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Abstract

We discuss packing permutation patterns into two specific subsets of
words on {1, 1, 2, 2, . . . , n, n}, i.e. those of the form ππr and those of
the form ππ for some permutation π. In both cases we answer a number
of related enumeration questions for packing patterns of length at most 4.

1 Introduction

Let Sn be the set of all permutations on [n] = {1, 2, . . . , n}. A permutation π ∈ Sn

may be viewed as a bijection on [n]. When we graph the points (i, πi) in the Cartesian
plane, all points lie in the square [1, n] × [1, n], and thus we may apply various
symmetries of the square to obtain involutions on the set Sn. For π ∈ Sn, let
πr = πn · · ·π1 and let πc = (n+1− π1) · · · (n+1− πn), the reverse and complement
of π respectively. For example, the graphs of π = 2431, πr = 1342, and πc = 3124
are shown in Figure 1. Two common permutations are the increasing permutation
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π = 2431 πr = 1342 πc = 3124

Figure 1: The graphs of π = 2431, πr = 1342, and πc = 3124

of length m, denoted Im, and the decreasing permutation of length m, denoted Jm.
Notice that Irm = Icm = Jm.

Two common permutation constructions will be useful throughout this paper.
Given π ∈ Sa and τ ∈ Sb, we define π ⊕ τ ∈ Sa+b to be the permutation where

(π ⊕ τ)i =

{
πi 1 ≤ i ≤ a

a + τi−a a + 1 ≤ i ≤ a + b

and π � τ ∈ Sa+b to be the permutation where

(π � τ)i =

{
b+ πi 1 ≤ i ≤ a

τi−a a+ 1 ≤ i ≤ a+ b
.

The permutation π⊕ τ is known as the sum of π and τ , while π� τ is known as the
skew-sum of π and τ .

We are interested in the notion of patterns in permutations and words. Given a
word (i.e. multiset permutation) w = w1 · · ·wn and ρ ∈ Sm we say that w contains
ρ as a pattern if there exist i1, i2, . . . , im and n such that 1 ≤ i1 < i2 < · · · < im ≤ n
and wia < wib if and only if ρa < ρb. In this case we say that wi1 · · ·wim is order-
isomorphic to ρ, and that wi1 · · ·wim is an occurrence of ρ in w. If w does not contain
ρ, then we say that w avoids ρ. Of particular interest are the sets Sn(ρ) = {π ∈ Sn |
π avoids ρ}. Let sn(ρ) = |Sn(ρ)|. It is well known that sn(ρ) =

(2nn )
n+1

for ρ ∈ S3 (see
[11]), while enumeration is much more difficult for patterns ρ of length 4 or more. One
of the oldest results in the area of pattern avoidance is the Erdős-Szekeres Theorem:

Theorem 1.1 (Erdős-Szekeres [8]). Every permutation of length at least
(a− 1)(b− 1) + 1 must contain either the pattern Ia or the pattern Jb.

Pattern-avoidance has been considered in permutations and in words with specific
symmetries. For example, Ferrari [9] studied pattern avoidance in centrosymmetric
words. Cratty, Erickson, Negassi, and Pudwell [7] defined the set of double lists on
n letters to be

Dn = {ππ | π ∈ Sn}
and completely characterized the members of Dn that avoid a given permutation
pattern of length at most 4. More recently, Anderson, Diepenbroek, Pudwell, and
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Stoll [2] defined the set of reverse double lists on n letters to be

Rn = {ππr | π ∈ Sn},
completely characterized members of Rn that avoid a given pattern of length at
most 4, and analyzed a number of special cases for longer patterns. In each of these
situations, the added structure in the words under consideration allows for a more
specific analysis than the general case.

In this paper we are concerned with a complementary optimization problem. In
particular, let ν(ρ, w) be the number of occurrences of ρ in word w, let A be an
infinite family of words, and let An be the members of A of length n. We define

μAn(ρ) = max
w∈An

ν(ρ, w)

and

dA(ρ) = lim
n→∞

maxw∈An ν(ρ, w)(
n
|ρ|
) .

Any permutation (or word) in An that achieves μAn(ρ) is said to be ρ-optimal.

When we focus on the case of packing patterns into permutations,

d(ρ) = lim
n→∞

maxw∈Sn ν(ρ, w)(
n
|ρ|
)

is known as the (classical) packing density of ρ. It is known that d(12 · · ·m) = 1 and
d(132) = 2

√
3− 3. In fact, if ρ is layered (i.e., if ρ ∈ Sn(231, 312)), then there exists

a layered ρ-optimizer in Sn. Price [12] determined the packing densities of 1432 and
2143, while Albert et al. [1] determined the packing density of 1243. There still
remain a number of open packing densities for ρ ∈ Sm, m ≥ 4 with partial progress
[4, 10, 16, 17, 18]. In addition other researchers have considered packing patterns
into words [3, 6]. In particular, Burstein, Hästö, and Mansour determined specific
packing densities when ρ ∈ S3 and An = [k]n.

Rather than packing patterns into any word in [k]n, we are concerned with words
that have specific substructures. In particular, we will pack patterns into the sets Dn

and Rn described above. In Section 2, we determine an upper bound on μRn(ρ) that
is independent of ρ and characterize the patterns ρ for which this bound is sharp.
We also consider the sequences μRn(ρ) for specific patterns ρ that fall short of the
upper bound. In all cases we also analyze the structure of ρ-optimal members of
Rn. In Section 3, we answer analogous questions for packing patterns into Dn. We
conclude with a summary of remaining opening questions.

2 Packing into Reverse Double Lists

In this section, we consider the sequence μRn(ρ) for various patterns ρ. Notice that if
w = ππr contains k copies of ρ, then by symmetry, wr = (ππr)r = ππr = w contains
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k copies of ρr and wc = πcπrc contains k copies of ρc, so μRn(ρ) = μRn(ρ
r) = μRn(ρ

c)
for all permutations ρ and all n ≥ 0. When μRn(ρ) = μRn(ρ

′) for all n ≥ 0, we say
that ρ and ρ′ are Wilf-equivalent.

Before we consider specific cases, we begin with an upper bound on the number
of times any permutation pattern can be packed into a reverse double list.

Theorem 2.1. Suppose ρ ∈ Sm. Then

μRn(ρ) ≤ 2

(
n

m

)
.

Proof. Suppose w ∈ Rn. There are exactly
(
n
m

)
ways to choose a collection of m

distinct letters in w. We claim that for any collection of m distinct letters in w,
there are exactly zero or two copies of ρ in w using that alphabet.

Consider a copy of ρ in w using the alphabet a1, . . . , am. Further, suppose that
wi1wi2 · · ·wim is the copy of ρ in w that uses the earliest possible copy of each of the
letters a1, . . . , am that form a ρ pattern and that ij = n− e is the largest index such
that ij ≤ n. Then wi1 · · ·wij−1

wn+e+1wij+1
· · ·wim is the only other possible copy of

ρ using this alphabet. To check, notice that choosing to use the other copy wi� for
i� > ij violates the idea that wi1wi2 · · ·wim uses the earliest possible copy of each
letter that can be used to form a ρ pattern from this alphabet. Choosing to use the
other copy of wi� for i� < ij forms a subword that is no longer order-isomorphic to
ρ since these letters wi� and wij will be transposed in the new subword. Similarly,
choosing multiple letters from π to replace with their copies in πr transposes those
letters in the chosen subword and no longer forms a ρ pattern. So, for any alphabet
a1, . . . , am, there are either zero copies or two copies of ρ in w using that alphabet.

Now that we have an upper bound on μRn(ρ), we consider which patterns ρ
achieve this upper bound. We refer to any pattern ρ ∈ Sm for which μRn(ρ) = 2

(
n
m

)
as maximal. To characterize maximal patterns, recall that a peak of permutation
ρ ∈ Sm is a position 1 < i < m such that ρi−1 < ρi > ρi+1, and a valley is a position
1 < i < m such that ρi−1 > ρi < ρi+1. Let pk(ρ) denote the number of peaks of ρ
and let vl(ρ) denote the number of valleys of ρ. Together, we refer to any position
that is a peak or a valley as an extreme point.

Theorem 2.2. Let ρ ∈ Sm. μRn(ρ) = 2
(
n
m

)
for all n ≥ m if and only if pk(ρ) +

vl(ρ) ≤ 1.

Proof. First, assume that pk(ρ) + vl(ρ) ≤ 1. If vl(ρ) = 0, it is easy to check that
there are 2

(
n
m

)
copies of ρ in the word InJn. If vl(ρ) = 1, there are 2

(
n
m

)
copies of ρ

in the word JnIn.

On the other hand, assume that pk(ρ) + vl(ρ) ≥ 2. Since peaks and valleys
alternate in a permutation that means there is at least one peak and at least one
valley.
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Now, suppose n ≥ (m − 1)2 + 1. This implies that π = w1 · · ·wn has either an
increasing subsequence of length m or a decreasing subsequence of length m by the
Erdős-Szekeres Theorem. If we focus on the digits forming such a monotone sequence
of length m in π, then in ππr they form a subsequence of the form ImJm or JmIm. In
either case, this subsequence has only one extreme point and therefore cannot have
a ρ subsequence. Since there exists at least one collection of m letters chosen from
{1, 2, . . . , n} that does not form a ρ pattern, it must be the case that μRn(ρ) < 2

(
n
m

)
and therefore ρ is not maximal.

By Theorem 2.2, every permutation of length m ≤ 3 is maximal. This implies
that for ρ ∈ Sm with m ≤ 3, μRn(ρ) = 2

(
n
m

)
and

dRn(ρ) = lim
n→∞

2
(
n
m

)
(
2n
m

) =
1

2m−1
.

Notice that ρ-optimal members of Rn are not unique. In fact, as shown in The-
orem 2.3, for ρ ∈ {1, 12, 21}, every member of Rn is ρ-optimal. More generally,
if n ≥ 2, there are at least two ρ-optimal members of Rn for any ρ, as shown in
Theorem 2.4.

Theorem 2.3. Let ρ ∈ {1, 12, 21}. Then every member of Rn is ρ-optimal.

Proof. For ρ = 1, every digit of w = ππr ∈ Rn is a ρ pattern, and w = ππr contains
2n copies of ρ, for any underlying permutation π.

For ρ = 12, consider two distinct digits x and y of π and assume that x < y.
Either x and y form an xyyx subword or a yxxy subword in w = ππr. In the first
case, the first occurrence of x together with either y forms a 12 pattern. In the
second case, either x together with the second occurrence of y forms a 12 pattern.
Therefore, no matter the particular permutation π, for each of the

(
n
2

)
ways to choose

two letters of π we get two copies of 12, for a total of 2
(
n
2

)
copies of 12.

Since 21 = 12r, every word in Rn is also 21-optimal.

Theorem 2.4. Let n ≥ m ≥ 2, ρ ∈ Sm, and π = τxy ∈ Sn. If w = τxyyxτ r is
ρ-optimal then w′ = τyxxyτ r is ρ-optimal.

Proof. We wish to show that there is a bijection between copies of ρ in w and copies
of ρ in w′. Consider an occurrence of ρ in w.

If neither x nor y is involved in the occurrence, then the occurrence is also in
w′. If exactly one of x or y is involved, then the occurrence is also in w′. If both x
and y are involved, they form either a 12 or a 21 pattern. As we saw in the proof of
Theorem 2.3 there are exactly two copies of 12 (resp. 21) in xyyx and exactly two
copies of 12 (resp. 21) in yxxy. In either case, there are two copies of ρ in w using
the particular collection of x, y and m− 2 other letters, and there are two copies of
ρ in w′ using the same collection of letters.
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As a consequence of Theorem 2.4, we know that for any ρ ∈ Sm and n ≥ 2, the
number of ρ-optimal words in Rn is even. In the case where ρ = Im, we can say even
more.

Theorem 2.5. The word w = ππr ∈ Rn is Im-optimal for all m ≤ n if and only if
π avoids both 213 and 231.

Proof. By Theorem 2.2, a Im-optimal word in Rn contains 2
(
n
m

)
copies of 12 · · ·m.

In other words, there are two copies of Im for each collection of m distinct letters in
{1, 2, . . . , n}.

Suppose that π avoids both 213 and 231. Then for 1 ≤ i ≤ n − 1, either
πi = maxj≥i πj or πi = minj≥i πj . Now, consider a collection of m distinct letters
in {1, 2, . . . , n} and let πk be the letter from this collection closest to the end of π.
We can form a copy of Im in the following way: if πi < πk choose its instance in
π. If πi > πk, choose its instance in πr. If πi = πk, we can choose either instance.
Therefore, w has 2

(
n
m

)
copies of Im, and so w is ρ-optimal.

On the other hand, suppose that π contains either a 213 pattern or a 231 pattern
using the digits πi, πj , and πk with i < j < k. In any collection of m letters that
includes πi, πj, and πk, these three letters appear in the order πiπjπkπkπjπi. However,
if we are to form a copy of Im, we need πi to appear between copies of πj and πk.
Therefore, there is no Im pattern in w that uses this collection of m letters and w is
not ρ-optimal.

Corollary 2.1. For n ≥ m ≥ 2, there are 2n−1 Im-optimal members of Rn.

Proof. We know w = ππr ∈ Rn is Im-optimal if and only if π avoids both 213 and
231. This enumeration follows either from the description in the proof of Theorem
2.5 or similarly from Proposition 12 of [14].

As an example, there are 23 = 8 members of R4 that are Im-optimal for m ≤ 4.
They are 12344321, 12433421, 14233241, 14322341, 41233214, 41322314, 43122134,
43211234. For instance, 14233241 has 2

(
4
3

)
= 8 copies of 123: two using each possible

collection of 3 distinct digits.

At this point, we have completely characterized maximal patterns of any length
and enumerated Im-optimal words. The situation for other patterns is more complex.
The smallest non-maximal patterns are of length 4. By symmetry of reverse and
complement, we may partition S4 into eight Wilf classes, where members of the
same class are guaranteed to give the same values for μRn(ρ). One representative of
each class is: 1234, 1243, 1324, 1342, 1423, 1432, 2143, and 2413. By Theorem 2.2,
four of these patterns (1234, 1243, 1342, and 1432) are maximal and four are not. A
summary of values of μRn(ρ) and dRn(ρ) for each of these cases is given in Table 1.

2.1 Non-monotone maximal patterns of length 4

By Theorem 2.2, the non-monotone maximal patterns of length 4 are 1243, 1342,
and 1432. By definition of maximal, if ρ is one of these three patterns, there are 2

(
n
4

)
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Pattern ρ μRn(ρ) dRn(ρ)
number of
ρ-optimal

words in Rn

1234 2
(
n
4

)
1
8

2n−1

1243 2
(
n
4

)
1
8

4

1342 2
(
n
4

)
1
8

2Fn

1432 2
(
n
4

)
1
8

4(n− 2)

2143 (degree 4 quasi-polynomial) 3
32

2(�
n
2
	+1)

1423 2, 10, 28, 60, 110, . . . (open) > 0.071892
1324 2, 10, 26, 54, 102, . . . (open)
2413 2, 8, 22, 48, 92, . . . (open)

Table 1: Packing data for patterns of length 4 embedded in Rn

copies of ρ in any ρ-optimal word w ∈ Rn. However, this does not tell us what the
ρ-optimal words look like. We consider each of these patterns in turn.

Theorem 2.6. For n ≥ 5, w = ππr ∈ Rn is 1243-optimal if and only if π ∈
{In, In−2 ⊕ J2, In−3 ⊕ 213, In−3 ⊕ 231}.

Proof. It is straightforward to check that if

π ∈ {In, In−2 ⊕ J2, In−3 ⊕ 213, In−3 ⊕ 231} ,
then for any subset of four letters {a, b, c, d} ⊆ {1, 2, . . . , n}, there is a 1243-pattern
in ππr using the chosen letters a, b, c, and d.

Now, suppose that w = ππr is 1243-optimal. Then any collection of four letters
chosen from {1, 2, . . . , n} must produce a 1243 pattern. We see that πi 	= n for
1 ≤ i ≤ n − 3 since otherwise the subword nπn−2πn−1πnπnπn−1πn−2n has no 1243
pattern. We can further rule out the possibility that πn−2 = n. On the one hand, for
any j < n − 2, the subword πjnπn−1πnπnπn−1nπj must have a 1243 pattern which
uses πj playing the role of 3. This implies that {πn−1, πn} = {1, 2}. But now, the
subword π1π2nπnπnnπ2π1 has no 1243 pattern. We see that n must play the role of 4
since it is the largest digit and πn must play the role of 1 since it is the smallest digit
in the subword, but there is no digit between them to play the role of 2. Therefore
either πn = n or πn−1 = n.

In the case where πn = n, any collection of four digits including n draws a 1243
pattern from taking its smaller two digits in increasing order from π and its remaining
digit from πr. This implies that π = In or π = In−3 ⊕ 213.

In the case where πn = n− 1, the subword formed by all copies of any collection
of four digits including n and πn should form a 1243 pattern. If πn ≤ n − 3, then
the word πiπjnπnπnnπjπi has no 1243 pattern since πn must play the role of 1, n
must play the role of 4, and there is no digit between them to play the role of 2.
This implies either πn = n − 1 or πn = n − 2. If πn = n − 1, then in order for
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πiπjnπnπnnπjπi to have a 1243 pattern for every 1 ≤ i < j ≤ n− 2, we have π1 < π2

so that π1 and π2 can play the roles of 1 and 2. By a similar analysis, if πn = n− 2,
then πn−2 = n− 1 and π = In−3 ⊕ 231.

We have now exhausted all possible options to form a 1243-optimal word in Rn.

Corollary 2.2. For n ≥ 5, there are four 1243-optimal members of Rn.

Theorem 2.7. If n ≥ 5, then w = ππr ∈ Rn is 1342-optimal if and only if π ∈
Sn(231, 312, 321) or π1 · · ·πn−2πnπn−1 ∈ Sn(231, 312, 321).

Proof. First, we show that π ∈ Sn(231, 312, 321) implies ππr is 1342-optimal. It is
known that if π ∈ Sn(231, 312, 321), then π = 1 ⊕ π′ where π′ ∈ Sn−1(231, 312, 321)
or π = J2 ⊕ π′ where π′ ∈ Sn−2(231, 312, 321). In other words, π ∈ Sn(231, 312, 321)
if and only if π is a layered permutation with all layers of size 1 or 2. Now consider
a collection of four letters {a, b, c, d} ⊂ {1, 2, . . . , n} where a < b < c < d. We may
always find a 1342 pattern composed of the digits a, b, c, d in ππr by taking a and c
from π and b from πr. If c and d are in different layers, then we may take d from
π. If d and c are in the same layer, then we may take d from πr. By Theorem 2.4,
if ππr is ρ-optimal then π̂π̂r is ρ-optimal where π̂ = π1 · · ·πn−2πnπn−1, so all words
described in the theorem statement are indeed 1342-optimal.

Now, for the converse, we suppose that ππr is 1342-optimal. First, we know that
πi 	= n for i ≤ n − 3 since the word nπn−2πn−1πnπnπn−1πn−2n has no 1342 pattern.
So it must be the case that if ππr is 1342-optimal, then n is among the final three
digits of π. In fact, πn−2 = n is impossible. In order for πjnπn−1πnπnπn−1nπj to
contain a 1342 pattern for all j < n− 2, it must be the case that the second n plays
the role of 4 and πj plays the role of 2 so {πn−1, πn} = {1, n − 1}. However, now
consider a collection of four digits that include 1 and n but not n− 1. We must use
n to play the role of 4 in 1342, but there is no digit between 1 and n to play the role
of 3. Therefore n must be one of the last two digits of π.

Suppose ππr is 1342-optimal but π contains 312 or 321. Since πn−1 = n or
πn = n, the digits πi < πj < πk in this pattern do not include n. Consider n together
with these three digits. We either have a subword of the form πkπiπjnnπjπiπk,
πkπjπinnπiπjπk, πkπinπjπjnπiπk or πkπjnπiπinπjπk. In any case, the digits πi and
n must play the roles of 1 and 4 respectively in a 1342 pattern and πk must play
the role of 3. However, πk is the first (and last) digit in each subword, rather than
appearing between a copy of πi and a copy of n. Therefore if ππr is 1342-optimal, π
avoids 321 and 321.

Suppose ππr is 1342-optimal but π contains 231. If this copy of 231 does not
involve the digit n, then the digits that form the 231 pattern together with n (which
is either πn−1 or πn) form a subword that avoids 1342, so the 231 must use πn−1 = n
playing the role of 3. Now, suppose πn < n − 2. In this case, the digits (n − 2),
(n− 1), n, and πn form a subword that avoids 1342 since the roles of 1 and n must
be played by πn and n respectively and there is no digit between them to play the
role of a 3. Therefore, if there is a 231 pattern in π, it is formed with πn−1 = n and
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πn = n− 2. Finally, suppose πn−2 	= n − 1. Then n − 1, πn−2, n and n − 2 form a
word that is order-isomorphic to 31422413, which has no copy of 1342. Therefore, if
ππr is 1342-optimal and π contains 231, the sole copy of 231 is formed by the digits
n − 1, n, and n − 2 in the final three positions of π. However, transposing the last
two digits forms a pattern that avoids 231, 312, and 321.

Corollary 2.3. For n ≥ 5, there are 2Fn 1342-optimal members of Rn where Fn is
the nth Fibonacci number with F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Proof. We have seen that if w = ππr is 1342-optimal, then either π∈Sn(231, 312, 321)
or π1 · · ·πn−2πnπn−1 ∈ Sn(231, 312, 321) (or both).

In the first case, π ∈ Sn(231, 312, 321) if and only if π consists of a direct sum
of 1 and 21 permutations, which implies |Sn(231, 312, 321)| follows the Fibonacci
recurrence. We know that |S1(231, 312, 321)| = 1 and |S2(231, 312, 321)| = 2, so
|Sn(231, 312, 321)| = Fn+1.

In the second case, if π1 · · ·πn−2πnπn−1 ends with one layer of size 2, π ∈
Sn(231, 312, 321) ends in two layers of size 1, so it has already been counted in the first
case. If π1 · · ·πn−2πnπn−1 ends with two layers of size 1, then π ∈ Sn(231, 312, 321)
ends in a layer of size 2, so it has also already been counted in the first case. How-
ever, we may also have the situation that π1 · · ·πn−2πnπn−1 ends with a layer of size
2 followed by a layer of size 1. In this case πn−2πn−1πn forms 231 pattern using the
largest three digits, but π1 · · ·πn−3 ∈ Sn−3(231, 312, 321), and so the number of such
permutations in case 2 but not case 1 is given by Fn−2.

Using the Fibonacci recurrence, we have a total of Fn+1 + Fn−2 = (Fn + Fn−1) +
Fn−2 = Fn + (Fn−1 + Fn−2) = 2Fn 1342-optimal words in Rn.

Theorem 2.8. If n ≥ 5, then w = ππr ∈ Rn is 1432-optimal if and only if π has
one of the following forms:

• 23 · · ·n1
• 23 · · · (n− 2)1(n− 1)n

• 23 · · · (n− 1)1n

• 23 · · · (n− 2)1n(n− 1)

• σ ⊕ τ where τ ∈ {123, 132, 312, 321} and σ is any of the n − 3 permutations
that reduces to In−4 when the digit 1 is removed.

Proof. One can check by brute force that if π has one of the forms in the theorem
statement, then ππr has a 1432 pattern using any selection of four digits. Therefore
each of these permutations forms the first half of a 1432-optimal reverse double list.

Now, suppose that w = ππr is ρ-optimal. First consider the digits n − 2, n − 1
and n. In a copy of 1432 that uses all three of these digits, these three letters must
play the role of 4, 3, and 2; however, if n− 1 appears first these three digits form a
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subword order-isomorphic to 213312 or 231132 which has no 321 pattern. Therefore,
of the digits n − 2, n − 1, and n, either the digit n − 2 or the digit n appears first
in π.

Now, consider the placement of 1 relative to n− 2, n− 1, and n in π.

If 1 appears after n, then any copy of 1432 in w involving both 1 and n must use
the copy of n from πr, and so all other digits must appear in decreasing order after
n in πr, which means they appear in increasing order before n in π. This results in
the situation where π = 23 · · ·n1.

If 1 appears before n but after n−2, then the digits n−2, n−1, and n may be in
the order (n− 2)(n− 1)n or (n− 2)n(n− 1). There are three possible arrangements
of the four digits 1, n− 2, n− 1, and n, namely (n− 2)1(n− 1)n, (n− 2)(n− 1)1n,
and (n − 2)1n(n − 1). In all three arrangements, any copy of 1432 that uses 1
as its smallest digit and n − 2 as its largest digit must take n − 2 from πr. This
implies that the digits 2, 3, . . . , n − 3 appear in decreasing order after n − 2 in πr,
which means they must appear in increasing order before n− 2 in π. This results in
π = 23 · · · (n− 2)1(n− 1)n, π = 23 · · · (n− 1)1n, or π = 23 · · · (n− 2)1n(n− 1).

If 1 appears before both n and n− 2, again, let b = n− 2 if n− 2 appears before
n in π, and let b = n if n appears before n − 2 in π. Consider the subword formed
by the digits 1, n− 2, n− 1, and n. Any copy of 1432 using 1 as the smallest digit
and b as the largest digit must use the copy of b in πr which implies all smaller digits
appear in decreasing order after b in πr, or equivalently they appear in increasing
order before b in πr. This implies that π = σ ⊕ τ where τ ∈ {123, 132, 312, 321}
and σ is any of the n − 3 permutations that reduces to In−4 when the digit 1 is
removed.

Corollary 2.4. For n ≥ 5, there are 4(n− 2) 1432-optimal members of Rn.

Proof. When w = ππr is 1432-optimal, we have 4 possible permutations where 1
appears among the last three digits. Otherwise, the location of 1 uniquely determines
the first n− 3 digits of the permutation, and there are four options for the order of
the last three digits.

This yields a total of 4 + 4(n− 3) = 4(n− 2) 1432-optimal members of Rn.

2.2 Non-maximal patterns of length 4

Recall that there are four non-maximal patterns of length 4. They are 2143, 1423,
1324, and 2413. In this section we completely characterize 2143-optimal members of
Rn and give a lower bound on dRn(1423).

In Theorem 2.9, we will determine the maximum number of copies of 2143 in a
reverse double list, but first we we need an additional definition. Given a permutation
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π′ ∈ Sn−1 define insi(π
′) as the permutation π such that

πj =

⎧⎪⎨
⎪⎩
i j = 1,

π′
j−1 j > 1 and π′

j−1 < i,

π′
j−1 + 1 j > 1 and π′

j−1 ≥ i.

In other words, insi(π
′) inserts the number i at the beginning of π′, incrementing

numbers larger than i accordingly.

Consider the word w
(n) = π(n)π(n)r ∈ Rn defined recursively as follows:
π(1) = 1. Otherwise, if n is even, π(n) = insn

2
(π(n − 1)) and if n is odd, π(n) =

insn+1
2
(π(n− 1))

The graph of w
(11) is given in Figure 2. In general this construction results in
π(n) being a permutation of length n that alternates between an increasing sequence
formed by the largest digits and a decreasing sequence formed by the smallest digits,
so the word w
(n) has a diamond shape.

Figure 2: A 2143-optimal member of Rn

Theorem 2.9. For n ≥ 4,

μRn(2143) =

⎧⎪⎨
⎪⎩
(3n2 − 8n− 4)(n− 2)n

48
n even,

(3n− 5)(n− 3)(n2 − 1)

48
n odd,

and w
(n) ∈ Rn is one 2143-optimal word that achieves this number of copies.

Proof. We claim that for n ≥ 4, w
(n) is 2143-optimal among words in Rn.

We can check computationally that this is true for n = 4 and n = 5. w
(4) =
23144132 has two copies of 2143, as desired, and w
(5) = 3241551423 has ten copies
of 2143. These are indeed 2143-optimal words since every collection of four digits
produces two copies of 2143.

We proceed by induction, assuming that w
(n− 1) is 2143-optimal and showing
that w
(n) is also 2143-optimal.

Now consider a 2143-optimal word w = ππr by focusing on its first digit. There
are two cases: either the first digit is involved in the 2143 pattern or it is not.
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We first seek to maximize the number of copies of 2143 using the first digit of w.
Notice that this digit can only appear in a 2143 pattern as the first (or last) digit of
the pattern, so it can only play the role of 2 or 3.

In w
(n) we see that the first digit is involved in a 2143 pattern using every
combination of letters where it is not the smallest or the largest (take the smaller
two digits from π(n) and the larger two from π(n)r). We further know that the
number of copies of 2143 not involving the first digit is maximized because these
digits form w
(n− 1).

It remains to show that the first digit has been chosen so that the number of
size 4 subsets of {1, 2, . . . , n} using the first digit as it smallest or largest has been
minimized. If the first digit of w is a, there are

(
a−1
3

)
size 4 subsets where a is largest

and there are
(
n−a
3

)
size 4 subsets where a is smallest. The quantity

(
a−1
3

)
+
(
n−a
3

)
is

minimized when n = 2a− 1, or a = n+1
2
, which is exactly what we have chosen our

first digit to be in the case when n is odd. When n is even, a is chosen to be the
nearest integer to n+1

2
.

Now that we know w
(n) is 2143-optimal, we consider the number of copies of
2143 in w
(n). There are μRn−1(2143) copies of 2143 not involving the first digit of
the word. While there are

(
n−1
3

)
possible collections of four digits including the first

digit of the word, we have seen that when n is even,
(n

2
−1
3

)
+
(
n−n

2
3

)
of them do not

produce a 2143 pattern. Therefore
(
n−1
3

)−((n
2
−1
3

)
+
(
n−n

2
3

))
collections do, and each

of them produce two copies, which simplifies to n(n−2)(n−3)
4

copies of 2143 involving

w
(n)1. When n is odd,
(n+1

2
−1

3

)
+
(
n−n+1

2
3

)
collections of four digits involving the

first digit do not produce a 2143 pattern. Therefore
(
n−1
3

) − ((n+1
2

−1
3

)
+
(
n−n+1

2
3

))
collections do, and each of them produce two copies, which simplifies to (n−1)2(n−3)

4

copies of 2143 involving w
(n)1.

Together, we have:

μRn(2143) =

⎧⎪⎨
⎪⎩
2
(
n
4

)
n ≤ 5,

μRn−1(2143) +
n(n−2)(n−3)

4
n even and n > 5,

μRn−1(2143) +
(n−1)2(n−3)

4
n odd and n > 5.

It can be verified algebraically that the quasi-polynomial in the theorem statement
uniquely satisfies this recurrence.

Corollary 2.5. For n ≥ 4, there are 2(�
n
2
	+1) 2143-optimal members of Rn.

Proof. We proceed by induction.

For n = 4, by brute force, there are 23 = 8 reverse double lists with two copies
of 2143. They are 21344312, 21433412, 23144132, 23411432, 32144123, 32411423,
34122143, and 34211243.

Further, we will say a reverse double list w = ππr on n letters has the diamond
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property if its smallest �n
2
� digits appear in decreasing order in π and its largest �n

2
�

digits appear in increasing order in π. By Theorem 2.4, if τxyyxτ r is ρ-optimal, so
is τyxxyτ r. If τxyyxτ r has the diamond property but τyxxyτ r does not, we will say
τyxxyτ r has the near-diamond property. Notice that each of the 2143-optimal words
on four letters either has the diamond property or the near-diamond property.

Now suppose there are 2(�
n
2
	+1) 2143-optimal members of Rn. Suppose further

that each of these words has the diamond property or the near-diamond property.
We are ready to consider the 2143-optimal members of Rn+1.

Notice that any copy of 2143 in w = ππr ∈ Rn+1 either uses the digit π1 or it
does not. The maximum number of copies without using the first (or last) digit is
realized by adding a new first (and last) digit to a 2143-optimal word in Rn. As
we saw in the proof of Theorem 2.9, the maximum number of copies including π1 is
realized when π1 is as close to the median of {1, 2, . . . , n+1} as possible, where every
collection of four digits including π1 (where π1 is not smallest or largest) contains
a 2143 pattern. We are able to find 2143-optimal members of Rn+1 by optimizing
both of these types of copies simultaneously, and so we focus on this new first (and
last) digit.

If n + 1 is odd, then there is exactly one choice for the new first/last digit: it
must be n+2

2
so that there are n

2
smaller digits and n

2
larger digits. Since we are

adding a new first/last digit to a word with the diamond property or the near-
diamond property, we have maximized copies of 2143 using the first/last digit. In
this situation the number of 2143-optimal reverse double lists on n letters is the same
as the number of 2143-optimal reverse double lists on n+ 1 letters.

On the other hand, if n+ 1 is even, then there are two choices for the first digit.
It can be n+1

2
or n+3

2
so that there are n−1

2
smaller digits and n+1

2
larger digits or

vice versa. Since we are adding a new first/last digit to a word with the diamond
property or the near-diamond property, we have maximized copies of 2143 using the
first/last digit. In this case, the number of 2143-optimal members of Rn+1 is double
the number of 2143-optimal members of Rn, which matches the given enumeration.

In both cases, the 2143-optimal words w = ππr ∈ Rn+1 still either have the
diamond property or the near-diamond property.

Since we have maximized copies of 2143 with and without the first digit simulta-
neously, we have constructed all possible 2143-optimal words.

We next consider the pattern 1423, which is much more challenging to analyze.
Based on experimental data, we know that ππr where π = 1⊕Jn−1⊕1 is 1423-optimal
for small n (i.e. n ≤ 9), but for sufficiently large n, there are layered permutations
with more than than three layers and with longer first and last layers that have
more copies. We conjecture that for all n there exists a layered π such that ππr is
1423-optimal, and we conjecture further that as n increases, the number of layers
required in a 1423-optimal reverse double list should also increase. In lieu of exact
enumeration, we provide a construction to give a lower bound on its packing density
in reverse double lists.
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Theorem 2.10. For n ≥ 4,

dRn(1423) > 0.071892

Proof. We will count copies of 1423 in ππr for π = Jb⊕Ja⊕Jb where b =
n−a
2
. While

analyzing this construction guarantees there are at least this many copies of 1423 in
some reverse double list, we do not prove that this is the optimal construction.

Notice that a copy of 1423 can be obtained by choosing the 1 and 4 from different
layers in π and the 23 from the same layer of πr. If 1, 2, and 3 all come from the initial
Jb, then there are

(
b
3

)
(a + b) ways to choose four digits that form a 1423 pattern.

If the 1, 2, and 3 all come from the Ja layers, then there are
(
a
3

)
b ways to choose

the four digits that form a 1423 pattern. Similarly there are
(
b
3

)
(a + b) +

(
a
3

)
b ways

to choose the four digits if the 2, 3, and 4 all come from the same decreasing layer.
Finally, if the 2 and 3 come from Ja while the 1 and 4 come from Jb layers, there
are

(
a
2

)
b2 ways to choose the digits for a total of

(
a
2

)
b2 + 2

(
b
3

)
(a + b) + 2

(
a
3

)
b ways to

choose four digits that form a 1423 pattern in ππr. Each of these combinations of
four digits yields two copies of 1423, since we may select the “4” from either π or πr

to get the 1423 pattern.

Using calculus (and a CAS), this number of copies is optimized when

a =

((
6i
√
23− 37

)2/3 − (6i√23− 37
)1/3

+ 13

6(6i
√
23− 37)1/3

)
n ≈ 0.647209n

and yields a packing density of ≈ 0.0718921066 after plugging a into the exact count
of 1423 patterns in the previous paragraph, dividing by

(
2n
4

)
and taking the limit as

n approaches infinity.

We have now considered the packing densities of six of the eight patterns in
Table 1. The cases of 1324 and 2413 are more complicated, and it remains open to
find a construction that illustrates a positive packing density in the limit.

3 Packing into Double Lists

In this section, we will consider packing patterns into words in Dn.

3.1 Monotone patterns

We first consider packing ρ = Im. We also calculate the packing densities of these
patterns for any m ∈ N.

Theorem 3.1. The only Im-optimal word in Dn is ππ = InIn. Further, μDn(Im) =(
n
m

)
(m+ 1) and dDn(Im) =

m+1
2m

.
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Proof. Consider any combination ofm distinct letters in w = ππ. If they are arranged
in ascending order within π, then there are (m+1) possible ways for these letters to
form Im in the entire word, since there are (m+1) ways to choose how many letters
come from the first π. If, however, these m letters are not in ascending relative order
in π, then they either form 1 or 0 instances of Im, since, if any were possible at all,
there would only be one option for which letters must come from the first π and
which must come from the second π. Since the word where π = In is the only word
where all combinations of m letters are in increasing order in π, it must be the only
Im-optimal word, and must contain

(
n
m

)
(m+ 1) instances of Im.

From this characterization, it is straightforward to compute

dDn(Im) = lim
n→∞

(
n
m

)
(m+ 1)(
2n
m

) =
m+ 1

2m
.

Table 2 gives the packing densities of Im for when m ≤ 10. As m increases, this
density approaches 0.

m dDn(Im)

2 0.75
3 0.5
4 0.3125
5 0.1875
6 0.109375
7 0.0625
8 0.035156
9 0.019531
10 0.01074

Table 2: Packing densities of Im for small values of m

3.2 Layered patterns

Next, we consider layered patterns, i.e., patterns avoiding both 231 and 312.

Theorem 3.2. For n ≥ 3, there exists a 132-optimal word ππ ∈ Dn where π is
layered.

Proof. Consider any three letters in π. These letters can have any of the six length-
three permutations as their relative order. Table 3 shows how many total instances
of 132 a set of three letters will make in ππ based on their order in π.
Based on these counts, if we want to pack 132 into the entire ππ word, it suffices to
pack 132 into π alone if π then also avoids 231. Stromquist (unpublished) and later
Barton [3] proved that there exists a layered permutation that optimally packs 132.
Since layered permutations necessarily avoid 231, this fulfills our requirements.
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Arrangement Instances of 132

123 123 1
132 132 4
213 213 1
231 231 0
312 312 1
321 321 1

Table 3: Number of instances of 132 any given collection of three letters make in ππ
based on their relative order in π

Now that we know that a layered 132-optimal word exists, we can enumerate the
number of instances of 132 in layered words and use this enumeration to compute
dDn(132).

Theorem 3.3. dDn(132) =
3
√
3− 4

4
.

Proof. The 132-optimal permutation π of length n contains μSn(132) copies of 132,
each of which yields four copies of 132 in ππ. The other

((
n
3

)− μSn(132)
)
subse-

quences of length 3 in π are each of the form 123, 213, or 321 and each yields one
copy of 132 in ππ. Therefore, we have

μDn(132) = 4μSn(132) +

((
n

3

)
− μSn(132)

)
.

Dividing both sides by
(
2n
3

)
and taking the limit as n approaches infinity yields:

dDn(132) = lim
n→∞

(
n
3

)
+ 3μSn(132)(

2n
3

) .

On the right, we divide both the numerator and denominator by
(
n
3

)
to obtain:

dDn(132) = lim
n→∞

1 + 3dSn(132)(
2n
3

)
/
(
n
3

) =
1 + 3(2

√
3− 3)

8
=

3
√
3− 4

4
≈ 0.299.

In Table 3 we listed all the possible arrangements of three distinct letters in a
double list to show that 132 had a layered optimizer. We now present a similar table
with all the length 4 layered pattern classes. For conciseness, we have only included
layered arrangements of the four digits rather than all arrangements.

Table 4 allows us to compute one more density with ease by building on previous
results. The 2143-optimal permutation given in [12] is of the form Jn/2 ⊕ Jn/2 for
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Arrangement 1432 2143 1243 1324

1234 1234 0 0 1 1
1243 1243 1 1 5 1
1324 1324 1 0 1 5
1432 1432 5 1 1 1
2134 2134 0 1 0 1
2143 2143 1 5 1 1
3214 3214 1 1 0 1
4321 4321 1 1 0 0

Table 4: Number of copies of length 4 layered patterns in ππ based on the relative
order of four digits in π

even n and with one layer larger than the other by a single letter when n is odd.
This 2143-optimal permutation is layered and it avoids 1234 and 1324, and so using
the same methodology as in Theorem 3.3 we have the following:

Theorem 3.4. dDn(2143) =
5
32
.

Proof. The 2143-optimal permutation of length n contains μSn(2143) copies of 2143,
each of which yields five copies of 2143 in ππ. All other subsequences of length 4
in π are of the form 1432, 3214, or 4321 and each yields one copy of 2143 in ππ.
Therefore, we have

μDn(2143) = 5μSn(2143) +

((
n

4

)
− μSn(2143)

)
.

Dividing both sides by
(
2n
4

)
and taking the limit as n approaches infinity yields:

dDn(2143) = lim
n→∞

(
n
4

)
+ 4μSn(132)(

2n
4

) .

On the right, we divide both the numerator and denominator by
(
n
3

)
to obtain:

dDn(2143) = lim
n→∞

1 + 4dSn(2143)(
2n
4

)
/
(
n
4

) =
1 + 4

(
3
8

)
16

=
5

32
= 0.15625.

Unfortunately this strategy does not work directly for other layered patterns ρ.
Note that the optimal permutation for packing 1432, given in [12] contains both 1234
and 2134 for sufficiently large n. Similarly the 1243-optimal permutation given in [1]
contains 4321 for sufficiently large n and the 1324-optimal permutation is known to
be layered, but the exact packing density in permutations remains open.

However, we can use previous work to give a bound on one more packing density.
In [1] the 1243-optimal permutation of length n is shown to be In/2 ⊕ Jn/2 when
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n is even and where the lengths of the increasing and decreasing subpermutations
differ by one letter if n is odd. We use this permutation to give a lower bound on
dDn(1243).

Theorem 3.5. dDn(1243) ≥ 576
√
3

12167
+ 13751

194672
.

Proof. Consider the word ππ where π = Ia ⊕ Jn−a. We wish to count copies of 1243
in this word.

Any choice of two digits from the smallest a digits and two digits from the largest
n− a digits produces five copies of 1243 in ππ, while any choice of three digits from
the smallest a digits and one digit from the largest n − a digits produces one copy
of 1243 and any choice of one digit from the smallest a digits and three digits from
the largest n− a digits produces one copy of 1243 in ππ. While choosing four digits
from the largest n−a does not produce any copies of 1243, choosing four digits from
the smallest a digits produces one copy. This enumeration gives a total of(

a

2

)(
n− a

2

)
+

(
a

3

)
(n− a) + a

(
n− a

3

)
+

(
a

4

)

copies, which (using calculus and a CAS) is optimized when a =
(

5+4
√
3

23

)
n. This

computation yields a lower bound of

dDn(1243) ≥
576

√
3

12167
+

13751

194672
≈ 0.152634.

Two interesting pieces are at work here. In the context of permutations, it is
known that dSn(2143) = dSn(1243) = 3

8
. In the context of double lists, we have

shown that dDn(2143) = 5
32

and the maximum is achieved by concatenating two
copies of the 2143-optimal permutation. On the other hand, the lower bound we
obtain for dDn(1243) has more copies of 1243 than concatenating two copies of the
1243-optimal permutation, and our lower bound is still below 5

32
. It still remains to

determine the exact packing density of 1243 in double lists, and to determine the
packing density for other patterns ρ.

4 Future Work

The question of packing permutations into words of the form ππr and ππ is the
natural packing analogue to the pattern avoidance work done in [2] and [7]. In
the case of packing into ππr words, we note that packing a copy of ρ into ππr is
equivalent to packing a copy of some shuffle of ρ1 · · ·ρi and (ρi+1 · · · ρm)r into π, so
these packing problems are a special case of the packing definitions for sets given
in [1]. Nonetheless, even with this machinery, the sets of patterns to be packed
are complicated (i.e. generally not all layered), and are challenging to study. The
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following problems would be interesting extensions of this paper, requiring tools and
techniques beyond the scope of the work here.

1. Is μRn(1423) always attained by a layered π? If so, what can be said about the
layers?

2. Determine dRn(1423), dRn(1324) and dRn(2413).

3. We showed that μDn(ρ) is optimized by using the permutation that optimizes
μSn(ρ) concatenated with itself when ρ = Im, ρ = 132, or ρ = 2143. However,
we know this is not the case for ρ = 1243. For what permutations is it true that
μDn(ρ) is optimized by concatenating two copies of a ρ-optimal permutation?

4. Is it true that if ρ is layered then the word μDn(ρ) is obtained by some word
ππ where π is layered?

In another direction, a Gray code is a list of all members of a set where two
consecutive members differ in a pre-determined small way. While the canonical use
of a Gray code is to list all binary strings of a specific length so that two consecutive
strings differ by only one digit, analogous ideas have been used by various authors to
systematically list all permutations or all permutations with a specific property (such
as avoidance of a given pattern) [5, 13, 15]. Any Gray code listing of permutations
can be extended naturally to a listing of the members of Dn or Rn. It is worth
investigating how the techniques for systematically generating permutations could
be used to further the packing results of this paper.
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[6] A. Burstein, P. Hästö and T. Mansour, Packing patterns into words, Electron.
J. Combin. 9.2 (2003), R20.

[7] C. Cratty, S. Erickson, F. Negassi and L. Pudwell, Pattern avoidance in double
lists, Involve 10.3 (2017), 379–398.
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