5 = λ2

2.

Lemma 2.2∑
σ∈Sn

sgn(σ)hT`(xσ1 , . . . , xσc` ) · · ·hT1(xσ1 , . . . , xσc1 )xµ1σ1 · · ·x
µn
σn

=
∑

λ=λ`⊇···⊇λ1⊇λ0=µ

(∑
σ∈Sn

sgn(σ)xλ1σ1 · · ·x
λn
σn

)

where the sum is over all good T-extensions.

Proof. It suffices to show that

∑
λ=λ`⊇···⊇λ1⊇λ0=µ

(∑
σ∈Sn

sgn(σ)xλ1σ1 · · ·x
λn
σn

)
= 0

where the sum is over all bad T-extensions. Indeed, consider the summand cor-
responding to a fixed σ in the top line of the equation of Lemma 2.2. When the
terms of this single summand are multiplied out, each resulting monomial specifies
a T-extension of µ by considering this monomial as being formed by starting with
xµ1σ1 · · ·x

µn
σn and then multiplying by some monomial appearing in hT1(xσ1 , . . . , xσc1 )

and then multiplying by some monomial appearing in hT2(xσ1 , . . . , xσc2 ), et cetera.
Moreover, each T-extension of µ is formed in this way exactly once. Since this is
simultaneously true for all σ ∈ Sn, Lemma 2.2 is true if we take the outer sum in
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the second line over all T-extensions. If we verify the equation at the beginning of
this paragraph, then we can replace all with all good.

It suffices to find a sign-changing involution, ι, on the set of pairs of the form
(σ,Λ) where σ ∈ Sn, Λ is a bad T-extension and the sign of the pair is the sign
of the permutation σ, such that ι has the following property: If ι(σ,Λ) = (σ̄, Λ̄)
where λ is the largest composition of Λ and λ̄ is the largest composition of Λ̄ then
λ̄(σ̄−1(p)) = λ(σ−1(p)) for all p ∈ [1, n].

Define ι(σ,Λ) as follows: Suppose Λ is the bad T-extension λ = λ` ⊇ · · · ⊇
λ1 ⊇ λ0 = µ. Choose i minimal such that there exists some k ∈ [2, ci] such that
λik ≥ λi−1

k−1. Choose the minimal such k, and then choose the minimal j ∈ [1, k)
such that λik ≥ λi−1

j . Define σ̄(m) = σ(m) for m /∈ {j, k}, σ̄(j) = σ(k), and

σ̄(k) = σ(j). Next, for h < i define λ̄h = λh. For h ≥ i define λ̄hm = λhm for
m /∈ {j, k}, λ̄hj = λhk, and λ̄hk = λhj . Set ι(σ,Λ) = (σ̄, Λ̄) where Λ̄ is the bad T-
extension λ̄ = λ̄` ⊇ · · · ⊇ λ̄1 ⊇ λ̄0 = µ. (That the ⊇ are correct, and that Λ̄ is a bad
T-extension is proved below).

Note the following properties of ι.

(1) ι(σ,Λ) has the opposite sign to (σ,Λ).

(2) λ̄(σ̄−1(p)) = λ(σ−1(p)) for all p ∈ [1, n].

(3) Λ̄ is a T-extension.

• That |λ̄h| − |λ̄h−1| = Th is immediate.

• Suppose that m > ch, we wish to check that λ̄hm = λ̄h−1
m . Now if m ∈ {j, k}

and h ≥ i we have j, k ≤ ci ≤ ch so the condition m > ch is impossible to
attain. Thus we may assume that m /∈ {j, k} or h < i in which case we
have λhm = λ̄hm and λh−1

m = λ̄h−1
m so that λhm = λh−1

m implies λ̄hm = λ̄h−1
m .

• Next, it is clear that λ̄h ⊇ λ̄h−1 if h 6= i and also that λ̄hm > λ̄h−1
m for

m /∈ {j, k}. We need only check that λ̄ij ≥ λ̄i−1
j and λ̄ik ≥ λ̄i−1

k . The first

is equivalent to saying that λik ≥ λi−1
j which is true by the choice of j and

k. The second is equivalent to saying that λij ≥ λi−1
k but λij ≥ λi−1

j since

λi ⊇ λi−1 and λi−1
j ≥ λi−1

k by minimality of i.

(4) Λ̄ is a bad T-extension. Indeed, λ̄ik = λij ≥ λi−1
j = λ̄i−1

j .

(5) ι2(σ,Λ) = (σ,Λ). It is clear from the definitions that this is true as long as
the values of i, k, j chosen when applying ι to (σ,Λ) are the same as those (say
ī, k̄, j̄) chosen when applying ι to (σ̄, Λ̄). Clearly ī ≥ i, and, by the step above,
ī ≤ i, so ī = i. If j 6= k̄ < k then λi

k̄
= λ̄i

k̄
≥ λ̄i−1

k̄−1
= λi−1

k̄−1
, contradicting

the minimality of k. If k̄ = j then λik = λ̄ij ≥ λ̄i−1
j−1 = λi−1

j−1, contradicting the

minimality of j. Since the step above implies k̄ ≤ k this means k̄ = k. Finally,
if j̄ < j then λij = λ̄ik ≥ λ̄i−1

j̄
= λi−1

j̄
, contradicting the minimality of k. Again,

the step above means j̄ ≤ j so together we get j̄ = j.

This shows that ι is a well defined sign-changing involution with the desired
property, proving the lemma. �
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3 Jµ(x, t) and multiset tableaux

3.1 Algebraic Definition of Jµ(x, t)

We will always work in n variables and will set V =
∏
i<j

(xi − xj). In general we

will define a symmetric polynomial f by defining the value of the skew-symmetric
polynomial V ∗ f (where ∗ simply denotes multiplication).

For a partition µ of n parts (some may equal 0), the weak symmetric Grothendieck
polynomial in n variables is defined by:

V ∗ Jµ(x1, . . . , xn) =
∑
σ∈Sn

sgn(σ)
∏
i

((
xσi

1− xσi

)µi
xn−iσi

)
.

This formula can be obtained by applying the standard involution on symmetric
functions to the determinantal definition for Grothendieck polynomials found in [10]
among other places. Next, we define a slight generalization of this polynomial. Sup-
pose µ has longest part ` = µ1. Let the weak symmetric Grothendieck polynomial
in n+ ` variables be defined by:

V ∗ Jµ(x1, . . . , xn, t1, . . . , t`) =
∑
σ∈Sn

sgn(σ)

∗
∏
i

((
xσi

1− t`xσi

)
· · ·
(

xσi
1− t`−µi+1xσi

)
xn−iσi

)
.

Clearly Jµ(x1, . . . , xn, 1, . . . , 1) = Jµ(x1, . . . , xn) whereas Jµ(x1, . . . , xn, 0, . . . , 0) =
sµ(x1, . . . , xn) (see the classical definition of the Schur function as found in 7.15
of [18]). Note that the coefficient of tT11 · · · t

T`
` in V ∗ Jµ(x1, . . . , xn, t1, . . . , t`) is given

by: ∑
σ∈Sn

sgn(σ)hT`(xσ1 , . . . , xσc` ) · · ·hT1(xσ1 , . . . , xσc1 )xµ1+n−1
σ1

· · ·xµn+0
σn

where (c`, . . . , c1) = µ′. Since n ≥ c` ≥ · · · ≥ c1, Lemma 2.2 implies that this
coefficient is:

∑
λ=λ`⊇···⊇λ1⊇λ0=µ+δ

(∑
σ∈Sn

sgn(σ)xλ1σ1 · · ·x
λn
σn

)

where the outer sum is over all good T-extensions and δ = (n− 1, . . . , 0). Fix some
λ ⊇ µ+ δ and let ρ = λ− δ and consider the set of semistandard Young tableaux of
shape ρ/µ and weight T1, . . . , T` such that every entry i occurs on or above row ci.
We claim that each good T-extension λ = λ` ⊇ · · · ⊇ λ1 ⊇ λ0 = µ+ δ encodes such
a tableau in a bijective fashion. Indeed, the bijection is given by first considering the
tableau of shape λ/(µ+ δ) where each strip λi/λi−1 is filled with is for each i ∈ [1, `],
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and then moving all entries in row j to the left by n− j positions for each j ∈ [1, n]
(and eliminating excess empty boxes).

Since the inner sum in the expression above is precisely the classical definition of
V ∗ sρ(x1, . . . , xn) where sρ(x1, . . . , xn) is the Schur function, it now follows that the
expression above is the same as

V ∗
∑
ρ⊇µ

(MT
ρ/µ)sρ(x1, . . . , xn)

where MT
ρ/µ is the number of semistandard Young tableaux of shape ρ/µ and weight

T1, . . . , T` such that every entry i occurs on or above row ci.

Definition 3.1 Let µ be a partition with n parts and conjugate µ′ = (c`, . . . , c1).
We define a restricted tableau of shape λ/µ, or element of RT (λ/µ), to be a
semistandard Young tableau of shape λ/µ in the alphabet {1, . . . , `} such that each
entry i occurs on or above row ci. If R ∈ RT (λ/µ) then the weight of R, denoted
wt(R) is the vector (w1, . . . , w`) where wi is the number of is that appear in R.

Example 3.2 Let λ = (7, 6, 5, 4) and µ = (4, 3, 3, 2) so that c4 = 4, c3 = 4, c2 = 3,
c1 = 1.

· · · · 1 2 3

· · · 2 2 4

· · · 3 3

· · 3 4

Since all 1s lie in the green, all 2s lie in the green or yellow, and all 3s and all 4s lie
in the red, yellow, or green, this is an element of RT (λ/µ). It has weight (1, 3, 4, 2).

With this definition, the computation before the definition shows:

Theorem 3.3 Let µ be a partition with n parts (some may equal 0) and longest part
equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn); then

Jµ(x1, . . . , xn, t1, . . . , t`) =
∑
λ⊇µ

∑
R∈RT (λ/µ)

twt(R)sλ(x).

3.2 Straight-shape multiset tableaux

Definition 3.4 ([12]) Given a partition µ, with conjugate (c`, . . . , c1) = µ′, a mul-
tiset tableau of shape µ, or an element of MT (µ) is a collection of boxes with µi
boxes in each row and the rows left-justified, along with a filling of said boxes with
the following properties.
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(1) Each box contains a nonempty multiset of the numbers {1, 2, . . .}.
(2) The maximum value of each box is strictly less than the minimum value of the

box below it (if it exists) and weakly less than the minimum value of the box
to its right (if it exists).

The weight, denoted wt, of a multiset tableau is the vector (w1, w2, . . .) where
wi is the total number of is appearing in the tableau. We label the columns from
left to right by `, ` − 1, . . . , 1. That is, by box bij we refer to the box that is in
the ith row from the top row and the ` − j + 1st column from the leftmost column.
Define the column weight of a multiset tableau, cw, to be the vector (T1, . . . , T`)
where Ti is the difference between the number of entries in column i and the height
of that column (ci). By |bij| we simply mean the total number of entries in box bij
and |bij(x)| refers more specifically to the number of entries in box bij in tableau
x. By the nonemptiness property |bij| ≥ 1 if box bij exists and, by convention, is 0
otherwise.

Example 3.5 Let µ = (3, 3, 2). Then

11 12 333

2 3 445

34 4

is an element P ∈MT (µ) with wt(T ) = (3, 2, 5, 4, 1) and cw(P ) = (4, 1, 2).

Definition 3.6 A maximal multiset tableau of shape µ, or element of MT (µ),
is a multiset tableau of shape µ with the following properties:

(1) Each box bij may only contain i s.

(2) For each i ≥ 1 and k ≥ 1 we have
∑

1≤j≤k
|b(i+1)j| − |bi(j−1)| ≤ 1

where by convention |bi0| = 0. Note that (2) when k = µ1 implies that each row i
contains at least as many entries as row i + 1 since |b(i)µ1| ≥ 1. Along with (1) this
implies the weight of a maximal multiset tableau is necessarily a partition.

Example 3.7 Let µ = (4, 3, 3, 1). Then

1 11 11 11

22 2 222

3 333 3

44 44

is an element P ∈MT (µ) with wt(T ) = (7, 6, 5, 4) and cw(P ) = (1, 3, 4, 2).
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Proposition 3.8 There is a bijection from the subset of MT (µ) with weight λ and
column weight T to the subset of RT (λ/µ) with weight T.

Proof. Let X be the subset of elements of MT (µ) with weight λ and column weight
T that satisfy property (1) above. Let Y be the set of fillings (one entry per box)
of shape λ/µ and weight T that are weakly increasing along rows such that every
entry i occurs on or above row ci (equivalently, row i only contains entries greater
than ` − µi). The map x → y where y is defined by the property that for each
(i, j), row i of y contains exactly |bij(x)| − 1 copies of j is a bijection from X to Y .
Moreover if x → y then x satisfies property (2) above if and only if the columns of
y are strictly increasing down rows: Indeed, if there is some i and some k such that∑
1≤j≤k

|b(i+1)j| − |bi(j−1)| > 1 then for the minimal such k, the rightmost k appearing

in row i+ 1 of y will lie in column k+ 1−
∑

1≤j≤k
|b(i+1)j| whereas the rightmost k− 1

(or rightmost instance of the greatest number less than k− 1 if this row contains no
k− 1) appearing in row i of y will lie in column k−

∑
1≤j≤k

|bi(j−1)|, that is, strictly to

the left of the aforementioned k. Hence said k must lie below a number greater than
or equal to k. On the other hand, if in some column, say p, row i + 1 of y contains
a k that lies below some k′ in row i with k′ ≥ k then k + 1−

∑
1≤j≤k

|b(i+1)j| ≤ p and

k−
∑

1≤j≤k
|bi(j−1)| > p so that we have

∑
1≤j≤k

|b(i+1)j|− |bi(j−1)| > 1. Since the elements

of Y that are strictly increasing down columns are exactly the elements of RT (λ/µ)
with weight T, the map restricted to the elements of X that satisfy property (2)
gives the desired bijection. 2

Example 3.9 The tableaux of examples 3.2 and 3.7 correspond under this bijection.

Corollary 3.10 Let µ be a partition with n parts (some may equal 0) and longest
part equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn); then

Jµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈MTµ

tcw(P )swt(P )(x).

3.3 Combinatorial Definition of Jµ(x, t)

In this section we will give an equivalent combinatorial definition of Jµ. We will
need to use the dual RSK column insertion algorithm (see, for instance [18]). We
refer to dual RSK insertion of an element into a column, and the reverse insertion of
an element under dual RSK as insert and reverse insert. These maps are reviewed
below.

Let K be a valid column (each box of K contains exactly one number and the
numbers strictly increase from top to bottom). One inserts a into K, denoted a→ K
as follows: Let â denote the uppermost entry in K such that a ≤ â. If â exists, replace
â with a and bump out â. Otherwise, append a to the bottom of K. The result is
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recorded as the pair (K ′, â) if the second of this pair exists and just K ′ otherwise.
On the other hand if z ≥ a for some a ∈ K then we define reverse insertion of z into
K or K ← z as follows: Let ẑ denote the bottommost entry in K such that z ≥ ẑ.
Replace ẑ with z and bump out ẑ. The result is recorded as the pair (ẑ, K ′).

Notice the basic properties:

(1) If a→ K = K ′ then K ′ is a valid column.

(2) if a→ K = (K ′, â) then K ′ is a valid column.

(3) If K ← z = (ẑ, K ′) then K ′ is a valid column.

(4) If a ≤ z then either

• z → K = K ′ and a→ K ′ = (K ′′, â) for some â, or

• z → K = (K ′, ẑ) and a→ K ′ = (K ′′, â) where â ≤ ẑ.

(5) If a ≤ z and K ← a = (â, K ′) and K ′ ← z = (ẑ, K ′′) then â ≤ ẑ.

Proposition 3.11 There is a bijection Ψ : MT (µ) →
⋃
λ⊇µ

SSY T (λ) × RT (λ/µ),

such that if P → (Q,R) then:

(1) wt(P ) = wt(Q).

(2) cw(P ) = wt(R).

Proof preliminaries. Fix µ a partition with conjugate µ′ = (c`, . . . , c1). In the
following, we will label the columns of any tableau from left to right by `, ` − 1,
. . . , 1, 0,−1, . . ..

For k ≤ `, define the set MTk(λ) to be the subset of elements of MT (λ) that
have only single entries in the boxes in columns k − 1, . . . , 1, 0,−1, . . .. Define the
set RTk(λ/µ) to be the subset of elements of RT (λ/µ) that have only entries from
{1, 2, . . . , k − 1}. Given a pair (Q,R) ∈ MTk(λ) × RTk(λ/µ) define the weight and
column weight of this pair as wt(Q,R) = wt(Q) and cw(Q,R) = cw(Q) + wt(R).
To prove the proposition it suffices to find a weight and column weight preserving
bijection for each k from

⋃
λ⊇µ

MTk(λ) × RTk(λ/µ) to
⋃
λ⊇µ

MTk+1(λ) × RTk+1(λ/µ)

(and then compose: Ψ(P ) = Ψ` ◦ · · · ◦ Ψ1(P,Q0) where Q0 is the empty tableau
of shape µ/µ). To do the former, it is enough to find a weight preserving bijection
ψk : MTk(λ) →

⋃
ν⊇λ

MTk+1(ν) where the union is over all ν such that ν/λ is a

horizontal strip with no box below row ck. We then set Ψk(Q,R) = (ψk(Q), R′)
where R′ is obtained by appending boxes to R until its outer shape is the same as
ψk(Q) and filling each appended box with the entry k.

Before we can define ψk we need to introduce the following map: Let T ∈MTk(λ).
Define out(T ) as follows: First, in each box of column k circle (one of) the minimum
entry(s) from that box. Now find (one of) the largest noncircled entry(s) in column
k and remove it and insert it into the column to the right of the column from which
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it was removed. After this, each time an element is bumped, insert it into the next
column to the right until some entry is eventually appended to a (possibly empty)
column. Note the following properties of out.

(1) The path of positions where an element is bumped/appended moves weakly up
as we move to the right.

(2) The result of out is a multiset tableau.

(3) If out(T ) and out(out(T )) are both defined then the box that out appends to
out(T ) lies strictly to the right of the box that out appends to T .

Example 3.12 Suppose that column k is the second column from the left. Each
−→ represents an application of out.

1 1©1 2 2

2 2©33 4

34 4©

−→
1 1©1 2 2

2 2©3 3 4

34 4©

−→

1 1©1 2 2 4

2 2© 3 3

34 4©

−→
1 1© 1 2 2 4

2 2© 3 3

34 4©
Uncircled numbers being removed are shown in red, and the boxes being added
appear in green.

We will also need a map called inb. Let T ∈ MTk(ν) for some ν such that ν/λ
is a horizontal strip with no box below row ck and suppose b is some corner box of
this strip. First, in each box of column k circle (one of) the minimum entry(s) from
that box. Define inb(T ) as follows: Remove the entry from box b and reverse insert
it into the column to the left. After this, each time an element is bumped reverse
insert it into the column to the left until an element is removed from column k − 1.
Then add this element to the lowest box of column k such that the resulting column
satisfies the column strict requirement in (2) of the definition of multiset tableau.
Note the following properties of inb.

(1) The path of positions where an element is bumped/added moves weakly down
as we move to the left.

(2) The result of inb is a multiset tableau.

(3) If b′ lies to the left of b and if inb(T ) and inb′(inb(T )) are both defined then the
element that inb′ adds to column k of inb(T ) is greater than or equal to the
element inb adds to column k of T .

Moreover, out and inb are related as follows:
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(1) If out appends box b when applied to T , then inb(out(T )) = T .

(2) If the element that inb adds to column k when applied to T is the largest or
tied for the largest uncircled element on column k then out(inb(T )) = T .

Example 3.13 Let k = 2. Then inred(inyellow(ingreen(T ))) = T ′ where:

T =
1 1© 1 2 2 4

2 2© 3 3

34 4©

−→
1 1©1 2 2

2 2©33 4

34 4©

= T ′

Note that T is the last tableau in Example 3.12 and T ′ is the first tableau in Exam-
ple 3.12.

Conclusion of proof of Proposition 3.11. We prove that there exists a bijection
ψk : MTk(λ) →

⋃
ν⊇λ

MTk+1(ν). If T ∈ MTk(λ) we define ψk(T ) simply by applying

out until column k only contains single entries. This is an element of
⋃
ν⊇λ

MTk+1(ν)

because of the properties (1), (2), and (3) of out. If T ∈
⋃
ν⊇λ

MTk+1(ν) we define

ψ−1
k (T ) by successively applying inb to the rightmost box b that lies outside of the

shape of λ, until the result has shape λ. This is an element of MTk(λ) because of
the property (2) of inb. If T ∈ MTk(λ) then ψ−1

k (ψk(T )) = T because of property
(3) of out and property (1) of how out and inb are related. If T ∈

⋃
ν⊇λ

MTk+1(ν)

then ψk(ψ
−1
k (T )) = T by property (3) of inb and property (2) of how out and inb are

related.

Theorem 3.14 Let µ be a partition with n parts (some may equal 0) and longest
part equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn); then

Jµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈MT (µ)

tcw(P )xwt(P ).

Proof. We have:
Jµ(x1, . . . , xn, t1, . . . , t`)

=
∑
λ⊇µ

∑
R∈RT (λ/µ)

twt(R)sλ(x) Theorem 3.3

=
∑
λ⊇µ

∑
R∈RT (λ/µ)

∑
Q∈SSY T (λ)

twt(R)xwt(Q) Definition of sλ

=
∑

P∈MT (µ)

tcw(P )xwt(P ) Proposition 3.11

The definition of sλ mentioned here is the combinatorial one (see 7.10 of [18]). 2
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Remark 3.15 There is a natural crystal structure on the set of semistandard Young
tableaux [1]. Moreover, it is not difficult to see that the bijection Ψ has the property
that whenever Ψ(P ) = (Q,R) then P ∈ MT (µ) if and only if Q is highest weight.
Thus Ψ−1 induces a natural crystal structure on MT (µ) where the highest weight
elements are precisely those that lie in MT (µ). This crystal structure is interpreted
algebraically by comparing Corollary 3.10 (where the sum is over highest weight
elements) with Theorem 3.14 (where the sum is over all elements). This crystal
structure coincides with that given in [7].

4 Pµ(x, t) and shifted multiset tableaux

4.1 Algebraic Definition of Pµ(x, t)

For a strict partition µ of m nonzero parts, we define the weak symmetric P -
Grothendieck polynomial in n ≥ m variables by:

V ∗Pµ(x1, . . . , xn) =
∑

σ∈Sn/Sn−m

sgn(σ)

∗

(∏
i

(
xσi

1− xσi

)µi)( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)
where:

Sn/Sn−m = {(σ1, . . . , σn) ∈ Sn : σi < σi+1, ∀i : m < i < n}.
We define a slight generalization of this polynomial. Suppose µ has longest part
` = µ1. Let the weak symmetric P -Grothendieck polynomial in n + ` variables be
defined by:

V ∗Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

σ∈Sn/Sn−m

sgn(σ)

∗

(∏
i

(
xσi

1− t`xσi

)
· · ·
(

xσi
1− t`−µi+1xσi

))

∗

( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)
.

Clearly Pµ(x1, . . . , xn, 1, . . . , 1) = Pµ(x1, . . . , xn) whereas Pµ(x1, . . . , xn, 0, . . . , 0) =
Pµ(x1, . . . , xn), the P -Schur polynomial (see for instance III.8 of [19]). Note that the
coefficient of tT11 · · · t

T`
` in V ∗Pµ(x1, . . . , xn, t1, . . . , t`) is given by:

∑
σ∈Sn/Sn−m

sgn(σ)hT`(xσ1 , . . . , xσc` ) · · ·hT1(xσ1 , . . . , xσc1 )xµ1σ1 · · · x
µm
σm

∗

( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)
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where (c`, . . . , c1) = µ′. We can create each permutation in Sn/Sn−m by first selecting
m variables and then permuting them. Now letting:

Sn/(Sn−m × Sm) = {(σ1, . . . , σn) ∈ Sn : σi < σi+1, ∀i 6= m}

this yields:∑
τ∈Sn/(Sn−m×Sm)

sgn(τ)
∑

σ∈Sm(τ1,...,τm)

sgn(σ)

∗ hT`(xσ(τ1), . . . , xσ(τc` )
) · · ·hT1(xσ(τ1), . . . , xσ(τc1 ))x

µ1
σ(τ1) · · ·x

µm
σ(τm)

∗

( ∏
i<j≤m

xσ(τi) + xσ(τj)

)( ∏
i≤m,j>m

xσ(τi) + xτj

)( ∏
m<i<j

xτi − xτj

)
The last three products are constant over the choice of σ so we may apply Lemma 2.2
since again n ≥ c` ≥ · · · ≥ c1. We are left with:∑

τ∈Sn/(Sn−m×Sm)

sgn(τ)
∑

λ=λ`⊇···⊇λ1⊇λ0=µ

∑
σ∈Sm(τ1,...,τm)

sgn(σ)xλ1σ(τ1) · · ·x
λm
σ(τm)

∗

( ∏
i<j≤m

xσ(τi) + xσ(τj)

)( ∏
i≤m,j>m

xσ(τi) + xτj

)( ∏
m<i<j

xτi − xτj

)
where the middle sum is over all good T-extensions. Reverting to a sum over a single
set of permutations this becomes:∑

λ=λ`⊇···⊇λ1⊇λ0=µ

∑
σ∈Sn/Sn−m

sgn(σ)xλ1σ1 · · ·x
λm
σm

∗

( ∏
i<j,i≤m

xσi + xσj

)( ∏
m<i<j

xσi − xσj

)
.

Fix some λ ⊇ µ and let ρ = λ − δ where δ = (m − 1, . . . , 0) and consider the
set of semistandard Young tableaux of shape ρ/(µ − δ) and weight T1, . . . , T` such
that every entry i occurs on or above row ci. We claim that each good T-extension
λ = λ` ⊇ · · · ⊇ λ1 ⊇ λ0 = µ encodes such a tableau in a bijective fashion. Indeed,
the bijection is given by first considering the tableau of shape λ/µ where each strip
λi/λi−1 is filled with is for each i ∈ [1, `] and then, moving all entries in row j to the
left by m− j positions for each j ∈ [1,m] (and eliminating excess boxes).

Since the inner sum in the equation above is precisely the classical definition of
V ∗ Pλ(x1, . . . , xn) where Pλ(x1, . . . , xn) is the P -Schur function [19], it now follows
that the expression above is the same as:

V ∗
∑

ρ⊇(µ−δ)

(NT
ρ/(µ−δ))Pρ+δ(x1, . . . , xn)

where NT
ρ/(µ−δ) is the number of semistandard Young tableaux of shape ρ/(µ − δ)

and weight T1, . . . , T` such that every entry i occurs on or above row ci.
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Definition 4.1 Let µ be a partition with m distinct, nonzero parts and conjugate
µ′ = (c`, . . . , c1) and set δ = (m−1, . . . , 0). If λ ⊇ µ is a partition of m distinct parts
then a shifted restricted tableau of shape (λ−δ)/(µ−δ) is a semistandard Young
tableau of this shape using entries in the alphabet {1, . . . , `} such that each entry i
occurs on or above row ci. We denote the set of all such tableaux by SRT (λ/µ). If
R ∈ SRT (λ/µ) then the weight of R, denoted wt(R) is the vector (w1, . . . , w`) where
wi is the number of is that appear in R.

Example 4.2 Let λ = (10, 8, 6, 4) and µ = (7, 5, 4, 2) so that c7 = 4, c6 = 4, c5 = 3,
c4 = 3, c3 = 2, c2 = 1, c1 = 1. (Since the diagram below is shown as a shifted
diagram the ci are computed by counting the length of the top left to bottom right
diagonals of µ.)

· · · · · · · 2 3 5

· · · · · 3 3 6

· · · · 4 7

· · 6 7

Since all 1s and 2s lie in the green all 3s lie in the green or yellow, all 4s and all 5s
lie in the orange, yellow, or green, and all 6s and 7s lie in the red, orange, yellow, or
green, this is an element of SRT (λ/µ). It has weight (0, 1, 3, 1, 1, 2, 2).

The statement before the definition now becomes:

Theorem 4.3 Let µ be a partition with m ≤ n distinct nonzero parts and longest
part equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn); then

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

twt(R)Pλ+δ(x).

Remark 4.4 Note that RT (λ/µ) is not the SRT ((λ+ δ)/(µ+ δ)) since in the first
case we use the constants (c`, . . . , c1) = µ′ and the alphabet {1, . . . , `} and in the
second we would use the constants (d`+m−1, . . . , d1) = (µ + δ)′ and the alphabet
{1, . . . , `+m− 1}.

4.2 Shifted shape multiset tableaux

In this section we will use the following ordered entries to fill tableaux: S ′ = {1′ <
1 < 2′ < 2 < 3′ < · · · }. We use the following notation. Let a, z ∈ S ′

• a <u z means a < z or else a = z and they are unprimed.

• a <p z means a < z or else a = z and they are primed.

• a >u z means a > z or else a = z and they are unprimed.

• a >p z means a > z or else a = z and they are primed.
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Definition 4.5 Given a partition with distinct parts, µ = (µ1, . . . , µm), a signed
shifted multiset tableau of shape µ, or element of SMT (µ), is an arrangement
of boxes with µi adjacent boxes in row i for each i and where the rows are situated
such that the leftmost box of row i lies one column to the left of the leftmost box of
row i+ 1, along with a filling of said boxes with the following properties.

(1) Each box contains a nonempty multiset of the numbers {1′, 1, 2′, 2, 3′, . . .} such
that the multiplicity of each primed number is 0 or 1.

(2) Suppose entry z lies in a box directly to the right of box b. Then for all a ∈ b
we have a <u z.

(3) Suppose entry z lies in a box directly below box b. Then for some a ∈ b we
have a <p z.

If, in addition the smallest entry in each row is not primed we call such a tableau
simply a shifted multiset tableau of shape µ or an element of SMT 0(µ).2

The weight of a (signed) shifted multiset tableau is the vector (w1, w2, . . .) where wi
is the total number of is or i′s appearing in the tableau. We label the top left to
bottom right diagonals from left to right by {`, ` − 1, . . . , 2, 1} where ` = µ1. By
box dij we refer to the box that is in the ith row (from top to bottom) of diagonal
j. Define the diagonal weight of a shifted multiset tableau, dw, to be the vector
(T1, . . . , T`) where Tj is the difference between the number of entries in diagonal j
and the number of boxes in diagonal j. Let, |dij| mean the total number of entries
in box dij and |dij(x)| refer, more specifically, to the number of entries in box dij in
tableau x. The convention is |dij| = 0 if dij describes a position not in the tableau.

Example 4.6 Let µ = (5, 4, 2). Then

1 1113 3 4′45 7′7

22 4′4 5′6′ 7′

45′ 55

is an element P ∈ SMT (µ) with wt(P ) = (4, 2, 2, 5, 5, 1, 3) and dw(P ) = (1, 2, 1, 5, 2).

Definition 4.7 An element of SMT (µ) with diagonal weight (0, . . . , 0) is called a
signed shifted semistandard tableau of shape µ, or element of SST (µ). An ele-
ment of SMT 0(µ) with diagonal weight (0, . . . , 0) is called a shifted semistandard
tableau of shape µ, or element of SST 0(µ).

Remark 4.8 Note that SST 0(µ), which is the subset of SST (µ) with no primes in
the leftmost diagonal, agrees with the usual definition of shifted semistandard tableau

2Compare to the definitions of weak set-valued shifted tableaux in [5] and set-valued shifted
tableaux in [10].
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(e.g., [16]) and is therefore the generating set for the P -Schur function Pµ. Moreover,
if m is the number of parts of µ, it is not difficult to see that number of elements
with a given weight and column weight in SST (µ) is equal to 2m times the number
of elements in SST 0(µ) with that weight and column weight. The relationship of
SMT (µ) to SMT 0(µ) is the same.

Definition 4.9 A maximal shifted multiset tableau of shape µ, or element of
SMT (µ) is an element of SMT (µ) with the following properties:

(1) Each box dij may only contain is.

(2) For each i ≥ 1 and k ≥ 0 we have
∑

1≤j≤k
|d(i+1)j| − |di(j−1)| ≤ 0

Example 4.10 Let µ = (4, 3, 3, 1). Then

1 1 11 1 11 11 1

2 22 2 2 222

33 3 3 33

44 44

is an element P ∈MT (µ) with wt(P ) = (7, 6, 5, 4) and cw(P ) = (1, 3, 4, 2).

Proposition 4.11 There is a bijection from the subset of SMT (µ) with weight λ
and diagonal weight T to the subset of SRT (λ/µ) with weight T.

Proof. Let X be the subset of elements of SMT (µ) with weight λ and diagonal
weight T that satisfy property (1) above. Let Y be the set of weakly increasing
along rows fillings (one entry per box) of shape (λ − δ)/(µ − δ) and weight T such
that every entry i occurs on or above row ci (equivalently, row i only contains entries
greater than `−µi). The map x→ y where y is defined by the property that for each
(i, j), row i of y contains exactly |dij(x)| − 1 copies of j is a bijection from X to Y .
Moreover if x → y then x satisfies property (2) above if and only if the columns of
y are strictly decreasing down rows: Indeed, if there is some i and some k such that∑
1≤j≤k

|d(i+1)j| − |di(j−1)| > 0 then for the minimal such k, the rightmost k appearing

in row i + 1 will be in diagonal k + 1 −
∑

1≤j≤k
|d(i+1)j| whereas the rightmost k − 1

(or rightmost instance of the greatest number less than k− 1 if this row contains no
k− 1) appearing in row i of y will lie in column k−

∑
1≤j≤k

|di(j−1)|, that is, strictly to

the left of the aforementioned k. Hence said k must lie below a number greater than
or equal to k.

On the other hand, if in some diagonal, say p, row i + 1 of y contains a k and
diagonal p− 1 row i contains a k′ with k′ ≥ k then for the minimal such p, we have
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k + 1−
∑

1≤j≤k
|d(i+1)j| ≤ p and k −

∑
1≤j≤k

|di(j−1)| ≥ p so that we have
∑

1≤j≤k
|d(i+1)j| −

|di(j−1)| > 0. Since the elements of Y that are strictly decreasing down columns are
exactly the elements of SRT (λ/µ) with weight T, the map restricted to the elements
of X that satisfy property (2) gives the desired bijection. 2

Example 4.12 The tableaux of Examples 4.2 and 4.10 correspond under this bijec-
tion.

Corollary 4.13 Let µ be a partition with m ≤ n distinct nonzero parts and longest
part equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn) then

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

Q∈SMT (µ)

tdw(Q)Pwt(Q)(x)

4.3 Combinatorial Definition of Pµ(x, t)

In this section we will give an equivalent combinatorial definition of Pµ. We will
need a certain column insertion algorithm. In the below, we describe how to insert
and reverse insert an element into a column.

Let K be a valid column (each box of K contains exactly one element from S ′

and whenever a lies above z in K we have a <p z). Now let a ∈ S ′. We insert a
into K, denoted a ↪→ K as follows: Let â denote the uppermost entry in K such
that a <u â. If â exists, replace â with a and bump out â. Otherwise, append a to
the bottom of K. The result is recorded as the pair (K ′, â) if the second of this pair
exists and just K ′ otherwise. On the other hand if z ∈ S ′ is any element such that
z >u a for some a ∈ K then we define reverse insertion of z into K as follows: Let
ẑ denote the bottommost entry in K such that z >u ẑ. Replace ẑ with z and bump
out ẑ. The result is recorded as the pair (ẑ, K ′).

Notice the basic properties:

(1) If a ↪→ K = K ′ then K ′ is a valid column.

(2) if a ↪→ K = (K ′, â) then K ′ is a valid column.

(3) If K ←↩ z = (ẑ, K ′) then K ′ is a valid column.

(4) If a <u z then either

• z ↪→ K = K ′ and a ↪→ K ′ = (K ′′, â).
• z ↪→ K = (K ′, ẑ) and a ↪→ K ′ = (K ′′, â) where â <u ẑ.

(5) If a <u z and K ←↩ a = (â, K ′) and K ′ ←↩ z = (ẑ, K ′′) then â <u ẑ.

Now, fix a partition µ with m distinct nontrivial parts and with conjugate
µ′ = (c`, . . . , c1). We will refer to both columns and diagonals. Both are labeled
in decreasing order from left to right starting on `.
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Proposition 4.14 There is a bijection SMT (µ)→
⋃
λ⊇µ

SST (λ)× SRT (λ/µ), such

that if P → (Q,R) then:

(1) wt(P ) = wt(Q).

(2) dw(P ) = wt(R).

Proof preliminaries. We define the set SMTk(λ) to be the subset of elements of
SMT (λ) that have only single entries in diagonals k− 1, . . . , 1, 0,−1, . . .. Define the
set SRTk(λ/µ) to be the subset of elements of SRT (λ/µ) that have only entries from
{1, 2, . . . , k − 1}. Given a pair (Q,R) ∈ SMTk(λ) × SRTk(λ/µ) define the weight
and diagonal weight of this pair as wt(Q,R) = wt(Q) and dw(Q,R) = dw(Q) +
wt(R). To prove the proposition it suffices to find a weight and diagonal weight
preserving bijection for each k from

⋃
λ⊇µ

SMTk(λ)×SRTk(λ/µ) to
⋃
λ⊇µ

SMTk+1(λ)×

SRTk+1(λ/µ) (and then compose Φ(P ) = Φ` ◦ · · · ◦Φ1(P,Q0) where Q0 is the empty
tableau of shape µ/µ). To do the former, it is enough to find a weight preserving
bijection φk : SMTk(λ) →

⋃
ν⊇λ

SMTk+1(ν) where the union is over all ν such ν/λ is

a horizontal strip with no box below row ck (recall that the value of ck is defined by
the shape µ although it is easily shown that if we label the leftmost column of λ by
` = µ1 then diagonal k of µ has the same length as diagonal k of λ). We then set
Φk(Q,R) = (φk(Q), R′) where R′ is obtained by appending boxes to R until its outer
shape is the same as φk(Q) and filling each appended box with the entry k.

Before we can define φk we need to introduce the following map: Let T ∈
SMTk(λ). Define out(T ) as follows: First, in each box of diagonal k circle (one
of) the minimum entry(s) from that box. Now find (one of) the largest noncircled
entry(s) in diagonal k and remove it and insert it into the undercolumn to the right
of the column from which it was removed (where the undercolumn denotes the part
of the column that lies below a circled entry, or, if there is no circled entry in the
column, the entire column). After this, each time an element is bumped, insert it
into the next undercolumn to the right until some entry is eventually appended to
an undercolumn. Note the following properties of out.

(1) The path of positions where an element is bumped/appended moves weakly up
as we move to the right.

(2) Properties (1), (2), and (3) in the definition of shifted multiset tableaux are
preserved under out.

(3) If out(T ) and out(out(T )) are both defined then the box that out appends
to out(T ) lies strictly to the right of the box that out appends to T .

Example 4.15 Suppose that diagonal k is the second diagonal from the left. Each
−→ represents an application of out.
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11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′5

−→
11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′ 5

−→

11 2©′2 2 2 4 5′

2 3©′3 4′ 5′ 5

34′ 4 5′

−→
11 2©′2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

−→

11 2©′ 2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

Uncircled numbers being removed are shown in red, and the boxes being added
appear in green.

We will also need a map called inb. Let T ∈ SMTk(ν) for some ν such that ν/λ
is a horizontal strip with no box below row ck and suppose b is some corner box of T
that lies on or above row ck. Define inb(T ) as follows: First, in each box of diagonal
k circle (one of) the minimum entry(s) from that box. Now remove the entry from
box b. If this entry is less than the circled entry in the column to the left, or both
are equal and primed, or there is no such circled element, reverse insert it into the
undercolumn of the column to the left. After this, each time an element is bumped
that is less than the circled entry in the column to its left or equal to it and primed,
reverse insert it into the undercolumn of the column to the left. When an element
is bumped that is greater than the circled entry in the column to its left or equal to it
and unprimed, add it to the box containing this circled element. Note the following
properties of inb.

(1) The path of positions where an element is bumped/added moves weakly down
as we move to the left.

(2) Properties (2), and (3) in the definition of shifted multiset tableaux are pre-
served under inb. Property (1) is satisfied unless inb adds a primed entry to a
box already containing a the same noncircled primed entry.

(3) If b′ lies to the left of b and if inb(T ) and inb′(inb(T )) are both defined then
the element that inb′ adds to diagonal k of inb(T ) is greater than, or equal to
and unprimed, the element inb adds to diagonal k of T .

Moreover, out and inb are related as follows:
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(1) If out appends box b when applied to T , then inb(out(T )) = T .

(2) If the element that inb adds to diagonal k when applied to T is the largest, or
tied for the largest and unprimed, uncircled element on diagonal k then inb(T )
satisfies property (1) in the definition of shifted multiset tableaux (and hence
is a shifted multiset tableau), and out(inb(T )) = T .

Example 4.16 Set k = 2. Then inred(inorange(inyellow(ingreen(T )))) = T ′ where T
is the tableau below on the left and T ′ is the tableau below on the right.

11 2©′ 2 2 2 4′ 4 5′

2 3©′ 3 5′ 5

34′ 4© 5′

−→
11 2©′2 2 2 4 5′

2 3©′3 4′ 5′

34′ 4©5′5

Note that T is the last tableau of Example 4.15 and T ′ is the first tableau of 4.15.

Conclusion of proof of Proposition 4.14.
We define φk simply by applying out until diagonal k only contains single entries.

(1) φk is well defined. For any tableau T denote the shape of T by T s. If T ∈
SMTk(λ) then Property (3) of out implies φk(T )s/T s is a horizontal strip and
Property (1) of out implies all of its boxes lie on or above row ck. On the
other hand Property (2) of out implies that φk(T ) is a valid shifted multiset
tableau, and, by construction φk(T ) has only single entries in diagonals k, k −
1, . . . , 0,−1, . . ..

(2) φk is injective. Suppose T 6= T ′ ∈ SMTk(λ) with φk(T ) = φk(T
′) then by

Property (3) of out and construction of φk there is some ν and some S 6=
S ′ ∈ SMTk(ν) with out(S) = out(S ′). But then if b is the box that out adds
to S or equivalently to S ′, property (1) of how out and inb are related says
S = inb(out(S)) = inb(out(S ′)) = S ′.

(3) φk is surjective. Let T ∈
⋃
ν⊇λ

SMTk+1(ν) where the union is over all ν such

ν/λ is a horizontal strip with no box below row ck. Let b1, . . . , br denote
the boxes labeled from left to right of T s/λ. Set S = inb1(· · · (inbr(T ) · · · ).
Property (3) of inb implies that for each i we have that inbi adds a an element
to diagonal k when applied to inbi+1

(· · · (inbr(T ) · · · ) that is the largest, or
tied for largest and unprimed, noncircled element in diagonal k. This along
with property (2) of inb implies inbi(· · · (inbr(T ) · · · ) is a valid shifted multiset
tableau. Moreover, property (2) of how out and inb are related says that
in this case out(inbi(· · · (inbr(T ) · · · )) = inbi+1

(· · · (inbr(T ) · · · ). All together,
this implies that S is a valid shifted multiset tableau and that φk(S) = T .
By construction, S has shape λ and has only single entries in diagonals k −
1, . . . , 0,−1, . . ., i.e., S ∈ SMTk(λ).
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Theorem 4.17 Let µ be a partition with m ≤ n distinct nonzero parts and longest
part equal to ` and set t = (t1, . . . , t`), x = (x1, . . . , xn) then

Pµ(x1, . . . , xn, t1, . . . , t`) =
∑

P∈SMT 0(µ)

tdw(P )xwt(P )

Proof. Let m denote the number of parts of µ.

Pµ(x1, . . . , xn, t1, . . . , t`)

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

twt(R)Pλ+δ(x) Theorem 4.3

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

∑
Q∈SST 0(λ+δ)

twt(R)xwt(Q) Def. of Pλ+δ

=
∑

λ⊇(µ−δ)

∑
R∈SRT ((λ+δ)/µ)

∑
Q∈SST (λ+δ)

(2−m)twt(R)xwt(Q) Def. of SST 0

=
∑

P∈SMT (µ)

(2−m)tdw(P )xwt(P ) Prop. 4.14

=
∑

P∈SMT 0(µ)

tdw(P )xwt(P ) Def. of SMT 0

The definition of Pλ+δ mentioned here is the combinatorial one (see the end of Section
III.8 of [19]). 2

Example 4.18 Let us consider P2,1(x1, x2, t1, t2). We will compute the degree 4
part in x (which is the degree 1 part in t). We have the following tableaux:

11 1

2

1 11

2

11 2′

2

1 1

22

1 12′

2

1 12

2

1 2′

22

1 2′2

2

This yields x3
1x2t1 + x3

1x2t2 + 2x2
1x

2
2t1 + 2x2

1x
2
2t2 + x1x

3
2t1 + x1x

3
2t2, which can be

expressed in terms of P -Schur polynomials as t1P3,1(x1, x2) + t2P3,1(x1, x2). Note
that this is already different from Example 3.3 of [5].
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Remark 4.19 There exists a queer crystal structure on the set of semistandard
shifted tableaux [4]. Under this structure, the highest weight elements are precisely
those for which every entry on row i is an (unprimed) i. Moreover, the bijection
Φ fixes the minimum entry on each row. Thus restricting Φ gives a bijection from
SMT 0(µ)→

⋃
λ⊇µ

SST 0(λ)× SRT (λ/µ). Moreover, it is not difficult to see that this

restriction of Φ has the property that whenever Φ(P ) = (Q,R) then P ∈ SMT (µ)
if and only if Q is highest weight. Thus Φ−1 induces a queer crystal structure on
SMT 0(µ) where the highest weight elements are precisely those that lie in SMT (µ).
This crystal structure is interpreted algebraically by comparing Corollary 4.13 (where
the sum is over highest weight elements) with Theorem 4.17 (where the sum is over
all elements).
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