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Abstract

A graph is weakly perfect if its clique number and chromatic number are
equal. We show that the enhanced power graph of a finite group G is
weakly perfect: its clique number and chromatic number are equal to the
maximum order of an element of G. The proof requires a combinatorial
lemma. We give some remarks about related graphs.

1 Introduction

The directed power graph of a finite group G, introduced in [10], has the elements of
G as vertices, with an arc from x to y if y = xn for some integer n. This relation is
reflexive and transitive, hence is a partial preorder. The (undirected) power graph,
defined in [6], is obtained by ignoring directions: that is, x and y are joined if one
is a power of the other. This graph is thus the comparability graph of a partial
preorder; a small extension of Dilworth’s theorem shows that it is perfect, that is,
every induced subgraph has clique number equal to chromatic number. This was first
proved by Alireza, Ahmad and Abbas [2] and Feng, Ma and Wang [9]. (Dilworth’s
theorem states in part that the comparability graph of a partially ordered set P ,
whose vertices are the elements of P , joined if they are comparable in the order, is
perfect. To extend this to a partial preorder, note that the relation ≡ defined by
x ≡ y if x → y and y → x, is an equivalence relation; imposing a total order on each
equivalence class gives a partial order with the same comparability graph.)
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Both these graphs were first defined for semigroups, but most work on them has
concerned groups.

According to the strong perfect graph theorem, proved by Chudnovsky, Robertson,
Seymour and Thomas [7], a graph is perfect if and only if it has no induced subgraph
which is a cycle of odd length greater than 3 or the complement of one.

The enhanced power graph of G, defined in [1], again has vertex set G, with x
and y joined if there is an element z such that both x and y are powers of z. (Since
subgroups of cyclic groups are cyclic, an equivalent statement is that x and y are
joined if and only if the group they generate is cyclic.) It is shown in [4] that enhanced
power graphs of finite groups are universal, that is, every finite graph occurs as an
induced subgraph of such a graph. Thus, these graphs are not in general perfect.

Our purpose here is to show that enhanced power graphs are weakly perfect, that
is, they have chromatic number equal to clique number. Indeed our result is not
restricted to finite groups, but applies to groups in which all elements have finite and
bounded order.

Theorem 1 Let G be a finite group, or a torsion group of bounded exponent. Then
the clique number and the chromatic number of G are both equal to the maximal order
of an element of G.

The result for clique number is known, and the proof is straightforward; the result
for chromatic number requires the following purely combinatorial result. We note
that the proof is constructive, so gives an easy algorithm for colouring the enhanced
power graph.

Theorem 2 For every natural number n, there exist subsets A1, A2, . . . , An of
{1, 2, . . . , n} with the properties

• |Aq| = φ(q) for q ∈ {1, . . . , n}, where φ is Euler’s totient;

• if lcm(q, q′) ≤ n, then Aq ∩ Aq′ = ∅, where lcm denotes the least common
multiple.

These theorems will be proved in the next two sections. In the final section we
give some concluding remarks.

Many further properties of power graphs and enhanced power graphs can be
found in [12] and [16].

2 Proof of Theorem 2

Let D be the set of fractions p/q (in their lowest terms) in (0, 1], for 1 ≤ q ≤ n. We
define a function f :D → {1, 2, . . . , n} by

f(p/q) = �np/q	.
We make the key observation that
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If p/q 
= p′/q′ and f(p/q) = f(p′/q′), then lcm(q, q′) > n.

For, if f(p/q) = f(p′/q′), then there exists m such that

m− 1 < np/q, np′/q′ ≤ m.

Thus |p/q−p′/q′| < 1/n. On the other hand, |p/q−p′/q′| is a rational number whose
numerator is at least 1 (since p/q 
= p′/q′), and the denominator is lcm(q, q′). So we
have
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and so lcm(q, q′) > n, as required.

Now we letDq be the set of fractions inD with denominator q, so that |Dq| = φ(q),
and let Aq = f(Dq) ⊆ {1, . . . , n}. By our key observation we see that

• the restriction of f to Dq is injective, so |Aq| = φ(q);

• if q 
= q′ and lcm(q, q′) ≤ n, then Aq ∩Aq′ = ∅.

So the theorem is proved.

For example, here are the sets generated for n = 12 by the above procedure.

A1 = {12}, A2 = {6}, A3 = {4, 8},
A4 = {3, 9}, A5 = {3, 5, 8, 10}, A6 = {2, 10},
A7 = {2, 4, 6, 7, 9, 11}, A8 = {2, 5, 8, 11}, A9 = {2, 3, 6, 7, 10, 11},
A10 = {2, 4, 9, 11}, A11 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, A12 = {1, 5, 7, 11}.

3 Proof of Theorem 1

We begin with the observation that if a finite subset of a group has the property
that any two of its elements generate a cyclic group, then the whole subset generates
a cyclic group. A proof can be found in [1, Lemma 32]. It follows that a maximal
clique in the enhanced power graph is a maximal cyclic subgroup of G, and the clique
number is equal to the order of the largest cyclic subgroup, say n.

In order to find a colouring with n colours, we take {1, 2, . . . , n} to be the set of
colours, with the subsets Aq given by Theorem 2. We will use the set Aq to colour
elements of order q. If two elements of order q are joined, they lie in the same cyclic
subgroup of order q; this subgroup has φ(q) generators, so we have enough colours
to give them all different colours. Other elements of order q are not joined to these
ones, so we may re-use the same set of colours for them. Now, if two elements of
different orders q and q′ are joined, they generate a cyclic group of order lcm(q, q′),
which is at most n; so the sets of colours assigned to them are disjoint. Thus, we
obtain a proper colouring.
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4 Further remarks

Our combinatorial lemma can deal with any set of element orders, as long as the
largest order n is given. Now there are groups in which the set of element orders is
{1, . . . , n} for some n. (For example, the orders of elements in the alternating group
A7 are 1, 2, 3, 4, 5, 6, 7.) But, as we show below, this can only occur for finitely many
values of n. So, at first glance, it seems we may be able to simplify the argument
for most groups by using the fact that not all orders occur. We have not attempted
to do so, and indeed our proof is simple enough that any substantial simplification
seems unlikely.

Proposition 3 There are only finitely many values of n for which there exists a
finite group in which the set of element orders is {1, . . . , n}.

Proof We use the Gruenberg–Kegel graph of a group G (sometimes called the prime
graph): the vertices are the prime divisors of |G|, with vertices p and q joined if
G contains an element of order pq. Gruenberg and Kegel described this graph in
an unpublished manuscript on the decomposition of the augmentation ideal of the
integral group ring of a finite group; their main theorem, a description of the groups
whose Gruenberg–Kegel graph is disconnected, was published by Gruenberg’s student
Williams [15] and refined by later authors, notably Kondrat’ev [11].

We use the fact that the Gruenberg–Kegel graph of a finite group has at most 6
connected components. (This follows from the cited results of [15, 11]. However,
these papers contain some errors, subsequently fixed. A corrected result is given
in [5, Table 1]. The only group with six components in its GK graph is the Janko
group J4.)

Now suppose that G is a group in which the element orders are {1, 2, . . . , n}. If
p is a prime in the interval (n/2, n], then p is an isolated vertex in the Gruenberg–
Kegel graph of G; so there can be at most five such primes. But, in a strengthening
of Bertrand’s postulate, Erdős [8] showed that the number of primes in this interval
tends to ∞ with n. The result is proved.

The weak perfect graph theorem asserts that a graph is perfect if and only if its
complement is perfect. This does not hold for weakly perfect graphs. However, we
note that Jitender Kumar Parveen has recently posted on the arXiv a paper showing
(among other things) that the complement of the enhanced power graph of a finite
group is weakly perfect [13].

A related graph is the difference of the enhanced power graph and power graph
of the group G, which we will denote by Δ(G): x and y are joined in this graph if
they are joined in the enhanced power graph but not in the power graph.

For a group G, let Ω(G) denote the set of orders of elements of G. For a positive
integer n, let α(n) denote the size of the largest antichain in the lattice of divisors
of n. De Bruijn et al. [3] showed that, if n has m prime factors (counted with
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multiplicity), then a maximum-size antichain consists of all divisors with m/2 prime
factors if m is even, and either all divisors with �m/2� prime factors or all with
�m/2	 prime factors if m is odd. (This is a generalisation of Sperner’s theorem [14].)

Proposition 4 For a finite group G, the clique number of Δ(G) is equal to
max{α(n) : n ∈ Ω(G)}.

Proof A clique S in Δ(G) is a clique in the enhanced power graph, and so is
contained in a cyclic group C. Now a cyclic group has the property that if x and y
are two elements for which the order of x divides the order of y, then x is a power
of y. It follows that the elements of S all have different orders, and these form an
antichain in the lattice of divisors of |C|.

However, Δ(G) is not always weakly perfect:

Proposition 5 Let G be the symmetric group S8 on 8 letters. Then Δ(G) is not
weakly perfect.

Proof We have Ω(G) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15}; so the clique number of Δ(G)
is equal to 2. But Δ(G) is not bipartite, since

{(1, 2), (3, 4, 5), (6, 7), (1, 2, 3), (4, 5, 6, 7, 8)}

induces a 5-cycle.

We leave the description of groups G for which Δ(G) is weakly perfect as an open
problem.
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finite groups, J. Algebra Appl. 19 (2020), #2050062 (20pp.)

(Received 23 July 2022)


