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Abstract

In this paper, we study period-doubling sequences over an ordered al-
phabet of size ¢ > 2. We present properties of these words relative to
the structure of their palindromic factors. The explicit formulas of the
palindromic Ziv-Lempel factorization and the palindromic Crochemore
factorization based on the combinatorial structure of infinite sequences
are also established.

1 Introduction

In combinatorics on words, the study of palindromes occupies an important place.
For instance, this notion is used to characterize the Sturmian words (see [II]). A
palindrome is a word which is the same when read from left to right or from right to
left. The factorization of a finite or infinite sequence consists of the decomposition of
this word (finite or infinite) into factors with specific properties: periodicity, palin-
dromicity, etc. It thus appears in combinatorics on words as an important tool in
the understanding of structures of words. There are several types of factorization in
the literature (see [9], 0, 13, [14]) including Lyndon factorization, Ziv-Lempel factor-
ization and Crochemore factorization. The Ziv-Lempel factorization was introduced
in the middle of the 20th Century (see [17]) and the Crochemore factorization at the
end of the 20th Century (see [8, [9]). These two factorizations provide, respectively,
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a better comprehension of repetitive and non-repetitive factors in the infinite words.
They find applications in data compression [I8], word processing [§], molecular bi-
ology [7, [12], cryptography [16], etc. Since their introduction, several authors have
established these factorizations for some infinite words (see [4, [5, [6, (13, 14]). It is
in this context that a study of the structure of palindromes, the Ziv-Lempel factor-
ization and the Crochemore factorization of the generalized period-doubling word
in [6] was conducted. Thereafter, other variants of the Ziv-Lempel factorization and
the Crochemore factorization were introduced in [14], namely the palindromic Ziv-
Lempel factorization and the palindromic Crochemore factorization. In the same
paper the authors established these factorizations for the m-bonacci words which are
generalizations of the Fibonacci word.

Here, we obtain the palindromic Ziv-Lempel factorization and the palindromic
Crochemore factorization of the generalized period-doubling sequences. This paper
is organized as follows. After definitions and notation, we recall some useful results
in Section 2. Next, we present properties on some factors in Section 3 and then
we establish in Section 4 the palindromic Ziv-Lempel factorization of the generalized
period-doubling sequences. Finally, in Section 5 we give the palindromic Crochemore
factorization of these sequences.

2 Preliminaries

Let A be a finite alphabet. The set of finite words over A is denoted by A* and &
represents the empty word. The set of non-empty finite words (respectively, infinite
words) over A is denoted by AT (respectively, A“). The set of finite and infinite
words over A is denoted by A®. Let u € A* and v € A*. The word v is called a
factor of w if there exist u; € A*, uy € A such that u = uyvus. The factor v is called
a prefix (respectively, suffix) if u; (respectively, uy) is empty. Let u = ajay - - - a, be
a finite word with a; € A, for i = 1,2,...,n. The word & = a,a,_1---ay is called
the reflection of u. The word u is called a palindrome if v = uw. For all u € A*,
|u| denotes the length of u. For a € A, we denote by a™' the inverse of a, that
is: aa™! la = e. If u is a finite word over A beginning (respectively, ending)
with the letter a then a='u (respectively, ua™!) denotes the word obtained from u
by deleting its first (respectively, last) letter.

A morphism over A* is a map f : A* — A* such that f(uv) = f(u)f(v) for all
u,v € A*. It is k-uniform (respectively, non-erasing), for some k € N, if |f(a)| = k
(respectively, f(a) # ¢), for any a € A. The map f is said to be a substitution if it
is a non-erasing morphism over A*. It is said to be prolongable on a, if there exists
u € A" such that f(a) = au. In this case, f"(a) is a proper prefix of f"*!(a), for
any positive integer n. The sequence (f"(a)),>o converges to a unique infinite word
denoted f“(a) and so is called a purely morphic word.

It is said that the set X C AT is a code over A if any word w € A* admits at
most one factorization into words from X. For more details on coding theory, we
refer the reader to [1, 3, [15]. Now, we give two formal definitions of the palindromic
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Ziv-Lempel factorization and the palindromic Crochemore factorization, and then
we recall an important result about codes [15].

Let u be an infinite word. Then we have the following definitions introduced
in [14].

Definition 2.1. The palindromic Ziv-Lempel factorization or simply pzl-factoriz-
ation of u is the factorization:

pzl(u) = [[ 2 = (%, 21, ..., 20y Zagr- o), (1)
k>0
where Z, is the shortest palindromic prefix of Z,Z,,1Z,42 - such that there is no

occurrence of Z, at any position j < |ZpZ1 -+ - Z,_1| in u.
For all integers n, Z, are called pzl-factors.
Example 2.1. The pzl-factorization of v = abcaacbaaabc is:
pzl(v) = (a, b, ¢, aa, chaaabc).

Definition 2.2. The palindromic Crochemore factorization or simply pc-factoriz-
ation of u is the factorization:

pc(u)zHék:(éo, Cly-vvy Cmy Congly - - ), (2)
k>0

where ¢, is the longest palindromic prefix of ¢,,¢p11Cmae - -+ Occurring at least twice
in ¢oCp -« - G, OF Gy, is just a letter if this letter does not appear in ¢oéq - - - Cpi.

Example 2.2. The pc-factorization of w = abacabaacabaaca is:
pc(w) = (a,b,a,c,aba,aca, b, aa, c,a).

Proposition 2.1 (Ch.6 of [I5]). Let A, B be two finite alphabets and f : A* — B*
an injective morphism. Then we have:

1. If X C A" is a code then f(X) is a code.
2. If Y C B" is a code then f~Y(Y) is a code.

The binary period-doubling sequence P5 is the unique fixed point of the substi-
tution Sy : a — ab, b — aa defined over A; = {a,b} and beginning with a. Thus,
we have Py = lim S7(a) = S5 (a), whose first letters are given by:

n—oo

Py = abaaabababaaabaaabaaabababaaabababab - - - .

This sequence has its origin in chaotic dynamics (see [2]). The name period-doubling
of this sequence comes from the fact that its fundamental block is doubled in each
step. It has been intensively studied in [T1, 2, [4] [5] [10].
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Now, let us consider the alphabet A, = {0,1,2,...,¢ — 1}, for a fixed integer
g > 3 and the 2-uniform substitution over A, defined by:

_fOom+1) if0<m<qg—2
SQ(m)_{ 00 ifm=q-—1. (3)

A natural generalization of binary period-doubling sequence is the unique fixed point
of the substitution S, defined in (). Let us note w, = S;'(0), for all n > 0. Then,
P, = nh_)rglo w, = S;(0). For instance, if ¢ = 5 then the first letters of P; are given
by:

P; = 0102010301020104010201030102010001020103 - - - .

3 Some properties of generalized period-doubling sequences

Proposition 3.1. The set B, = S,(A,) is a code over A,, for any integer ¢ > 2.

Proof. Since A, is a code over A, and S, is an injective substitution then, by
Proposition 2.1, B, is a code. O

Lemma 3.1. Let u and v be two finite factors of P, such that S,(v) is a factor of
Sq(u). Then, v is a factor of u.

Proof. If v or v is empty then the result can easily be checked. Suppose that u and
v are two non-empty factors of P, such that S,(v) is a factor of S,(u). Then, there
exist two finite words r and ¢ such that S,(u) = rS,(v)t. We continue the reasoning
over the length of . If |r| is odd, then S,(v) can only be a power of 0 and must be
preceded by 0. It follows that v = (¢ — 1)* for some integer k and that u contains
also (¢ — 1)*. From now on, assume that |r| is even. Since S, is 2-uniform then
r=9,(r") and t = S,(t') for some words 7’ and t'. So, S,(u) = S,(r'vt’). Since S, is
injective then, u = r’vt’. Thus, v is a factor of w. O

Theorem 3.1. [6] Let v be a factor of P, such that |v| > 2. Then the following
assertions are equivalent.

1. v is a palindromic factor of P,.

2. 8,(v)0 is a palindromic factor of P,.

3. 0715, (v) is a palindromic factor of P,,.

Note that 0, 00 and 000 are factors of P, but not 0* for any k > 3.

Theorem 3.2. Let v be a non-empty palindromic factor of P, such that v # 00.
Then we have:

1. If v begins with an odd power of the letter 0, then there exists a palindromic
factor v" of P, such that v = S,(v")0.
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2. If v begins with an even power of the letter 0 or does not begin with the letter
0, then there exists a palindromic factor v’ of P, such that v = 0"15,(v").

Proof. Since v is a factor of P,, there exist a finite word u and an infinite word
w such that P, = vow. As P, is a fixed point of S, then P, = S,(uvw), with
|Sy(uv)| > |uv|. We continue the proof by induction on |v]|.

If |u| = 1 then the two properties hold. Indeed, v is equal to either S,(£)0 or 0715, (z),
with = € A,; € and x being palindromes. Suppose that |v| > 2.

1. Suppose that v begins with an odd power of the letter 0. Then, either v = 000
or v is of the form v = 000v,000 or v = Oyv,y0, with y € (A, — {0}) U {e} and
vy a non-empty palindromic factor of P, such that |v] < |v|, with v; # 00.
Case 1. v = 000. So, it is sufficient to take v’ = ¢—1 and we have v = S, (v")0.
Case 2. v = 000v,000. Since, 0v;0 is a palindromic factor beginning with 0
and |0v;0] < |v| then, by induction hypothesis, we have 0v;0 = S, (v})0 with v}
being a palindromic factor of P,. As a result, we obtain the following equalities:

v = 000v,000
— 005, (¢)000
— 5,(q— 1)S,(e))S,(a — 1)0
= 5,((g— 1)tlg — 1))0
= S,(v")0, with v' = (¢ — 1)vi(¢ — 1).

Let us now show that v’ is a factor of P,. Since v = 5,(v")0 is a factor of uv
then, it is also a factor of S,(uv) for some word u. Thus, v’ is a factor of uv,
by Lemma 3.l Hence, v is a factor of P,.

Case 3. v is in the form v = Oyv;y0. Then by hypothesis, there exists a
palindromic factor v} of P, such that yvyy = 0715, (v}). Thus,

v =00""S,(v])0 = S, (v})0.

2. Suppose that v begins with an even power of the letter 0 or with the letter
x # 0. Then, either v = 00v100 or v = zvix, with v; a non-empty palindromic
factor of P,.

Case 1. v = 00v,00. Then, by induction hypothesis there exists a palindromic
factor v} of P, such that 0v10 = S,(v})0. Thus,

v = 000,00
— 05, (v})00
—0718,((q — 1)el(g 1)
=07'5,(v), with o' = (¢ — 1)v}(g — 1).

Case 2. v = zv;z. Note that the word P, does not contain the factor x? for
x # 0. Thus, v, begins with 0, since .S, is 2-uniform and prolongable in 0 by
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all letters of A,. By induction hypothesis, there exists a palindromic factor vj
of P, such that v; = S,(v])0. We then obtain the following equalities.

= :5,(v})0z

= 071025, (v})0x

= 07"S, (2 — 1)Sy(v}) Sy — 1)

= 0715, ((x — 1o}z — 1))

=0719,(¢"), with v’ = (x — 1)vj(z — 1).

We show with the same reasoning of item 1 that v’ is a factor of P,. 0

Note that the only even-length palindromic factor in P, is the word 00.

4 Palindromic zl-factorization of the sequences P,

In this section we present the palindromic Ziv-Lempel factorization of Py (Theo-
rem [4.])) and then of the sequences P, (Theorem [£.2)).

4.1 Palindromic zl-factorization of the sequence P,
We construct a sequence of finite words (z,)n>0 over A; as follows:
zo=a, z1 =b, 20 = aa and for all n > 3,

a1Sy(z,—1) if m is even
n = { So(zn_1)a otherwise. (4)

Proposition 4.1. For all integers n, we have:

1. The word z, s a palindromic factor of Ps.

2. The word z, is not a factor of z,11.
Proof.

1. The proof stems from equality (@) and Theorem B.1] in particular in the case
of ¢ = 2 (see [4]).

2. The second assertion is demonstrated by induction on the integer n. The
property is checked at the initial index. Indeed, the equality (4]) ensures that
20 = a is not a factor of z; = b. Suppose that z; is not a factor of zxq, for
k <n-—1, with n > 1. Let us show that z, is not a factor of z,,,. For the sake
of contradiction, let us assume that z, is a factor of z,,1. Then there exist two
non-empty finite words u; and wuy such that z,,1 = uy2,us. According to the
parity of the integer n, we have:
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e If n is even then, by (), we have that z, does not begin with a and z,
ends with a. Thus 2,11 = u}az,uba, for some non-empty words u} and u}.
Furthermore, S5(z,) = 210t = u)Sa(2,_1)ul, i.e, So(z,-1) is a factor
of Sy(z,). Hence z, 4 is a factor of z,, by Lemma B.Jl This contradicts
the induction hypothesis.

e If n is odd then 2, = Sy(2,_1)a and 2z,,1 = a"1S5(2,). By using similar
reasoning to the previous case, we show that z, is not a factor of z,.;.
Thus z, is not a factor of z,; for all integers n.

OJ
n—1
Lemma 4.1. For all integers n > 1, z, is not a factor of &, = H 2k -
k=0

Proof. Before proceeding to the demonstration of this lemma, we make the following
remark by equality (). For all integers n > 3 we have:

| Sa(&-1)a if nis even
&n = { Sz(gn,i) otherwise. (5)

For n € {1,2}, we have z; = b (respectively, zo = aa) is not a factor of £, = a
(respectively, of &, = ab). Hence the property holds for n = 1 and n = 2.

Suppose that z; is not a factor of & for ¢ < n, with n > 3. Let us show that
the property remains true for i = n 4+ 1. We prove this by contradiction. Suppose
that z,,1 is a factor of £,.1; then there exist two non-empty finite words v; and v
such that &,,1 = v12,11v2,. We distinguish two cases according to the parity of the
integer n.

e If n is even then, z,,1 = Sa(z,)a and &, = 5(&,). As a result, 55(&,) =
v1.52(2,)ave, ie., S9(z,) is a factor of Sy(§,). Thus z, is a factor of &, by
Lemma [3.J] This contradicts the induction hypothesis.

e If n is odd then z,.; = a™1S5(2,) and &,41 = S9(&,)a. Note that in this case
Zn+1 does not begin with a by Theorem and &,,1 ends with a by (Bl). Thus
we can write &,11 = S2(&,)a = v1 2,110 = Viaz,1v5a = v]Sa (2, )vha, for some
non-empty words v and v}. Therefore Sa(&,)a = v]S2(z,)vha. Hence Sy(zy,)
is a factor of S3(¢&,). By Lemma [B.1], 2, is a factor of &,. We again obtain a
contradiction with the induction hypothesis. -

Theorem 4.1. The pzl-factorization of the sequence Py is:

pzl(P,y) = H 2.

k>0

Proof. The proof of this theorem stems from Proposition L1}, Lemma [£.I] and the
fact that the sequence (z,),>0 is increasing in the sense of the length. UJ

Example 4.1. The first factors of the pzl-factorization of P, are:
pzl(Py) = (a, b, aa, ababa, baaabaaab, - - - ).



M. BARRO ET AL./AUSTRALAS. J. COMBIN. 83 (3) (2022), 435-447 442

4.2 Palindromic zl-factorization of the sequences P,

Let us now consider, over A, with ¢ > 3, the sequence of finite words (Z,,),,>o defined
by:
Zy =0, and for all n > 1,
| S4(Z,-1)0 if n is even
Zn = { 07'S,(Z,-1) otherwise. (6)

Proposition 4.2. For all integers n, Z, is a palindromic factor of P,.

Proof. We have Z, =0, Z; = 1 and Z; = 020 which are palindromic factors of P,.
Suppose that the property is true up to the index n — 1 for n > 3 and let us show
that it remains true for the index n. By hypothesis, Zj, is a palindromic factor of P,
for £ < n — 1. We distinguish two cases according to the parity of the integer k.
Case 1. k is even. Then, we have Z; = S,(Z;-1)0. By induction hypothesis, Z;_,
is a palindromic factor of P, and |Z;_1| > 2. So Zj is a palindromic factor of P, by
Theorem [B.11

Case 2. k is odd. Then, we have Z; = 0715,(Z;_1). Since |Zy_1| > 2 for k €
{3,4,...,n—1} and Zj_; is a palindromic factor of P, by hypothesis, it follows that
the word 071S,(Z;_1) = Zj, is also a palindromic factor of P, by Theorem 31 O

Lemma 4.2. For all integers n, Z, is not a factor of Z,1.

Proof. For n =0, Zy = 0 is not a factor of Z; = 1. Suppose that Z,, is not a factor
of Ziy1, for k < n and let us show that Z, is not a factor of Z,, ;. Let us assume
for the sake of contradiction that Z, is a factor of Z, 1, then there exist two finite
non-empty words u and v such that 7,1 = uZ,v.

Case 1. n is even. Then, by equality (@), we have:
Zn=S,(Z,1)0 and Z, 11 = 07'5,(Z,).

Moreover, Z, 1 does not begin with the letter 0 by Theorem 3.2 By Proposition
4.2l we can write Z,,1 = rwZ,wx where x is different to the letter 0 and w a non-
empty word. It follows that, S,(Z,) = 02,41 = OzwZ,wzx = 0zwS,(Z,—1)0wz, i.e,
S¢(Zn—1) is a factor of S,(Z,). We deduce by Lemma Bl that Z,,_; is a factor of Z,.
This contradicts the induction hypothesis.

Case 2. n is odd. Then, by ([l), we have :
Zn=0"1S(Z,1) and Z, 11 = S,(Z,)0.

By Theorem 3.2, Z,, 1, begins and ends with 0. Thus, S,(Z,)0 = Z,11 = 0wZ,w0 =
0w'0Z,0w'0 = 0w'S,(Z,_1)0w'0, for some non-empty words w and w’. Therefore,
S¢(Zn—1) is a factor of S,(Z,). Hence, Z,,_; is a factor of Z, by Lemma Bl This
still contradicts the induction hypothesis.

Hence Z,, is not a factor of Z,,; for all integers n. O
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For all n > 1, let us put:
n—1
H., =[] %
k=0

The remark below gives us recursive writing of H,,.

Remark 4.1. For all integers n > 2, we have:

o - Sq(Hn—1) if n is even
" Sq¢(Hn—1)0  otherwise.

Lemma 4.3. For all integers n, Z, is not a factor of H,.

Proof. The property holds for the initial index. Suppose that Z; is not a factor
of H; for j < n —1 and let us show that Z, is not a factor of H,,. For the sake of
contradiction, let us assume that Z,, is a factor of H,,. Then, H,, = vZ,w for some
non-empty words v, w. We separate the proof into two cases according to the parity
of the integer n.

Case 1. n is even. Then, Z,, = 5,(Z,-1)0. Furthermore, we have S,(H,_,) = H, =
vS,(Z,-1)0w, by Remark T and assumption. Thus Z,_; is a factor of H,,_4, by
Lemma [B.Il This contradicts the induction hypothesis.

Case 2. n is odd. Then Z, = 07'S,(Z,_1). In addition, by Remark EET, we have
H, = S,(H,-1)0. Since Z, does not begin with the letter 0 by Theorem and
H,, ends with 0, we have S,(H,-1)0 = H,, = vZ,w = v'0Z,w'0 = v'S,(Z,-1)w'0,
for some non-empty words v and w’. Thus S,(Z,_;) is a factor of S,(H,,—1). By
Lemma [3.1] we deduce that Z,,_; is a factor of H,,_;. This contradicts the induction
hypothesis. 0

Theorem 4.2. The pzl-factorization of the sequences P, is given by:

pzl(P,) = [ [ Z

k>0

Proof. We first show that the sequence (H,,),>o is increasing in length, and then
that it constitutes increasingly long prefixes of P,. Finally, we show that the Z,
which compose it are the pzl-factors of the sequences P,.

e Since Z,, # ¢, we have |H,,41| > |H,| for all n > 0.
e Let us show by induction that (H,,),>1 is a sequence of prefixes of P,,.

For 1 <n < 2, we have respectively H; = 0 = 52(0) and Hy = ZyZ; = 01 = 5,(0)
which are prefixes of P,. Suppose that H,_; is a prefix of P, for n > 1. Then there

exists w, an infinite word, such that P, = H,_;w. According to the parity the
integer n, we have two cases:

Case 1. n is even. Then H,, = S,(H,_1), by Remark @Il Since P, is a fixed point
of S,, we get:
P, = 5,(Hy—1w)
= Sy(Hn-1)5,(W)
= H,S,(w).
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Case 2. n is odd. Then we have H,, = S;(H,_;)0 by Remark .1l Thereafter,

Pq = Sq(Hn_1W)
= Sq(Hn-1)54(W)
= S,(H,,_1)0wW’, because S,(w) = 0w’ for some infinite word w’

=H,w’.

Thus, for all integers n, H, is a prefix of P,.

e The sequence of finite words (Z,,),>o represents the pzl-factors of P,. Indeed, Z,
is a palindromic factor of P, according to Proposition ©.2l Moreover, Z, is neither a
factor of 7,1 nor a factor of H,, by Lemmas and 4.3l In addition, the sequence
(Zn)n>0 is increasing in the sense of length. Hence Z,, is the shortest palindromic
prefix of Z,Z, 1 -+ uni-occurrent in H,, ; = ZyZ1--- Z,,.

Since (H,,),>1 is a sequence of prefixes of P, with increasing length,

pzl(P,) = lim H, = 112
k>0

O

Example 4.2. For ¢ = 5, the first factors of the pzl-factorization of Py are given
by:
pzl(P5) = (0, 1,020, 10301, 02010401020, - - -).

5 Palindromic c-factorization of the sequences P,

We begin this section by constructing the sequence (p,,),>o of finite words over A,
as follows:

po = € and for all n > 0, p,1 = pp,p, with 9, = n mod q.
The sequence (p,),>1 constitutes the sequence of palindromic prefixes of P,,.
Remark 5.1. For all integers n, pp41 = Sy(pn)0.

Theorem 5.1. For all integers ¢ > 2, the pc-factorization of P, is given by:

pc(P,) = H Cl, with the sequence (Cy)y defined by:

k>0
e for g = 2, we have:
Co=a, C1=0b, Cy=aqa, C3=aa, Cy =0, C5 =ababa, Cg = aa, and for allk > 7,

Cn So(Cr—2)a if k is even
Tl a8y (Chz)  otherwise;
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e for ¢ > 3, we have:

Co =0 and for all k € {1,2,3,...,q— 1},

C2k = Pk,
7
{ Copr = k. @)
0718,(Cr—s) if k is even

Cag—1 = 00 and for all k > 2q, C) = { S (Ci_2)0 otherwise. (8)

For the proof of this theorem, we state the following lemmas.

Lemma 5.1. For all integers n, C,, is a palindromic factor of P,,.

Proof. We do the proof in case ¢ > 3, the case ¢ = 2 being similar.

Case 1. n € {0,1,2,3,...,¢ — 1}, C, is a palindromic factor of P,. Indeed, C, is
either a letter or a palindromic prefix p,,.

Case 2. n=2q — 1. So, Cy,—1 = 00 is a palindromic factor of P,.

Case 3. n > 2q. Then, we continue the demonstration by induction on the integer n.
The property holds for the initial index. Indeed, Cy, = 0715,(Cay—2) = 0715,(py—1)
which is a palindromic factor of P,, by Theorem B.Il Suppose that C,, is a palin-
dromic factor of P, for n > 2¢ and let us show that it is the same for C, ;. We
distinguish two cases according to the parity of the integer n.

e If n is even then, by (8), we have C,11 = 5,(C,,—1)0. By hypothesis, C,_; is
a palindromic factor of P, with |C;,_1| > 2. Thus C,,4; is a palindromic factor
of P,, according to Theorem B.11

e If n is odd, then we have C,, 11 = 0715,(C,,_1), by the equality (8). By a similar
reasoning to the even case, we show that (), is a palindromic factor of P,,.

O

For all n > 1, let us put:
n—1
Q, = H C.
k=0
Remark 5.2. For all integers n > 2q, we have:

0 = Sq(2,-2)0 if m is even
" Sq(Qn—2) otherwise.

Lemma 5.2. For all integers n > 2q, 2, contains at least two occurrences of Cy,_1.

Proof. Let us proceed by disjunction of cases according to the parity of the integer n.

Case 1. For n = 2q, the property holds. Suppose that 2y, has at least two occur-
rences of Cy, 1, for n > 2q. Let us show that €, 5 has at least two occurrences of
C5n41. By the induction hypothesis, there exist some non-empty finite words vy, vy,



M. BARRO ET AL./AUSTRALAS. J. COMBIN. 83 (3) (2022), 435-447 446

and v possibily empty, such that s, = v1Cs,_1vC5,_1v5. By Remark B.2] we get
the following equalities:

25,)0
Sq 01C5,10C,— 1’02)0

QQTL-‘,—Q (
(
Sq(v1)S(Can-1)S(v)Sq(Can-1)Sy(v2)0
(
(

Sq(v1)S4(Cap—1)00'Sy(Cap—1)0050, because S, is prolongable in 0
Sq UI)CQnJrlU 02n+1'020 by equality (8.

Case 2. Suppose that €2y, has at least two occurrences of Cs,,, for n > 2¢g+1. Let
us then show that ), 3 has at least two occurrences of Cs, 5. By Remark and
with a similar reasoning to the previous case, we obtain the result. 0

Proof of Theorem [5.1Il By Remark and the equalities (@), (8), we deduce
that the words (2, are increasingly long prefixes of P,. The Lemmas (.1 and
assure us that for all n > 0, C), is a palindromic factor and at least bi-occurring in

Qpir = CoCh---C,_1C,,. As a result, it represents a palindromic Crochemore factor
of P,. Thus

pc(P,) = lim Q, = HCk

n—00
k>0

0

Example 5.1. For ¢ = 5, the first factors of the pc-factorization of P5 are given by:

pc(P5) = (0,1,0,2,010,3,0102010, 4,010201030102010, 00, - - - ).
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