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Abstract

In this paper, we study period-doubling sequences over an ordered al-
phabet of size q ≥ 2. We present properties of these words relative to
the structure of their palindromic factors. The explicit formulas of the
palindromic Ziv-Lempel factorization and the palindromic Crochemore
factorization based on the combinatorial structure of infinite sequences
are also established.

1 Introduction

In combinatorics on words, the study of palindromes occupies an important place.
For instance, this notion is used to characterize the Sturmian words (see [11]). A
palindrome is a word which is the same when read from left to right or from right to
left. The factorization of a finite or infinite sequence consists of the decomposition of
this word (finite or infinite) into factors with specific properties: periodicity, palin-
dromicity, etc. It thus appears in combinatorics on words as an important tool in
the understanding of structures of words. There are several types of factorization in
the literature (see [5, 6, 13, 14]) including Lyndon factorization, Ziv-Lempel factor-
ization and Crochemore factorization. The Ziv-Lempel factorization was introduced
in the middle of the 20th Century (see [17]) and the Crochemore factorization at the
end of the 20th Century (see [8, 9]). These two factorizations provide, respectively,
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a better comprehension of repetitive and non-repetitive factors in the infinite words.
They find applications in data compression [18], word processing [8], molecular bi-
ology [7, 12], cryptography [16], etc. Since their introduction, several authors have
established these factorizations for some infinite words (see [4, 5, 6, 13, 14]). It is
in this context that a study of the structure of palindromes, the Ziv-Lempel factor-
ization and the Crochemore factorization of the generalized period-doubling word
in [6] was conducted. Thereafter, other variants of the Ziv-Lempel factorization and
the Crochemore factorization were introduced in [14], namely the palindromic Ziv-
Lempel factorization and the palindromic Crochemore factorization. In the same
paper the authors established these factorizations for the m-bonacci words which are
generalizations of the Fibonacci word.

Here, we obtain the palindromic Ziv-Lempel factorization and the palindromic
Crochemore factorization of the generalized period-doubling sequences. This paper
is organized as follows. After definitions and notation, we recall some useful results
in Section 2. Next, we present properties on some factors in Section 3 and then
we establish in Section 4 the palindromic Ziv-Lempel factorization of the generalized
period-doubling sequences. Finally, in Section 5 we give the palindromic Crochemore
factorization of these sequences.

2 Preliminaries

Let A be a finite alphabet. The set of finite words over A is denoted by A∗ and ε
represents the empty word. The set of non-empty finite words (respectively, infinite
words) over A is denoted by A+ (respectively, Aω). The set of finite and infinite
words over A is denoted by A∞. Let u ∈ A∞ and v ∈ A∗. The word v is called a
factor of u if there exist u1 ∈ A∗, u2 ∈ A∞ such that u = u1vu2. The factor v is called
a prefix (respectively, suffix) if u1 (respectively, u2) is empty. Let u = a1a2 · · · an be
a finite word with ai ∈ A, for i = 1, 2, . . . , n. The word u = anan−1 · · ·a1 is called
the reflection of u. The word u is called a palindrome if u = u. For all u ∈ A∗,
|u| denotes the length of u. For a ∈ A, we denote by a−1 the inverse of a, that
is: aa−1 = a−1a = ε. If u is a finite word over A beginning (respectively, ending)
with the letter a then a−1u (respectively, ua−1) denotes the word obtained from u
by deleting its first (respectively, last) letter.

A morphism over A∗ is a map f : A∗ −→ A∗ such that f(uv) = f(u)f(v) for all
u, v ∈ A∗. It is k-uniform (respectively, non-erasing), for some k ∈ N, if |f(a)| = k
(respectively, f(a) �= ε), for any a ∈ A. The map f is said to be a substitution if it
is a non-erasing morphism over A∗. It is said to be prolongable on a, if there exists
u ∈ A+ such that f(a) = au. In this case, fn(a) is a proper prefix of fn+1(a), for
any positive integer n. The sequence (fn(a))n≥0 converges to a unique infinite word
denoted fω(a) and so is called a purely morphic word.

It is said that the set X ⊂ A+ is a code over A if any word w ∈ A∗ admits at
most one factorization into words from X. For more details on coding theory, we
refer the reader to [1, 3, 15]. Now, we give two formal definitions of the palindromic
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Ziv-Lempel factorization and the palindromic Crochemore factorization, and then
we recall an important result about codes [15].

Let u be an infinite word. Then we have the following definitions introduced
in [14].

Definition 2.1. The palindromic Ziv-Lempel factorization or simply pzl-factoriz-
ation of u is the factorization:

pzl(u) =
∏
k≥0

z̃k = (z̃0, z̃1, . . . , z̃n, z̃n+1, . . . ), (1)

where z̃n is the shortest palindromic prefix of z̃nz̃n+1z̃n+2 · · · such that there is no
occurrence of z̃n at any position j < |z̃0z̃1 · · · z̃n−1| in u.

For all integers n, z̃n are called pzl-factors.

Example 2.1. The pzl-factorization of v = abcaacbaaabc is:

pzl(v) = (a, b, c, aa, cbaaabc).

Definition 2.2. The palindromic Crochemore factorization or simply pc-factoriz-
ation of u is the factorization:

pc(u) =
∏
k≥0

c̃k = (c̃0, c̃1, . . . , c̃m, c̃m+1, . . . ), (2)

where c̃m is the longest palindromic prefix of c̃mc̃m+1c̃m+2 · · · occurring at least twice
in c̃0c̃1 · · · c̃m, or c̃m is just a letter if this letter does not appear in c̃0c̃1 · · · c̃m−1.

Example 2.2. The pc-factorization of w = abacabaacabaaca is:

pc(w) = (a, b, a, c, aba, aca, b, aa, c, a).

Proposition 2.1 (Ch. 6 of [15]). Let A, B be two finite alphabets and f : A∗ −→ B∗

an injective morphism. Then we have:

1. If X ⊆ A+ is a code then f(X) is a code.

2. If Y ⊆ B+ is a code then f−1(Y ) is a code.

The binary period-doubling sequence P2 is the unique fixed point of the substi-
tution S2 : a �−→ ab, b �−→ aa defined over A2 = {a, b} and beginning with a. Thus,
we have P2 = lim

n→∞
Sn
2 (a) = Sω

2 (a), whose first letters are given by:

P2 = abaaabababaaabaaabaaabababaaabababab · · · .
This sequence has its origin in chaotic dynamics (see [2]). The name period-doubling
of this sequence comes from the fact that its fundamental block is doubled in each
step. It has been intensively studied in [1, 2, 4, 5, 10].
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Now, let us consider the alphabet Aq = {0, 1, 2, . . . , q − 1}, for a fixed integer
q ≥ 3 and the 2-uniform substitution over Aq defined by:

Sq(m) =

{
0(m+ 1) if 0 ≤ m ≤ q − 2
00 if m = q − 1.

(3)

A natural generalization of binary period-doubling sequence is the unique fixed point
of the substitution Sq defined in (3). Let us note wn = Sn

q (0), for all n ≥ 0. Then,
Pq = lim

n→∞
wn = Sω

q (0). For instance, if q = 5 then the first letters of P5 are given
by:

P5 = 0102010301020104010201030102010001020103 · · · .

3 Some properties of generalized period-doubling sequences

Proposition 3.1. The set Bq = Sq(Aq) is a code over Aq, for any integer q ≥ 2.

Proof. Since Aq is a code over Aq and Sq is an injective substitution then, by
Proposition 2.1, Bq is a code. �

Lemma 3.1. Let u and v be two finite factors of Pq such that Sq(v) is a factor of
Sq(u). Then, v is a factor of u.

Proof. If u or v is empty then the result can easily be checked. Suppose that u and
v are two non-empty factors of Pq such that Sq(v) is a factor of Sq(u). Then, there
exist two finite words r and t such that Sq(u) = rSq(v)t. We continue the reasoning
over the length of r. If |r| is odd, then Sq(v) can only be a power of 0 and must be
preceded by 0. It follows that v = (q − 1)k for some integer k and that u contains
also (q − 1)k. From now on, assume that |r| is even. Since Sq is 2-uniform then
r = Sq(r

′) and t = Sq(t
′) for some words r′ and t′. So, Sq(u) = Sq(r

′vt′). Since Sq is
injective then, u = r′vt′. Thus, v is a factor of u. �

Theorem 3.1. [6] Let v be a factor of Pq such that |v| > 2. Then the following
assertions are equivalent.

1. v is a palindromic factor of Pq.

2. Sq(v)0 is a palindromic factor of Pq.

3. 0−1Sq(v) is a palindromic factor of Pq.

Note that 0, 00 and 000 are factors of Pq but not 0k for any k > 3.

Theorem 3.2. Let v be a non-empty palindromic factor of Pq such that v �= 00.
Then we have:

1. If v begins with an odd power of the letter 0, then there exists a palindromic
factor v′ of Pq such that v = Sq(v

′)0.
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2. If v begins with an even power of the letter 0 or does not begin with the letter
0, then there exists a palindromic factor v′ of Pq such that v = 0−1Sq(v

′).

Proof. Since v is a factor of Pq, there exist a finite word u and an infinite word
w such that Pq = uvw. As Pq is a fixed point of Sq then Pq = Sq(uvw), with
|Sq(uv)| > |uv|. We continue the proof by induction on |v|.
If |v| = 1 then the two properties hold. Indeed, v is equal to either Sq(ε)0 or 0−1Sq(x),
with x ∈ Aq; ε and x being palindromes. Suppose that |v| > 2.

1. Suppose that v begins with an odd power of the letter 0. Then, either v = 000
or v is of the form v = 000v1000 or v = 0yv1y0, with y ∈ (Aq −{0})∪ {ε} and
v1 a non-empty palindromic factor of Pq such that |v1| < |v|, with v1 �= 00.
Case 1. v = 000. So, it is sufficient to take v′ = q−1 and we have v = Sq(v

′)0.
Case 2. v = 000v1000. Since, 0v10 is a palindromic factor beginning with 0
and |0v10| < |v| then, by induction hypothesis, we have 0v10 = Sq(v

′
1)0 with v′1

being a palindromic factor of Pq. As a result, we obtain the following equalities:

v = 000v1000

= 00Sq(v
′
1)000

= Sq(q − 1)Sq(v
′
1)Sq(q − 1)0

= Sq((q − 1)v′1(q − 1))0

= Sq(v
′)0, with v′ = (q − 1)v′1(q − 1).

Let us now show that v′ is a factor of Pq. Since v = Sq(v
′)0 is a factor of uv

then, it is also a factor of Sq(uv) for some word u. Thus, v′ is a factor of uv,
by Lemma 3.1. Hence, v′ is a factor of Pq.
Case 3. v is in the form v = 0yv1y0. Then by hypothesis, there exists a
palindromic factor v′1 of Pq such that yv1y = 0−1Sq(v

′
1). Thus,

v = 00−1Sq(v
′
1)0 = Sq(v

′
1)0.

2. Suppose that v begins with an even power of the letter 0 or with the letter
x �= 0. Then, either v = 00v100 or v = xv1x, with v1 a non-empty palindromic
factor of Pq.
Case 1. v = 00v100. Then, by induction hypothesis there exists a palindromic
factor v′1 of Pq such that 0v10 = Sq(v

′
1)0. Thus,

v = 00v100

= 0Sq(v
′
1)00

= 0−1Sq((q − 1)v′1(q − 1))

= 0−1Sq(v
′), with v′ = (q − 1)v′1(q − 1).

Case 2. v = xv1x. Note that the word Pq does not contain the factor x2 for
x �= 0. Thus, v1 begins with 0, since Sq is 2-uniform and prolongable in 0 by



M. BARRO ET AL. /AUSTRALAS. J. COMBIN. 83 (3) (2022), 435–447 440

all letters of Aq. By induction hypothesis, there exists a palindromic factor v′1
of Pq such that v1 = Sq(v

′
1)0. We then obtain the following equalities.

v = xv1x

= xSq(v
′
1)0x

= 0−10xSq(v
′
1)0x

= 0−1Sq(x− 1)Sq(v
′
1)Sq(x− 1)

= 0−1Sq((x− 1)v′1(x− 1))

= 0−1Sq(v
′), with v′ = (x− 1)v′1(x− 1).

We show with the same reasoning of item 1 that v′ is a factor of Pq. �

Note that the only even-length palindromic factor in Pq is the word 00.

4 Palindromic zl-factorization of the sequences Pq

In this section we present the palindromic Ziv-Lempel factorization of P2 (Theo-
rem 4.1) and then of the sequences Pq (Theorem 4.2).

4.1 Palindromic zl-factorization of the sequence P2

We construct a sequence of finite words (zn)n≥0 over A2 as follows:

z0 = a, z1 = b, z2 = aa and for all n ≥ 3,

zn =

{
a−1S2(zn−1) if n is even
S2(zn−1)a otherwise. (4)

Proposition 4.1. For all integers n, we have:

1. The word zn is a palindromic factor of P2.
2. The word zn is not a factor of zn+1.

Proof.

1. The proof stems from equality (4) and Theorem 3.1, in particular in the case
of q = 2 (see [5]).

2. The second assertion is demonstrated by induction on the integer n. The
property is checked at the initial index. Indeed, the equality (4) ensures that
z0 = a is not a factor of z1 = b. Suppose that zk is not a factor of zk+1, for
k ≤ n−1, with n ≥ 1. Let us show that zn is not a factor of zn+1. For the sake
of contradiction, let us assume that zn is a factor of zn+1. Then there exist two
non-empty finite words u1 and u2 such that zn+1 = u1znu2. According to the
parity of the integer n, we have:
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• If n is even then, by (4), we have that zn does not begin with a and zn+1

ends with a. Thus zn+1 = u′
1aznu

′
2a, for some non-empty words u′

1 and u′
2.

Furthermore, S2(zn) = zn+1a
−1 = u′

1S2(zn−1)u
′
2, i.e, S2(zn−1) is a factor

of S2(zn). Hence zn−1 is a factor of zn, by Lemma 3.1. This contradicts
the induction hypothesis.

• If n is odd then zn = S2(zn−1)a and zn+1 = a−1S2(zn). By using similar
reasoning to the previous case, we show that zn is not a factor of zn+1.
Thus zn is not a factor of zn+1 for all integers n.

�

Lemma 4.1. For all integers n ≥ 1, zn is not a factor of ξn =
n−1∏
k=0

zk.

Proof. Before proceeding to the demonstration of this lemma, we make the following
remark by equality (4). For all integers n ≥ 3 we have:

ξn =

{
S2(ξn−1)a if n is even
S2(ξn−1) otherwise. (5)

For n ∈ {1, 2}, we have z1 = b (respectively, z2 = aa) is not a factor of ξ1 = a
(respectively, of ξ2 = ab). Hence the property holds for n = 1 and n = 2.

Suppose that zi is not a factor of ξi for i ≤ n, with n ≥ 3. Let us show that
the property remains true for i = n + 1. We prove this by contradiction. Suppose
that zn+1 is a factor of ξn+1; then there exist two non-empty finite words v1 and v2
such that ξn+1 = v1zn+1v2. We distinguish two cases according to the parity of the
integer n.

• If n is even then, zn+1 = S2(zn)a and ξn+1 = S2(ξn). As a result, S2(ξn) =
v1S2(zn)av2, i.e., S2(zn) is a factor of S2(ξn). Thus zn is a factor of ξn by
Lemma 3.1. This contradicts the induction hypothesis.

• If n is odd then zn+1 = a−1S2(zn) and ξn+1 = S2(ξn)a. Note that in this case
zn+1 does not begin with a by Theorem 3.2 and ξn+1 ends with a by (5). Thus
we can write ξn+1 = S2(ξn)a = v1zn+1v2 = v′1azn+1v

′
2a = v′1S2(zn)v

′
2a, for some

non-empty words v′1 and v′2. Therefore S2(ξn)a = v′1S2(zn)v
′
2a. Hence S2(zn)

is a factor of S2(ξn). By Lemma 3.1, zn is a factor of ξn. We again obtain a
contradiction with the induction hypothesis.

�
Theorem 4.1. The pzl-factorization of the sequence P2 is:

pzl(P2) =
∏
k≥0

zk.

Proof. The proof of this theorem stems from Proposition 4.1, Lemma 4.1 and the
fact that the sequence (zn)n≥0 is increasing in the sense of the length. �
Example 4.1. The first factors of the pzl-factorization of P2 are:

pzl(P2) = (a, b, aa, ababa, baaabaaab, · · · ).
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4.2 Palindromic zl-factorization of the sequences Pq

Let us now consider, over Aq with q ≥ 3, the sequence of finite words (Zn)n≥0 defined
by:

Z0 = 0, and for all n ≥ 1,

Zn =

{
Sq(Zn−1)0 if n is even
0−1Sq(Zn−1) otherwise. (6)

Proposition 4.2. For all integers n, Zn is a palindromic factor of Pq.

Proof. We have Z0 = 0, Z1 = 1 and Z2 = 020 which are palindromic factors of Pq.
Suppose that the property is true up to the index n − 1 for n ≥ 3 and let us show
that it remains true for the index n. By hypothesis, Zk is a palindromic factor of Pq

for k ≤ n− 1. We distinguish two cases according to the parity of the integer k.
Case 1. k is even. Then, we have Zk = Sq(Zk−1)0. By induction hypothesis, Zk−1

is a palindromic factor of Pq and |Zk−1| > 2. So Zk is a palindromic factor of Pq, by
Theorem 3.1.
Case 2. k is odd. Then, we have Zk = 0−1Sq(Zk−1). Since |Zk−1| > 2 for k ∈
{3, 4, . . . , n−1} and Zk−1 is a palindromic factor of Pq by hypothesis, it follows that
the word 0−1Sq(Zk−1) = Zk is also a palindromic factor of Pq by Theorem 3.1. �

Lemma 4.2. For all integers n, Zn is not a factor of Zn+1.

Proof. For n = 0, Z0 = 0 is not a factor of Z1 = 1. Suppose that Zk is not a factor
of Zk+1, for k < n and let us show that Zn is not a factor of Zn+1. Let us assume
for the sake of contradiction that Zn is a factor of Zn+1, then there exist two finite
non-empty words u and v such that Zn+1 = uZnv.
Case 1. n is even. Then, by equality (6), we have:

Zn = Sq(Zn−1)0 and Zn+1 = 0−1Sq(Zn).

Moreover, Zn+1 does not begin with the letter 0 by Theorem 3.2. By Proposition
4.2, we can write Zn+1 = xwZnwx where x is different to the letter 0 and w a non-
empty word. It follows that, Sq(Zn) = 0Zn+1 = 0xwZnwx = 0xwSq(Zn−1)0wx, i.e,
Sq(Zn−1) is a factor of Sq(Zn). We deduce by Lemma 3.1 that Zn−1 is a factor of Zn.
This contradicts the induction hypothesis.
Case 2. n is odd. Then, by (6), we have :

Zn = 0−1Sq(Zn−1) and Zn+1 = Sq(Zn)0.

By Theorem 3.2, Zn+1 begins and ends with 0. Thus, Sq(Zn)0 = Zn+1 = 0wZnw0 =
0w′0Zn0w′0 = 0w′Sq(Zn−1)0w′0, for some non-empty words w and w′. Therefore,
Sq(Zn−1) is a factor of Sq(Zn). Hence, Zn−1 is a factor of Zn by Lemma 3.1. This
still contradicts the induction hypothesis.

Hence Zn is not a factor of Zn+1 for all integers n. �
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For all n ≥ 1, let us put:

Hn =
n−1∏
k=0

Zk.

The remark below gives us recursive writing of Hn.
Remark 4.1. For all integers n ≥ 2, we have:

Hn =

{
Sq(Hn−1) if n is even
Sq(Hn−1)0 otherwise.

Lemma 4.3. For all integers n, Zn is not a factor of Hn.

Proof. The property holds for the initial index. Suppose that Zj is not a factor
of Hj for j ≤ n − 1 and let us show that Zn is not a factor of Hn. For the sake of
contradiction, let us assume that Zn is a factor of Hn. Then, Hn = vZnw for some
non-empty words v, w. We separate the proof into two cases according to the parity
of the integer n.
Case 1. n is even. Then, Zn = Sq(Zn−1)0. Furthermore, we have Sq(Hn−1) = Hn =
vSq(Zn−1)0w, by Remark 4.1 and assumption. Thus Zn−1 is a factor of Hn−1, by
Lemma 3.1. This contradicts the induction hypothesis.
Case 2. n is odd. Then Zn = 0−1Sq(Zn−1). In addition, by Remark 4.1, we have
Hn = Sq(Hn−1)0. Since Zn does not begin with the letter 0 by Theorem 3.2 and
Hn ends with 0, we have Sq(Hn−1)0 = Hn = vZnw = v′0Znw

′0 = v′Sq(Zn−1)w
′0,

for some non-empty words v′ and w′. Thus Sq(Zn−1) is a factor of Sq(Hn−1). By
Lemma 3.1, we deduce that Zn−1 is a factor of Hn−1. This contradicts the induction
hypothesis. �
Theorem 4.2. The pzl-factorization of the sequences Pq is given by:

pzl(Pq) =
∏
k≥0

Zk.

Proof. We first show that the sequence (Hn)n≥0 is increasing in length, and then
that it constitutes increasingly long prefixes of Pq. Finally, we show that the Zn

which compose it are the pzl-factors of the sequences Pq.
• Since Zn �= ε, we have |Hn+1| > |Hn| for all n ≥ 0.
• Let us show by induction that (Hn)n≥1 is a sequence of prefixes of Pq.

For 1 ≤ n ≤ 2, we have respectively H1 = 0 = S0
q (0) and H2 = Z0Z1 = 01 = Sq(0)

which are prefixes of Pq. Suppose that Hn−1 is a prefix of Pq, for n ≥ 1. Then there
exists w, an infinite word, such that Pq = Hn−1w. According to the parity the
integer n, we have two cases:
Case 1. n is even. Then Hn = Sq(Hn−1), by Remark 4.1. Since Pq is a fixed point
of Sq, we get:

Pq = Sq(Hn−1w)

= Sq(Hn−1)Sq(w)

= HnSq(w).
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Case 2. n is odd. Then we have Hn = Sq(Hn−1)0 by Remark 4.1. Thereafter,

Pq = Sq(Hn−1w)

= Sq(Hn−1)Sq(w)

= Sq(Hn−1)0w’, because Sq(w) = 0w’ for some infinite word w’
= Hnw’.

Thus, for all integers n, Hn is a prefix of Pq.
• The sequence of finite words (Zn)n≥0 represents the pzl-factors of Pq. Indeed, Zn

is a palindromic factor of Pq according to Proposition 4.2. Moreover, Zn is neither a
factor of Zn+1 nor a factor of Hn, by Lemmas 4.2 and 4.3. In addition, the sequence
(Zn)n≥0 is increasing in the sense of length. Hence Zn is the shortest palindromic
prefix of ZnZn+1 · · · uni-occurrent in Hn+1 = Z0Z1 · · ·Zn.

Since (Hn)n≥1 is a sequence of prefixes of Pq with increasing length,

pzl(Pq) = lim
n→∞

Hn =
∏
k≥0

Zk.

�

Example 4.2. For q = 5, the first factors of the pzl-factorization of P5 are given
by:

pzl(P5) = (0, 1, 020, 10301, 02010401020, · · ·).

5 Palindromic c-factorization of the sequences Pq

We begin this section by constructing the sequence (pn)n≥0 of finite words over Aq

as follows:

p0 = ε and for all n ≥ 0, pn+1 = pnϑnpn with ϑn = n mod q.

The sequence (pn)n≥1 constitutes the sequence of palindromic prefixes of Pq.

Remark 5.1. For all integers n, pn+1 = Sq(pn)0.

Theorem 5.1. For all integers q ≥ 2, the pc-factorization of Pq is given by:

pc(Pq) =
∏
k≥0

Ck, with the sequence (Ck)k defined by:

• for q = 2, we have:

C0 = a, C1 = b, C2 = a, C3 = aa, C4 = b, C5 = ababa, C6 = aa, and for all k ≥ 7,

Ck =

{
S2(Ck−2)a if k is even
a−1S2(Ck−2) otherwise;
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• for q ≥ 3, we have:

C0 = 0 and for all k ∈ {1, 2, 3, . . . , q − 1},
{

C2k = pk,
C2k−1 = k.

(7)

C2q−1 = 00 and for all k ≥ 2q, Ck =

{
0−1Sq(Ck−2) if k is even
Sq(Ck−2)0 otherwise. (8)

For the proof of this theorem, we state the following lemmas.

Lemma 5.1. For all integers n, Cn is a palindromic factor of Pq.

Proof. We do the proof in case q ≥ 3, the case q = 2 being similar.
Case 1. n ∈ {0, 1, 2, 3, . . . , q − 1}, Cn is a palindromic factor of Pq. Indeed, Cn is
either a letter or a palindromic prefix pn.
Case 2. n = 2q − 1. So, C2q−1 = 00 is a palindromic factor of Pq.
Case 3. n ≥ 2q. Then, we continue the demonstration by induction on the integer n.
The property holds for the initial index. Indeed, C2q = 0−1Sq(C2q−2) = 0−1Sq(pq−1)
which is a palindromic factor of Pq, by Theorem 3.1. Suppose that Cn is a palin-
dromic factor of Pq for n ≥ 2q and let us show that it is the same for Cn+1. We
distinguish two cases according to the parity of the integer n.

• If n is even then, by (8), we have Cn+1 = Sq(Cn−1)0. By hypothesis, Cn−1 is
a palindromic factor of Pq with |Cn−1| > 2. Thus Cn+1 is a palindromic factor
of Pq, according to Theorem 3.1.

• If n is odd, then we have Cn+1 = 0−1Sq(Cn−1), by the equality (8). By a similar
reasoning to the even case, we show that Cn+1 is a palindromic factor of Pq.

�

For all n ≥ 1, let us put:

Ωn =
n−1∏
k=0

Ck.

Remark 5.2. For all integers n ≥ 2q, we have:

Ωn =

{
Sq(Ωn−2)0 if n is even
Sq(Ωn−2) otherwise.

Lemma 5.2. For all integers n ≥ 2q, Ωn contains at least two occurrences of Cn−1.

Proof. Let us proceed by disjunction of cases according to the parity of the integer n.
Case 1. For n = 2q, the property holds. Suppose that Ω2n has at least two occur-
rences of C2n−1, for n ≥ 2q. Let us show that Ω2n+2 has at least two occurrences of
C2n+1. By the induction hypothesis, there exist some non-empty finite words v1, v2,
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and v possibily empty, such that Ω2n = v1C2n−1vC2n−1v2. By Remark 5.2, we get
the following equalities:

Ω2n+2 = Sq(Ω2n)0

= Sq(v1C2n−1vC2n−1v2)0

= Sq(v1)Sq(C2n−1)Sq(v)Sq(C2n−1)Sq(v2)0

= Sq(v1)Sq(C2n−1)0v
′Sq(C2n−1)0v

′
20, because Sq is prolongable in 0

= Sq(v1)C2n+1v
′C2n+1v

′
20, by equality (8).

Case 2. Suppose that Ω2n+1 has at least two occurrences of C2n, for n ≥ 2q+1. Let
us then show that Ω2n+3 has at least two occurrences of C2n+2. By Remark 5.2 and
with a similar reasoning to the previous case, we obtain the result. �

Proof of Theorem 5.1. By Remark 5.2 and the equalities (7), (8), we deduce
that the words Ωn are increasingly long prefixes of Pq. The Lemmas 5.1 and 5.2
assure us that for all n ≥ 0, Cn is a palindromic factor and at least bi-occurring in
Ωn+1 = C0C1 · · ·Cn−1Cn. As a result, it represents a palindromic Crochemore factor
of Pq. Thus

pc(Pq) = lim
n→∞

Ωn =
∏
k≥0

Ck.

�

Example 5.1. For q = 5, the first factors of the pc-factorization of P5 are given by:

pc(P5) = (0, 1, 0, 2, 010, 3, 0102010, 4, 010201030102010, 00, · · · ).
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