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Abstract

A Type IV-II Z4-code is a self-dual code over Z4 with the property that
all Euclidean weights are divisible by eight and all codewords have even
Hamming weight. In this paper we use generalized bent functions for a
construction of self-orthogonal codes over Z4 of length 2m, for m odd,
m ≥ 3, and prove that for m ≥ 5 those codes can be extended to Type
IV-II Z4-codes. From this family of Type IV-II Z4-codes, we construct a
family of self-dual Type II binary codes by using the Gray map. We also
consider the weight distributions of the obtained codes and the structure
of the supports of the minimum weight codewords.

1 Introduction

The discovery of good nonlinear binary codes arising via the Gray map from Z4-linear
codes motivated the study of codes over rings in general (see [16]). In particular,
self-dual Z4-codes have attracted much interest because of their connection with uni-
modular lattices (see, for example, [15, 17]). Type II self-dual Z4-codes are connected
with even unimodular lattices. A Type IV self-dual Z4-code is closely related to a
class of binary doubly even self-complementary codes (see [11]). In general, self-dual
codes are one of the most interesting classes of codes, since many of the best known
codes are of this type and they have a rich mathematical theory (see [23]). Thus,
it is of interest to construct self-dual codes and study their properties. Many meth-
ods for constructing self-dual Z4-codes are known (see, for example, [3, 8, 22, 29]).
In this paper, we give a construction of Type IV-II Z4-codes from generalized bent
functions. To the best of our knowledge, this construction yields a new family of
Type IV-II Z4-codes.
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According to [6], Rothaus wrote the first paper in English on bent functions in
1966, but its final version was published ten years later in [24]. Since then, bent
functions have been a subject of interest of many researchers (see [6]). Among other
things, relationships between bent functions and codes have been intensively studied.
For example, cyclic codes and their connection with hyper-bent and bent functions
are explored in [5], a construction of linear codes with two or three weights from
weakly regular bent functions is given in [27], and in [9] bent vectorial functions
are used for a construction of a two-parameter family of binary linear codes that
do not satisfy the conditions of the Assmus-Mattson theorem, but nevertheless hold
2-designs, and a new coding-theoretic characterization of bent vectorial functions
is presented. Trace codes over Z4 based on Boolean functions and their supports
are explored in [26], and three-weight codes are obtained from bent and semi-bent
functions.

Generalized bent functions were introduced in [21], and in [25] Schmidt considered
generalized bent functions for a construction of constant-amplitude codes over Z4 of
length 2m. In this paper we use generalized bent functions for a construction of
self-dual Z4-codes. We start from a pair of bent functions and obtain a cyclic self-
orthogonal Z4-code of length 2m, for m odd, m ≥ 3, with all Euclidean weights
divisible by 8. Further, we show that our construction gives a family of Type IV-II
codes over Z4 of length 2m, for m odd, m ≥ 5. Consequently, this yields a family
of self-dual Type II binary codes of length 2m+1, for m odd, m ≥ 5, constructed via
the Gray map. We also consider the weight distributions of the obtained codes and
the supports of the minimum weight codewords.

This paper is organized as follows. Section 2 gives definitions and basic properties
of codes over Z4 and generalized bent functions. In Section 3 the construction of Type
II codes over Z4 of length 2m, for m odd, m ≥ 3, from generalized bent functions
is introduced. We prove that for m ≥ 5 the constructed Z4-codes are also of Type
IV. We give the Euclidean weight distribution, the Lee weight distribution and the
symmetrized weight enumerator for the constructed codes. By using the Gray map,
we obtain a family of self-dual Type II binary codes of length 2m+1, for m odd,
m ≥ 5. Further, we observe the minimum weight codewords and the structure of
their supports. For the construction of examples we used Magma [2].

2 Preliminaries

We assume that the reader is familiar with the basic facts of coding theory. We refer
the reader to [19] for any terms not defined in this paper.

Let Fq be the field of order q, where q is a prime power. A code C over Fq of
length n is any subset of Fn

q . A k-dimensional subspace of Fn
q is called an [n, k] q-ary

linear code. An element of a code is called a codeword. A generator matrix for an
[n, k] code C is any k × n matrix whose rows form a basis for C. A linear code
C of length n is cyclic if for every codeword (c0, . . . , cn−2, cn−1) in C the codeword
(cn−1, c0, . . . , cn−2) is also in C.
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If q = 2, then the code is called binary. The (Hamming) weight of a codeword
x ∈ F

n
2 is the number of non-zero coordinates in x. If the minimum weight d of an

[n, k] binary linear code is known, then we refer to the code as an [n, k, d] binary
linear code. Binary linear codes for which all codewords have even weight are called
(singly) even and those among them for which all codewords have weight divisible
by four are called doubly even.
Let C be a binary linear code of length n. The dual code C⊥ of C is defined as

C⊥ = {x ∈ F
n
2 | 〈x, y〉 = 0 for all y ∈ C},

where 〈x, y〉 = x1y1+x2y2+· · ·+xnyn for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
The code C is self-orthogonal if C ⊆ C⊥, and it is self-dual if C = C⊥. The dual
code of a cyclic code is cyclic. A self-dual doubly even binary code is called a Type
II binary code.

Let Z4 denote the ring of integers modulo 4. A linear code C of length n over Z4

(i.e., a Z4-code) is a Z4-submodule of Zn
4 . Two Z4-codes are (monomially) equivalent

if one can be obtained from the other by permuting the coordinates and (if necessary)
changing the signs of certain coordinates. Codes differing by only a permutation of
coordinates are called permutation equivalent. The permutation automorphism group
of a Z4-code C is the group of all coordinate permutations that fix C set-wise. The
support of a codeword x ∈ Z

n
4 is the set of non-zero positions in x. Denote the number

of coordinates i (where i = 0, 1, 2, 3) in a codeword x ∈ Z
n
4 by ni(x). The codeword

x ∈ Z
n
4 is even if n1(x) = n3(x) = 0. The Hamming weight of a codeword x is

wtH(x) = n1(x)+n2(x)+n3(x), the Lee weight of x is wtL(x) = n1(x)+2n2(x)+n3(x),
and the Euclidean weight of x is wtE(x) = n1(x) + 4n2(x) + n3(x). It holds that
wtE(x) ≡ x21 + · · · + x2n (mod 8) for every x ∈ Z

n
4 . We will denote by dH(C),

dL(C) and dE(C), the minimum Hamming weight, the minimum Lee weight and
the minimum Euclidean weight of the code C, respectively. The symmetrized weight
enumerator of a Z4-code C is defined as

sweC(a, b, c) =
∑
x∈C

an0(x)bn1(x)+n3(x)cn2(x).

Let C be a Z4-code of length n. The dual code C⊥ of the code C is defined as

C⊥ = {x ∈ Z
n
4 | 〈x, y〉 = 0 for all y ∈ C},

where 〈x, y〉 = x1y1 + x2y2 + · · · + xnyn (mod 4) for x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn). The code C is self-orthogonal when C ⊆ C⊥ and self-dual if C = C⊥.
If C is a self-orthogonal Z4-code, then wtL(c) is even for all c ∈ C. A self-dual Z4-code
of length n contains exactly 2n codewords. Type II Z4-codes are self-dual Z4-codes
which have the property that all Euclidean weights are divisible by eight. Type IV
Z4-codes are self-dual Z4-codes with all codewords of even Hamming weight (see
[11]). A Type IV code that is also Type II is called a Type IV-II Z4-code.
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Every Z4-code C contains a set of k1 + k2 codewords {c1, c2, . . . , ck1, ck1+1, . . . ,
ck1+k2} such that every codeword in C is uniquely expressible in the form

k1∑
i=1

aici +

k1+k2∑
i=k1+1

aici,

where ai ∈ Z4 and ci has at least one coordinate equal to 1 or 3, for 1 ≤ i ≤ k1,
ai ∈ Z2 and ci has all coordinates equal to 0 or 2, for k1 + 1 ≤ i ≤ k1 + k2. We say
that C is of type 4k12k2. The matrix whose rows are ci, 1 ≤ i ≤ k1 + k2, is called a
generator matrix for C. A generator matrix G of a Z4-code C is in standard form if

G =

[
Ik1 A B1 + 2B2

O 2Ik2 2D

]
, (1)

where A,B1, B2 and D are matrices with entries from {0, 1}, O is the k2 × k1 null
matrix, and Im denotes the identity matrix of order m. If C is a self-dual Z4-code
of length n, then 2k1 + k2 = n and the matrix B1 + 2B2 in G is of order k1. Any
Z4-code is permutation equivalent to a code with generator matrix in standard form.

Since
wtE(x+ y) ≡ wtE(x) + wtE(y) + 2 〈x, y〉 (mod 8) (2)

for all x, y ∈ Z
n
4 , every self-orthogonal Z4-code which has a generator matrix such

that all rows have Euclidean weights divisible by 8 consists of codewords whose
Euclidean weights are divisible by 8.

Let C be a Z4-code of length n. There are two binary linear codes of length n
associated with C: the binary code C(1) = {c (mod 2) | c ∈ C}, which is called the
residue code of C, and the binary code C(2) = {c ∈ Z

n
2 | 2c ∈ C}, which is called the

torsion code of C. If C is a Z4-code of type 4k12k2, then C(1) is a binary code of
dimension k1 generated by the matrix[

Ik1 A B1

]
.

If C is a self-dual Z4-code, then C
(1) is doubly even and C(1) = C(2)⊥ (see [8]).

According to [17], the following statement holds.

Theorem 2.1. Let C be a Type II Z4-code of length n. Then C(2) is an even binary
code, C(1) contains the all-ones binary vector, and n ≡ 0 (mod 8).

A Boolean function on n variables is a mapping f : Fn
2 → F2. Its truth table

is the (0, 1) sequence (f((0, . . . , 0)), f((0, . . . , 0, 1)), . . . , f((1, . . . , 1))). The Walsh-
Hadamard transformation of f is

Wf (v) =
∑
x∈Fn

2

(−1)f(x)+〈v,x〉.
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A bent function is a Boolean function f such that Wf(v) = ±2
n
2 , for every v ∈ F

n
2 .

If f is bent, then the number of its variables is an even number. It was proven by
Rothaus in the 1960s ([24]) that the number of zeros of a bent function equals

2n−1

(
± 1

2
n
2

+ 1

)
.

A generalized Boolean function on n variables is a mapping f : Fn
2 → Z2h . The

generalized Walsh-Hadamard transformation of f is

f̃(v) =
∑
x∈Fn

2

ωf(x)(−1)〈v,x〉,

where ω = e
2πi

2h . A generalized bent function (gbent function) is a generalized Boolean
function f such that |f̃(v)| = 2

n
2 , for every v ∈ F

n
2 . In this paper we will consider

generalized bent functions from F
n
2 into Z4.

3 Codes constructed from gbent functions

According to [25], the following theorem holds.

Theorem 3.1. Let m ≥ 3 be odd, and let a, b : Fm−1
2 → F2 be bent functions. Then

f : Fm
2 → Z4 given by

f(x, y) = 2a(x)(1 + y) + 2b(x)y + y, x ∈ F
m−1
2 , y ∈ F2,

is a gbent function.

Lemma 3.2. Let m ≥ 3 be odd and let f : Fm
2 → Z4 be a gbent function constructed

from bent functions a and b as in Theorem 3.1. Let cf be a codeword

(f((0, . . . , 0)), f((0, . . . , 0, 1)), . . . , f((1, . . . , 1))) ∈ Z
2m

4 .

Then wtE(cf) ≡ 0 (mod 8) and 〈cf , cf〉 = 0.

Proof. By the construction, cf has 2
m−1 even and 2m−1 odd coordinates. The number

of zeros in cf is equal to the number of zeros in the bent function a. This number is

equal to 2m−2
(
± 1

2
m−1

2
+ 1
)
. It follows that wtE(cf ) = 2m+2m−1±2

m+1
2 . So wtE(cf )

is divisible by 8. Since wtE(x) ≡ x21 + · · · + x2n (mod 8) for every x ∈ Z
n
4 , we have

〈cf , cf〉 = 0.

Remark 3.3. Note that for cf = (f((0, . . . , 0)), f((0, . . . , 0, 1)), . . . , f((1, . . . , 1)))
and m = 3, Euclidean weight wtE(cf) takes value 8 or 16. If m ≥ 5, then wtE(cf) ≥
2m

3
+ 8.
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3.1 Codes over Z4

An n× n circulant matrix is a matrix of the form⎡⎢⎢⎢⎣
x0 xn−1 . . . x2 x1
x1 x0 xn−1 . . . x2
...

...
xn−1 . . . . . . x1 x0

⎤⎥⎥⎥⎦ .
Proposition 3.4. Let m ≥ 3 be odd, and let a, b : Fm−1

2 → F2 be bent functions.
Let f : Fm

2 → Z4 be a gbent function given by f(x, y) = 2a(x)(1 + y) + 2b(x)y + y,
x ∈ F

m−1
2 , y ∈ F2, and let cf be a codeword

(f((0, . . . , 0)), f((0, . . . , 0, 1)), . . . , f((1, . . . , 1))) ∈ Z
2m

4 .

Let Cf be a Z4-code generated by the 2m × 2m circulant matrix whose first row is the
codeword cf . Then Cf is a self-orthogonal Z4-code of length 2m, all its codewords

have Euclidean weights divisible by 8 and the residue code C
(1)
f has dimension 2.

Proof. By Lemma 3.2, 〈cf , cf〉 = 0. Note that even and odd coordinates alternate in
the codeword cf .

Let ci and cj , i �= j, be the i-th and the j-th row of the circulant generator matrix
of Cf . Since ci and cj are rows of a circulant matrix, 〈ci, cj〉 depends only on j − i.

If j − i is odd, then

〈ci, cj〉 ≡ 0 · s1 + 2 · s2 (mod 4),

where s1 is the sum of 2n0(cf) ones and threes, and s2 is the sum of 2n2(cf) ones
and threes. So s2 is an even number. It follows that 〈ci, cj〉 = 0.

If j − i is even, then

〈ci, cj〉 ≡ α10 ·0+α20 ·2+α32 ·0+α42 ·2+α51 ·1+α61 ·3+α73 ·1+α83 ·3 (mod 4),

where α1 + α2 + α3 + α4 = α5 + α6 + α7 + α8 = 2m−1. By considering elementary
properties of the cyclic shift we obtain α6 = α7. It follows that

〈ci, cj〉 ≡ α5 − 2α6 + α8 (mod 4) ≡ 2m−1 − 4α6 (mod 4).

So ci and cj are orthogonal codewords in this case as well. Therefore Cf is a self-
orthogonal Z4-code.

By Lemma 3.2, cf has Euclidean weight divisible by 8. Since Cf is a self-
orthogonal code, it follows from (2) that all codewords of Cf have Euclidean weights
divisible by 8.

Even and odd coordinates alternate in the codeword cf . Consequently, the residue

code C
(1)
f has dimension 2 and Cf has 422k2 codewords for some k2 ≤ 2m − 4.
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Example 3.5. There are exactly eight bent functions on two variables. We con-
structed gbent functions f from all pairs (a, b) of bent functions a, b : F2

2 → F2, as
given in Theorem 3.1. In that way, 64 codewords cf ∈ Z

8
4 were obtained (see Lemma

3.2). Among associated codes Cf , constructed as in Proposition 3.4, there are two
inequivalent codes. One of them is the code Cf23 1

generated by the codeword cf23 1
=

(0, 1, 0, 1, 0, 3, 2, 1), which is obtained from the pair (x1x2, x1+x1x2). The other code
arises from the pair (x1x2, x1x2), i.e., from the codeword cf23 2

= (0, 1, 0, 1, 0, 1, 2, 3).
Both codes are self-orthogonal codes of type 4223 and their permutation automor-
phism groups have order 64. The codes obtained from the remaining 62 gbent func-
tions on two variables are equal to Cf23 1

or to Cf23 2
.

Remark 3.6. According to [12], cyclic codes over rings are an important class of
codes from both theoretical and practical points of view. In [12], the structure of
cyclic codes over Z4 of even length is determined.

3.1.1 Type II codes over Z4

In the next theorem, we use the self-orthogonal cyclic Z4-code Cf constructed as in

Proposition 3.4 to construct a Type II Z4-code C̃f . Moreover, for m ≥ 5 the code C̃f

is of Type IV-II. To the best of our knowledge, this construction was not previously
known and leads to a new family of Type IV-II Z4-codes.

Theorem 3.7. Let m ≥ 3 be odd, and let a, b : Fm−1
2 → F2 be bent functions. Let

f : Fm
2 → Z4 be a gbent function given by f(x, y) = 2a(x)(1 + y) + 2b(x)y + y,

x ∈ F
m−1
2 , y ∈ F2, and let cf be a codeword

(f((0, . . . , 0)), f((0, . . . , 0, 1)), . . . , f((1, . . . , 1))) ∈ Z
2m

4 .

Let Cf be a cyclic Z4-code of type 422k2 generated by cf . Let G be a generator matrix
of Cf in standard form. Let k3 = 2m − 22 − k2 and let

D̃ =
[
O 2Ik3 H

]
be a k3×2m matrix, where O is the k3× (k2+2) null matrix and H is a k3×2 matrix
whose rows hi, 1 ≤ i ≤ k3 are defined as follows.

If k2 is odd, then

hi =

{
(0, 2), if i is odd,
(2, 0), if i is even.

If k2 is even, then

hi =

{
(2, 0), if i is odd,
(0, 2), if i is even.

(i) The code C̃f generated by the matrix G̃ =

[
G

D̃

]
is a Type II Z4-code of length

2m.
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(ii) If m ≥ 5, then C̃f is a Type IV Z4-code.

(iii) Up to equivalence, C̃f does not depend on the choice of bent functions a and b.

Proof. (i) By Proposition 3.4, Cf is a self-orthogonal cyclic Z4-code generated by
cf . It is of type 422k2 and length 2m, and all its codewords have Euclidean weights
divisible by 8.

The first and the second row of the matrix G, namely g1 and g2, are the only
non-even rows in G.

Let d̃i be the i-th row of the matrix D̃. Then
〈
g1, d̃i

〉
= 0 and

〈
g2, d̃i

〉
= 0, for

all i = 1, . . . , k3. Therefore, C̃f is a self-orthogonal Z4-code of type 4
222

m−22 , i.e., C̃f

is a self-dual Z4-code.

Moreover, all rows in D̃ have Euclidean weight 8. It follows that Euclidean
weights of all codewords in C̃f are divisible by 8. We conclude that C̃f is a Type II
Z4-code of length 2m.

(ii) Let m ≥ 5 and let c ∈ C̃f . We have n1(c) + n3(c) ∈ {0, 2m−1, 2m}. The
Euclidean weight of c is divisible by 8. So n2(c) is an even number. It follows that c

has even Hamming weight. Therefore C̃f is a Type IV Z4-code for m ≥ 5.

(iii) Let
[
F Ĩ2

]
, where Ĩ2 =

[
1 1
0 1

]
be the generator matrix of the residue

code of C̃f . The number of Type II Z4-codes of type 4
222

m−22 with the same residue

code C̃f

(1)
is 22 (see [14], [22]). The generator matrices of these four codes could be

given in the form (see [22, Theorem 3])[
F Ĩ2 + 2B
2H O

]
,

where the possibilities for B are

[
0 1
1 0

]
,

[
0 1
1 1

]
,

[
1 1
1 0

]
and

[
1 1
1 1

]
, if

m = 3. If m ≥ 5, then the possibilities for B are

[
0 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
and[

1 0
0 1

]
. Therefore those four codes are equivalent for every m ≥ 3.

Example 3.8. The construction described in Theorem 3.7, when applied to the
codes Cf23 1

and Cf23 2
from Example 3.5, yields a code equivalent to K8

′, a unique
Type II Z4-code of length 8 and type 4224, whose permutation automorphism group
has size 1152 (see [8], [18]). According to [8], it was introduced by Klemm in [20].
Let WE

i and WL
i denote the number of codewords of Euclidean weight i and Lee

weight i in a Z4-code, respectively. The code K8
′ has Euclidean weight distribution

(WE
0 ,W

E
8 ,W

E
16,W

E
24,W

E
32) = (1, 140, 102, 12, 1).

Its Lee weight distribution is

(WL
0 ,W

L
4 ,W

L
6 ,W

L
8 ,W

L
10,W

L
12,W

L
16) = (1, 12, 64, 102, 64, 12, 1).
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In the sequel we will consider weight distributions for codes C̃f of length 2m for
odd m,m ≥ 3. By Ai we denote the number of codewords of weight i in a binary
code. It follows from the MacWilliams identity (see, for example, [19], p. 252.) that
the weight distribution (A0, . . . , An) of a binary linear [n, k] code and the weight
distribution (A′

0, . . . , A
′
n) of its dual code are connected by the equations

A′
j =

1

2k

n∑
i=0

Ai

j∑
l=0

(−1)l
(
i

l

)(
n− i

j − l

)
, j = 0, . . . , n. (3)

Lemma 3.9. Let C̃f be a Type II Z4-code of length 2m for odd m,m ≥ 3, con-

structed as in Theorem 3.7. Then the weight distribution of its torsion code C̃f

(2)
is

(A′
0, . . . , A

′
2m), where

A′
j =

1

2

((
2m

j

)
+

j∑
l=0

(−1)l
(
2m−1

l

)(
2m−1

j − l

))

for even j and A′
j = 0 for odd j, j = 0, . . . , 2m.

Proof. The Z4-code C̃f constructed as in Theorem 3.7 is a self-dual Z4-code. There-

fore the torsion code C̃f

(2)
is the dual code of C̃f

(1)
. Further, C̃f is a Type II Z4-code.

So C̃f

(2)
is an even binary code. By the construction, the residue code C̃f

(1)
con-

tains codewords of weights 0, 2m−1 and 2m with A0 = 1, A2m−1 = 2, A2m = 1. The
statement of the lemma follows from the expression (3).

Theorem 3.10. Let C̃f be a Type II Z4-code of length 2m for odd m,m ≥ 3, con-
structed as in Theorem 3.7, and let (A′

0, . . . , A
′
2m) be the weight distribution of its

torsion code C̃f

(2)
. Then:

(i) C̃f has Euclidean weight distribution (WE
0 , . . . ,W

E
2m+2) with WE

i = 0 for i �≡
0 (mod 8) and, for i divisible by 8, we have

WE
i = A′

i
4
+ si + ti,

(ii) the symmetrized weight enumerator of the code C̃f is

swe
˜Cf
(a, b, c) = s2mb

2m +

2m∑
i=0

(
A′

ia
2m−ici + t4ia

5·2m−3−ib2
m−1

ci−2m−3
)
,

(iii) if m ≥ 5, then C̃f has Lee weight distribution (WL
0 , . . . ,W

L
2m+1) with WL

i = 0
for i �≡ 0 (mod 4) and, for i divisible by 4, we have

WL
i = A′

i
2
+ si + ui,
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where

A′
j =

1

2

((
2m

j

)
+

j∑
l=0

(−1)l
(
2m−1

l

)(
2m−1

j − l

))
for even j and A′

j = 0 for odd j, j = 0, . . . , 2m, and

si =

{
22

m−2 if i = 2m,

0 otherwise;

ti =

{
22

m−1( 2m−1

(2i−2m)/8

)
if 2m−1 ≤ i ≤ 5 · 2m−1,

0 otherwise;

ui =

{
22

m−1( 2m−1

(2i−2m)/4

)
if 2m−1 ≤ i ≤ 3 · 2m−1,

0 otherwise.

Proof. The expression for (A′
0, . . . , A

′
2m) is determined by Lemma 3.9.

By Theorem 3.7, C̃f is a Type II Z4-code, i.e., all Euclidean weights are divisible

by 8. If m ≥ 5, then all Lee weights in C̃f are divisible by four.

Let G̃s be the generator matrix of C̃f in standard form. Denote by ri the i-th

row of G̃s, i = 1, . . . , 2m − 2. Note that the matrix B1 + 2B2 in (1) is of order 2.
Further, for m = 3, each of the rows r1 and r2 contains the number 2 exactly once,
and for m ≥ 5, there are no 2s in r1 and r2.

Let c ∈ C̃f . Then n1(c) + n3(c) ∈ {0, 2m−1, 2m} and

c = a1r1 + a2r2 +
2m−2∑
i=3

airi,

where a1, a2 ∈ Z4 and ai ∈ Z2 for i = 3, . . . , 2m − 2. The code C̃f contains exactly
22

m−2 codewords c with n1(c)+n3(c) = 0. These are the codewords with even a1 and

a2. Furthermore, C̃f contains exactly 22
m−2 codewords c with n1(c) + n3(c) = 2m.

These are the codewords with odd a1 and a2. Finally, C̃f contains exactly 22
m−1

codewords c with n1(c) + n3(c) = 2m−1. These are the codewords where one of the
elements in {a1, a2} is odd and the other is even.

The codewords c with n1(c) + n3(c) = 2m have Euclidean and Lee weight equal
to 2m.

Let c ∈ C̃f be a codeword with n1(c) + n3(c) = 2m−1. If m = 3, half of these
codewords have n2(c) = 1 and half of them have n2(c) = 3. If m ≥ 5, then n2(c) is
an even number, n2(c) ∈ {0, . . . , 2m−1}, and there are exactly

2 · 22m−1−1

(
2m−1

n2(c)

)
codewords with Euclidean weight 2m−1+4n2(c) and Lee weight 2m−1+2n2(c), for each
of these numbers n2(c). If a1 is odd, then the even codeword a2r2+

∑2m−2
i=3 airi has 2s
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on exactly n2(c) even coordinate positions and the remaining even number of 2s are
on odd coordinate positions. If a2 is odd, then the even codeword a1r1 +

∑2m−2
i=3 airi

has 2s on exactly n2(c) odd coordinate positions and the remaining even number of
2s are on even coordinate positions.

From these observations the weight distributions in (i) and (iii) are obtained.

For the coefficients of the symmetrized weight enumerator of C̃f , we count the
codewords c with n1(c) + n3(c) = 2m, the even codewords and the codewords c with

n1(c) + n3(c) = 2m−1 in C̃f .

3.2 Binary Type II self-dual codes

Self-dual codes over Z4 and their images under the Gray map are examined in [10].
According to [10], it is of interest to understand what the Gray map of a self-dual
code is and, especially, when its image is a self-dual code.

The Gray map φ : Zn
4 → F

2n
2 is the componentwise extension of the map ψ :

Z4 → F
2
2 defined by ψ(0) = (0, 0), ψ(1) = (0, 1), ψ(2) = (1, 1), ψ(3) = (1, 0). Note

that a Z4-code C and the corresponding binary code φ(C) have the same size and
that the Lee weight of a codeword x ∈ Z

n
4 is equal to the (Hamming) weight of its

Gray image φ(x).

If C is a Z4-code of length n, its Gray image φ(C) is a binary code of length
2n, which is in general nonlinear. However, the following theorem holds (see [4,
Theorem 8]).

Theorem 3.11. If C is a self-dual Z4-code with all Lee weights divisible by 4, then
the binary image of C under the Gray map is linear.

Moreover, according to [11, Proposition 2.6], the following statement holds.

Theorem 3.12. If C is a Type IV Z4-code then all the Lee weights of C are divisible
by 4 and its Gray image is a self-dual doubly even binary code.

If x, y ∈ Z
n
4 , we define xy as the componentwise product (x1y1, . . . , xnyn). Ac-

cording to [13], the following statement holds.

Lemma 3.13. Let C be a Z4-code of type 4k12k2. Let G be a generator matrix of C
in standard form and let gi, i ∈ {1, 2, . . . , k1 + k2}, be its i-th row. The binary code
φ(C) is linear if and only if for all i, j ∈ {1, . . . , k1} we have 2gigj ∈ C.

As a consequence of our previous observations we have the following corollaries.

Corollary 3.14. Let C̃f be a Type II Z4-code of length 2m for odd m, m ≥ 3,
constructed as in Theorem 3.7. Then:

(i) The Gray image φ(C̃f) is a self-dual binary code of length 2m+1. If m ≥ 5,

then φ(C̃f) is doubly even.
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(ii) The Gray image φ(Cf) is a self-orthogonal linear binary code of length 2m+1.
If m ≥ 5, then φ(Cf) is doubly even.

Proof. (i) According to Theorem 3.7, C̃f is a Type II Z4-code of length 2m and for

m ≥ 5, C̃f is a Type IV Z4-code. Moreover, for m = 3, a construction yields the
code K8

′ (see Examples 3.5 and 3.8). Its Gray image is an even [16, 8, 4] binary code.
Together with Theorem 3.12 this concludes the proof.

(ii) The code φ(Cf) is a subcode of the code φ(C̃f). Let G be a generator matrix of
Cf in standard form. Codewords g1 and g2 have alternating odd and even coordinates.
So, g1g2 is an even codeword. Then 2g1g2 is a codeword with all coordinates equal
to 0. It follows from Lemma 3.13 that φ(Cf) is linear. Therefore the statement
holds.

Corollary 3.15. Let C̃f be a Type IV-II Z4-code of length 2m for odd m, m ≥ 5, con-
structed as in Theorem 3.7, and let (A′

0, . . . , A
′
2m) be the weight distribution of its tor-

sion code C̃f

(2)
. Then the Gray image φ(C̃f) has weight distribution (W0, . . . ,W2m+1)

with Wi = 0 for i �≡ 0 (mod 4) and, for i divisible by 4, we have

Wi = A′
i
2
+ si + ui,

where

si =

{
22

m−2 if i = 2m,

0 otherwise
,

ui =

{
22

m−1( 2m−1

(2i−2m)/4

)
if 2m−1 ≤ i ≤ 3 · 2m−1,

0 otherwise.
.

Proof. This follows directly from Theorem 3.10 (iii).

3.3 On minimum weight codewords

In the study of the properties of codes, one of the desirable properties is the possible
connection to various combinatorial objects, which is sometimes realized in such a
way that supports of the minimum weight codewords of the code correspond to the
blocks of a design (see [28]). An incidence structure D = (P,B, I), with point set
P, block set B and incidence I is a t-(v, k, λ) design, if |P| = v, every block B ∈ B
is incident with precisely k points, and every t distinct points are together incident
with precisely λ blocks. We assume that the reader is familiar with the basic facts
of design theory (see, for example, [1], [7]).

In previous sections we constructed codes Cf , C̃f and φ(C̃f) for m = 3. In
this section we give an example for m = 5. We also observe the minimum weight
codewords and their relation with combinatorial designs.
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Example 3.16. Let (a, b) = (x1x2 + x1x3 + x2x4, x1x2 + x3x4) be a pair of bent
functions a, b : F4

2 → F2. From this pair, we constructed the gbent function f25 as
described in Theorem 3.1. Further, the codeword

cf25 = (0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 0, 3, 0, 3, 2, 1)

is constructed as in Lemma 3.2. The self-orthogonal Z4-code Cf25
, constructed by

Proposition 3.4, is of type 42221, its dual C⊥
f25

is of type 49221 and its Gray image is

a doubly even [64, 25, 4] binary code. The permutation automorphism group of Cf25

is of order 9 663 676 416.

The Z4-code Cf25
has dH(Cf25

) = 2, dL(Cf25
) = 4 and dE(Cf25

) = 8, and the
sets of minimum weight codewords are the same for all three weights. The supports
of these codewords form a resolvable 1-(32, 2, 1) design with 16 blocks and block
intersection number 0. So the minimum weight codewords of its Gray image yield a
resolvable 1-(64, 4, 1) design.

For C⊥
f25

, we have dH(C
⊥
f25

) = 2, dL(C
⊥
f25

) = 4 and dE(C
⊥
f25

) = 8. The sets
of minimum weight codewords are the same for Hamming and Lee weight. The
codewords of minimum Euclidean weight have Lee weight equal to 4, 6 or 8. The
supports of the codewords with Euclidean weight and Lee weight equal to 8 form a
1-(32, 8, 7) design with 28 blocks and block intersection numbers 0 and 4. This design
is a (4, 7; 2)-net, i.e., an affine resolvable 1-design. Its block intersection graph G0 is
a strongly regular graph with parameters (28, 15, 6, 10). Affine resolvable 1-designs
are important due to their connection with orthogonal arrays and partial geometries
(see [7]).

Remark 3.17. In a similar way to Example 3.16, for m = 3 one can obtain that
the supports of the codewords of minimum Euclidean weight form a 1-(8, 4, 2) design
with 4 blocks and block intersection numbers 0 and 2. This is a (2, 2; 2)-net, i.e.,
an affine resolvable 1-design. Because of the computational complexity, it is out of
our reach to analyze minimum weight codewords in the case m ≥ 7. However, for
m = 7 and (a, b) = (x1x4 + x2x5 + x3x6, x1x4 + x2x5 + x3x6 + x1x2x3), we calculated
dE(C

⊥
f27

) = 8 from the minimum weight of the corresponding residue and torsion

code. So the supports of the codewords with minimum Euclidean weight in C⊥
f27

cannot form a net.

Observing the minimum weight codewords in the torsion code C̃f

(2)
, for odd m,

m ≥ 3, we obtain that the supports of the minimum weight codewords split into
2-sets which forms a resolvable 1-design, as given in the following remark.

Remark 3.18. Let C̃f be a Type II Z4-code of length 2m for odd m, m ≥ 3,
constructed as in Theorem 3.7. Let {i, j}, i < j, be a support of a minimum weight

codeword in C̃f

(2)
. Then j − i has to be an even number because C̃f

(2)
is the dual

code of C̃f

(1)
. So the supports {i, j} ⊆ {1, . . . , 2m}, i < j, of the minimum weight

codewords in C̃f

(2)
are divided into 2m

4
= 2m−2 classes:

M(k) = {{i, j} : j − i = k or j − i = 2m − k},
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where k ∈ {2, 4, . . . , 2m−1 − 2}, and

M (
2m−1

)
=
{{i, j} : j − i = 2m−1

}
.

Now C̃f

(2)
is cyclic. So the class M(k), k ∈ {2, 4, . . . , 2m−1 − 2}, consists of 2m

supports and every coordinate position occurs in exactly two supports in the class.
The class M(2m−1) consists of 2m−1 supports and every coordinate position occurs
in exactly one of the supports. So the set

M(2) ∪ · · · ∪M (
2m−1 − 2

) ∪M (
2m−1

)
is the set of the blocks of a 1-(2m, 2, 2m−1 − 1) design with 2m−1(2m−1 − 1) blocks.
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