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Abstract

Let H be a connected graph of order at least 3 and G be a nonempty
graph. The H-line graph of G, denoted by HL(G), is that graph whose
vertices are the edges of G and where two vertices of HL(G) are adjacent
if they are adjacent in G and lie in a common copy of H. For each
nonnegative integer k, let HLk(G) denote the k-th iteration of the H-
line graph of G. We say that the sequence {HLk(G)} converges if there
exists a positive integer N such that HLk(G) ∼= HLk+1(G) for every
k ≥ N , and for n ≥ 3 we set Λn as the set of all graphs G whose
sequence {HLk(G)} converges when H ∼= Pn. The sets Λ3,Λ4 and Λ5

have been characterized. To progress towards the characterization of Λn

in general, this paper defines and studies the following property: a graph
G is minimally n-convergent if G ∈ Λn but no proper subgraph of G is
in Λn. In addition, we prove conditions that imply divergence, and use
these results to develop some of the properties of minimally n-convergent
graphs.

1 Introduction

In this paper all graphs are finite, simple, and undirected. If S ⊆ V (G), then G− S
is used to denote the graph G where every vertex in S has been removed. Similarly,
G− v is used when S = {v}

Let H and G be graphs such that H is a connected graph of order at least 3, and
G is a nonempty graph. Two edges e and f in a graph G are said to be H-adjacent
if the edges are adjacent and lie in a common subgraph isomorphic to H. Define
the H-line graph of G, or HL(G), as that graph whose vertices are the edges of G
and where two vertices of HL(G) are adjacent if they are H-adjacent in G. Figure 1
shows an example of graphs G and HL(G), where H ∼= P5. Notice that the edges e1
and e2 are adjacent and lie in a P5 in G. By definition, it follows that e1 and e2, as
vertices, are adjacent in HL(G). On the other hand, edges e2 and e3 are adjacent in
G but do not lie in any common P5. This leads to e2 and e3, as vertices, not being
adjacent in HL(G).
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Figure 1: A graph and its H-line graph when H ∼= P5.

For k ≥ 0, define HLk+1(G) = HL(HLk(G)) where HL0(G) = G. The sequence
{HLk(G)} is said to converge if there exists an integer N such that HLN(G) ∼=
HLN+1(G). If the empty graph is part of the sequence, then the sequence is said
to terminate. If the sequence does not converge nor terminate, then the sequence
is said to diverge. Further, we call a graph F a limit graph if F ∼= HL(F ). Figure
2 shows a graph G that is a limit graph when H ∼= P10. For convenience, if the
sequence {HLk(G)} converges, we say that G is H-convergent, and similarly we say
G is H-divergent when {HLk(G)} diverges.

Figure 2: A limit graph with H ∼= P10.

Some special cases of H have been studied. The one studied the most by far is
when H ∼= P3. If such is the case, then HL(G) = L(G), the well-known line graph
of G. With the exception of P3, most of the research surrounding H-line graphs
pertains to the characterization of H-convergent graphs. In [2], Chartrand et al.
proved that no graph G is H-convergent when H ∼= K1,n for n ≥ 3 or when H ∼= Kn

for n ≥ 4. In [5], Jarrett proved that G is C3-convergent if and only if C3 is a
subgraph of G. In [3], Chartrand et al. proved that if G has a subgraph isomorphic
to C4 but G contains no subgraph isomorphic to K1 +P4, P3×K2, K2,3 or K4, then
G is C4-convergent. However, a counterexample to the converse is also provided.
Note that each of these four graphs have C4 as a subgraph. This demonstrates that
the result in [5] for C3 does not generalize easily.

This paper will focus on the case when H ∼= Pn for n ≥ 4 as the case in which
n = 3 corresponds to the line graph. Define Λn as the set of all graphs G that
are Pn-convergent. In [6], Chartrand proved that Λ3 is composed of graphs whose
components are cycles or K1,3. In [2], Chartrand et al. proved that Λ4 and Λ5 are
composed of graphs whose components are cycles of order at least 4 or 5, respectively,
and the graphs in Figure 3. Characterizing Λn in general becomes harder as n
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increases because new types of behaviour become possible. For example, Britto-
Pacumio in [4] found and studied disconnected Pn-convergent graphs that had Pn-
divergent components. See Figure 4 for an example found in [4]. If G′ is a component
of this graph, then G′ 6∼= HL(G′) yet G′ ∼= HL2(G′), so G′ is Pn-divergent but
G = G′ ∪HL(G′) is Pn-convergent. This complex behaviour does not happen when
n = 4, 5, and so the proofs that characterize Λ4 and Λ5 are difficult to replicate for
a general n.

Figure 3: To the left, one graph in Λ4, and to the right, three graphs in Λ5.

Figure 4: A disconnected limit graph when H ∼= P16.

To develop a route towards the characterization of Λn, we will study a subset of
this set. We say that G is minimally n-convergent if G ∈ Λn but no proper subgraph
of G is in Λn. Further, let λn be the set of all graphs with this property. This def-
inition is partially motivated by the graphs in Λ5 shown in Figure 4 since requiring
that a graph is minimally n-convergent eliminates the unnecessary structure. Mini-
mal n-convergence, additionally, still captures the complex behavior shown in Figure
4 as this graph is minimally n-convergent.

The content of this paper is separated into two parts. The first one, Section
2, deals with conditions that imply divergence, along with a way to study this
behaviour. The second part, Section 3, deals with the properties of minimal n-
convergence with results proven by using the ones developed in Section 2. At the
end of Section 3, we also provide a small summary of the ways in which the study
of minimally n-convergent graphs can progress.
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2 Conditions that imply divergence

Knowing the conditions that make a sequence diverge facilitates the study of se-
quences that do converge as they provide the properties that need to be avoided.

We start by categorizing divergence. Although not obvious at first, there are
two kinds of divergence. The first is divergence by order. The sequence {HLk(G)}
diverges by order if for every positive integer N , there exists an integer k such that
|V (HLk(G))| ≥ N . Further, we say G is H-divergent by order if {HLk(G)} diverges
by order.

The second kind of divergence is when the order is bounded yet the sequence of
G does not converge. It is easy to generate graphs that are Pn-divergent by order.
The other type of divergence is more difficult to obtain. In fact, the first paper on
iterated H-line graph sequences, [2], conjectured that the second kind does not exist.
Not much is known about the second kind of divergence, but we do know that it
exists. As mentioned above, the connected graphs G such that G 6∼= HL(G) but
G ∼= HL2(G) presented in [4] are an example of a graph with this kind of divergence.
An important observation we will use in future proofs is that if G has a Pn-divergent
by order subgraph, then G is Pn-divergent by order.

We start by covering two conditions that are known to cause divergence by order.
For the first one we need to define a specific class of graphs. Let Gr

m for r ≥ 1 and
m ≥ 3 be a unicyclic graph of order m + r whose cycle has size m and where one
of the vertices in the cycle is adjacent to a pendent vertex of a path of order r. See
Figure 5 for an example. We have the following result due to Manjula in [1].

Figure 5: The graph G2
4.

Theorem 2.1. [1] If n = m+ r, then the sequence {HLk(Gr
m)} converges to Cm+r

in r iterations. Further, if m+ r > n, then the sequence diverges by order.

Since the class of graphs Gr
m where m+r = n arises frequently, denote this family

by δn, that is,
δn = {Gr

m : r +m = n}.
Notice that if G ∈ δn, then the sequence of any proper subgraph of G terminates.
Thus, δn ⊂ λn.

The second known condition that implies divergence that we will use also requires
us to define another class of graphs. For m ≥ 4, define Fm to be the graph of order
m and size m + 1 consisting of a cycle of size m chorded by an edge that joins two
vertices whose distance is 2. The following result is due to Chartrand et al. in [2].
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Theorem 2.2. [2] For n ≥ 4 and m ≥ n, the graph Fm is Pn-divergent by order.

We use these two previous results to prove the following. Define the circumference
of G, or cr(G), as the size of the largest cycle in G, and where cr(G) = 0 if G is a
forest.

Theorem 2.3. Let G′ ⊆ G be a connected subgraph. If cr(G′) = m ≥ n but G′ 6∼= Cm,
then G is Pn-divergent by order.

Proof. If a component of G is Pn-divergent by order, then G is Pn-divergent by order
as well. Thus, we may assume that G = G′. Note that since G 6∼= Cm, then there
exists an edge e = uv not in the cycle such that v is in the cycle. There are two
cases.

The first case is when u is in the cycle. Let G0 ⊆ G contain the cycle and the
edge e. Further, set N(u) = {v, u1, u2} and N(v) = {u, v1, v2} such that the vertices
are labeled as in Figure 6. Since m ≥ n, the sequence v1, ..., u1, u, v, v2, ..., u2 is a path
of order at least n. Thus, e1 and e4 are Pn adjacent to e. By making a similar path,
we notice that e2 and e3 are Pn-adjacent to e as well. Figure 7 gives a subgraph of
HL(G0) which, as can be seen, is isomorphic to Fm+1. By Theorem 2.2, a subgraph
of HL(G0) is Pn-divergent by order, and so G is Pn-divergent by order thus finishing
this case.

Figure 6: The subgraph G0 of G.

Figure 7: A subgraph of HL(G0).

The second case is when u is not in the cycle. This case, however, is a very simple
case because then G has G1

m as a subgraph. Since m ≥ n, it follows that m+ 1 > n
so by Theorem 2.1 the sequence of G diverges by order.
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Theorem 2.3 is important because it shows that if the sequence of a connected
graph G ∈ Λn ever reaches a point where HLk(G) has a subgraph isomorphic to Cm

where m ≥ n, then HLk(G) is in fact isomorphic to Cm. Although this condition is
sufficient, we conjecture that it is also necessary.

Conjecture 2.4. A graph G is Pn-divergent by order if and only if there exists a k
such that HLk(G) has a connected subgraph G′ where cr(G′) = m ≥ n but G′ 6∼= Cm.

Proving the above conjecture is just one step in understanding the structures that
cause divergence. In particular, a characterization of the graphs G whose sequence
ends up satisfying the condition of Theorem 2.3 would be beneficial.

We now provide another type of graph that is Pn-divergent by order. Let the
graph CL[x, y, z] be the graph with order x + y + z + 1 composed of three vertex
disjoint paths of orders x, y and z respectively, and a vertex that is adjacent to a
pendent vertex of each path. Observe that CL[1, 1, 1] is the claw K1,3.

Theorem 2.5. If n and k are integers such that k + 1 < n ≤ 2k, then CL[k, k, n−
k − 1] is Pn-divergent by order.

Proof. Set d = n−k−1. We start by noticing that HL(CL[k, k, d]) is isomorphic to
a unicyclic graph with C3 as its cycle and where each vertex in the cycle is adjacent
to a path of order k − 1 or d− 1. See Figure 8 for HL(CL[k, k, d]) and its indexation.

Figure 8: The graph HL(CL[k, k, n− k − 1]).

Notice that there is a path of order (k−1)+3+(d−1) (which is equal to n) that
includes the edges a1a and ab. Similarly, there exists a similar path of order at least
n that contains the edges a1a and ac. In general, we notice that HL2(CL[k, k, d])
has the graph of Figure 9 as a subgraph.

It is important to remark that the graph of Figure 9 is a subgraph of
HL2(CL[k, k, d]). In particular, the edges uv, uw and vw belong to HL2(CL[k, k, d]).
Nonetheless, this subgraph is enough to cause the sequence to diverge by order. Fur-
ther, note that Figure 9 does not use the same labelings that were used in Figure
8. For example, the vertex labeled as a in Figure 9 corresponds to the edge a1a in
Figure 8. The case is similar for b and c. We do the labeling this way so that we
can illustrate better what will happen in HLm(CL[k, k, d]). Before going into these
details, notice that in HL2(CL[k, k, d]), there is a path of order (k− 2) + 5 + (d− 2)
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Figure 9: A subgraph of HL2(CL[k, k, n− k − 1]).

(which is equal to n) that includes the edges a1a and au. Similarly, there is a path
that contains a1a and av. We can make similar statements for vertex b.

In general, assume that the mth iteration of the sequence has a unicyclic subgraph
with three vertices a, b, and c on the cycle, where each of a and b are adjacent to a
path of order k −m, and c is adjacent to a path of order d −m. Further, assume
that any two vertices in {a, b, c} have distance m. If a1 is the vertex adjacent to a
in the path, then a1a will be in a path of order (k −m) + (m + 1 + m) + (d −m),
which is equal to n. Through similar arguments for the other vertices adjacent with
a, and by repeating this with b and c, we conclude that the (m + 1)th iteration will
have a subgraph with these same properties. Finally, since HL(CL[k, k, d]) has this
property, then every graph in the sequence up to the dth iteration has it.

This is enough to prove divergence by order because then HLd(CL[k, k, d]) will
have a subgraph isomorphic to Gk−d

3d . Since k− d+ 3d > n, Theorem 2.1 guarantees
that this subgraph is Pn-divergent by order and thus CL[k, k, n−k−1] is Pn-divergent
by order too.

Corollary 2.6. Let v be the vertex with degree 3 in CL[x, y, z], where x, y, and z
are integers. If the edges incident to v are pairwise Pn-adjacent, then CL[x, y, z] is
Pn-divergent by order.

Proof. Let P1, P2 and P3 be the three paths joined by the vertex v where |V (P1)| =
x, |V (P2)| = y, and |V (P3)| = z. Notice that x + y + 1 ≥ n, so y ≥ n − 1 − x. For
now, assume that y = n − x − 1. Since y + z + 1 ≥ n, it follows that z ≥ x. As
a consequence, the fact that z + x + 1 ≥ n implies that 2x ≥ n. Thus, CL[x, y, z]
has as a subgraph isomorphic to CL[x, n − x − 1, x] where 2x ≥ n. By Theorem
2.5, CL[x, n− x− 1, x] is Pn-divergent by order, implying that CL[x, y, z] is P − n-
divergent by order. If it is the case that y > n− x− 1, then CL[x, n− x− 1, z] is a
subgraph of CL[x, y, z] and the same proof applies.

We will prove one more condition that implies divergence by order. For it, we
need one more result due to Chartrand et al. in [2].

Theorem 2.7. [2] If G is a connected graph, then HL(G) contains at most one
component that is not an isolated vertex.
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We remind the reader that two graphs G1 and G2 are not equal if and only if
V (G1) 6= V (G2) or E(G1) 6= E(G2), and that this is possible even if G1

∼= G2. Our
next result is that G is Pn-divergent by order if G contains two distinct subgraphs
from the family δn = {Gr

m : r +m = n}.

Theorem 2.8. Let G1, G2 ∈ δn be subgraphs of the same component of G. If G1 6=
G2, then G is Pn-divergent by order.

Proof. We may assume that G is connected. Set G1
∼= Gr1

m1
and G2

∼= Gr2
m2

. We
first consider the case where G1 6∼= G2. Without loss of generality, assume that
r1 < r2. Theorem 2.1 implies that HLr1(G1) ∼= Cn. Since r1 < r2, we have that
HLr1(G2) 6∼= Cn. Thus HLr1(G) will have a subgraph isomorphic to Cn, but since
the sequence of G2 does not terminate, it follows that HLr1(G) 6∼= Cn. By Theorem
2.3, G is Pn-divergent by order.

Assume then that G1
∼= G2. Set m = m1 = m2 and r = r1 = r2. Note that

HLr(G1) ∼= HLr(G2) ∼= Cn, and the edges in both G1 and G2 will be the vertices
of a cycle of size n in HLr(G). Further, observe that if E(G1) = E(G2), then
V (G1) = V (G2) since G1

∼= G2, so it must be that E(G1) 6= E(G2). Thus, HLr(G)
will contain two different cycles of size n in the same component (we know that they
are in the same component by Theorem 2.7). This satisfies the condition of Theorem
2.3, and so G is Pn-divergent by order.

The natural generalization of this theorem is: if G has a component containing
distinct subgraphs G1 and G2 such that G1, G2 ∈ Λn, then G has a sequence that
diverges by order. Nonetheless, Figure 10 shows a counterexample to this. For a
conjecture, we need to make one of these conditions stronger.

Conjecture 2.9. Let G be a connected graph, and let G1 and G2 be subgraphs of
G. If G1 6∼= G2 and G1, G2 ∈ Λn, then G has a sequence that diverges by order.

Figure 10: A graph whose sequence converges when H ∼= P8.
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3 Properties of minimal n-convergence

3.1 Basic properties

We start by reminding the reader of the definition of minimally n-convergent graphs.

Definition 3.1. A graph G is said to be minimally n-convergent if G ∈ Λn but no
proper subgraph of G in Λn. Further, let λn be the set of all minimally n-convergent
graphs.

Notice that every graph G ∈ Λn has a subgraph G′ ⊆ G such that G′ ∈ λn. This is
why studying minimal n-convergence can be far reaching: obtaining properties about
graphs in λn gives us properties about some subgraph of every graph in Λn. We will
spend the rest of the paper developing results related to minimal n-convergence.
Although the next result is easy to obtain, it provides a template for how to use the
definition of minimal n-convergence in proofs.

Lemma 3.2. If G ∈ λn, then every edge in G is in a copy of Pn.

Proof. Suppose to the contrary that there exists G ∈ λn with an edge e not belonging
to a subgraph isomorphic to Pn. First, notice that e is an isolated vertex in HL(G),
as otherwise there exists an edge f ∈ E(G) such that e is Pn-adjacent to f , meaning
that there exists a path Pn containing both e and f which would contradict our
assumption that e is not in a Pn. Thus, the edge e is an isolated vertex in HL(G).
From G ∈ Λn, we know that HL(G) ∈ Λn, and since e is an isolated vertex in
HL(G), it follows that HL(G)− e ∈ Λn also.

Since e is not Pn-adjacent to f for every f ∈ E(G), it follows that E(HL(G −
e)) = E(HL(G) − e). Also, from the definition of H-line graphs we also know that
V (HL(G − e)) = V (HL(G) − e), so we conclude that HL(G − e) = HL(G) − e.
But then HL(G − e) ∈ Λn, so G − e ∈ Λn. This contradicts that G is minimally
n-convergent thus finishing the proof.

Notice that Lemma 3.2 implies that if G ∈ λn, then HL(G) has no isolated
vertices. This contributes to the notion that every edge in G contributes to the
structure of HL(G) when G is minimally n-convergent.

Lemma 3.3. Let G ∈ λn, and assume both that G 6∈ δn and that G is not a cycle.
Further, let P be a non-extendable path in G that has order at least n. If p1 and p2
are the pendent vertices in P , then p1 and p2 are pendent vertices in G.

Proof. Consider the case in which G is connected. If G is disconnected, the proof
applies to one of its components. Assume, for a contradiction, that p1 is not a
pendant vertex in G. Since P cannot be extended, then p1 must be adjacent to some
vertex p of P . If p = p2, then G has a cycle of size at least n. By hypothesis, G
is not a cycle so G 6∼= Cn, so by Theorem 2.3, it follows that G has a sequence that
diverges by order, which is a contradiction. If p 6= p2, then the subgraph of P with
the edge p1p is a subgraph G0 isomorphic to Gr

m for some r and m. Since P has
order at least n, it follows that r + m ≥ n. However, it cannot be the case that
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r+m > n since G would have a sequence that diverges in order by Theorem 2.1. So
r+m = n. However, Theorem 2.1 implies that G0 ∈ Λn. And since G 6∈ δn, then G0

is a proper subgraph of G. This contradicts that G is minimally n-convergent thus
finishing the proof.

Lemma 3.4. If G ∈ λn, then HL(G) has the same number of components as G.

Proof. Every component in G has every edge in a Pn by Lemma 3.2, so if G′ is a
component of G, it is not possible for HL(G′) to have an isolated vertex. Thus, by
Theorem 2.7, HL(G′) is connected. In other words, every component of G generates
exactly one component in HL(G).

3.2 Minimal n-convergence and unicyclicity

Knowing the structure of minimally n-convergent graphs can facilitate multiple
proofs. We have the following conjecture about the structure of these graphs.

Conjecture 3.5. If G ∈ λn, then G has unicyclic components.

Establishing this conjecture can be very helpful when proving statements about
minimally n-convergent graphs as it provides us with one and only one cycle to work
with. Further, since every graph G ∈ Λn has a subgraph in λn, Conjecture 3.5 would
prove that no tree has a Pn-convergent sequence. We will use the rest of the paper
to give results related to this conjecture. For this purpose, we need to study more
carefully the relationship between H-line graphs and the property of unicyclicity.

Definition 3.6. Let C be the unique cycle in a unicyclic graph G.

• The subgraph A of G is called an arm if A is a component of G− V (C).

• The armset of G, denoted by A(G), is the set

A(G) := {A : A is an arm of G}.

• The vertex r ∈ V (C) is a called a root if r is adjacent to some vertex in an
arm A ∈ A(G).

• The root identifier function, denoted by AG : A(G) → V (C), is the function
that takes A to the vertex of C that is adjacent to some vertex in A.

Note that AG is well defined because if there were two roots r1 and r2 associated
with an arm A, then G would not be unicyclic. Further, it is not necessary for AG

to be a one-to-one function. In particular, there exists unicyclic graphs G ∈ Λn that
have roots adjacent to multiple arms. For instance, the graph in Figure 10 has 4
roots but 8 arms. We need a result due to Britto-Pacumio in [4]. Remember that
the circumference of G, or cr(G), is the size of the largest cycle in G, and where
cr(G) = 0 if G is a forest.



A. CARBONERO/AUSTRALAS. J. COMBIN. 83 (3) (2022), 348–360 358

Theorem 3.7. [4] If G is unicyclic and every edge of G is in a Pn, then cr(HL(G))
≥ cr(G).

Corollary 3.8. Let G ∈ λn. If G is unicyclic, then HL(G) is not a tree.

The proof of the above corollary is immediate from Lemma 3.2 and Theorem 3.7.
The rigid structures of unicyclic graphs allows for many proof techniques that make
use of roots and arms.

Lemma 3.9. Let G ∈ Λn such that G is unicyclic. If e is an edge in an arm of G,
then e cannot be in a cycle of HL(G).

Proof. Let C be the unique cycle of G. For a contradiction, assume that there exists
an arm A ∈ A(G) and a cycle C ′ in HL(G) such that e ∈ E(A) and e ∈ V (C ′). Set
C ′ : e1, ..., ep, e1 where ei ∈ E(G). Without loss of generality, assume that e = e1,
and let v be the vertex in G incident to both e1 and e2. Since both vertices incident
to e are in A, we have that v ∈ V (A). Let f be the edge incident to AG(A), the root
of A, and to some vertex u in A, the vertex in A adjacent to the root.

Notice that ei 6= ej for i 6= j. If there exists an i such that ei ∈ E(C), then
f would be in the sequence e1, e2, ..., ei. However, f would also need to be in the
sequence ei, ei+1, ..., ep, e1. Since f is not in the arm, we have that f 6= e1 and f 6= ei,
so then we have a repeated element in the sequence e1, ..., ep, which is a contradiction.
Thus, ei 6∈ E(C) for every i. In other words, every vertex of the cycle C ′ must be
either in A or be f . Since A is a tree, we have that every edge in V (C ′) must be
incident to the same vertex as otherwise we can craft a similar argument to the case
where there is an edge in the cycle of G. So every edge ei is incident to v.

Figure 11: An illustration of a subgraph of G.

If p = 3, then the graph contains a claw where the edges incident to v, which
would be {e1, e2, e3}, are pairwise Pn-adjacent. By Corollary 2.6, the graph has a
divergent sequence, which is a contradiction. Thus, p > 3. There exists a unique path
between v and AG(A). Without loss of generality, assume that this path contains
the edge ep. See Figure 11. Let ei = vvi for every i. Let Pi denote the longest path
that has as an endpoint vi and which does not contain the edge ei. For ep−1, ep, e1
and e2, denote the order of those paths by kp−1, kp, k1 and k2 respectively. Since e1 is
Pn-adjacent to e2, it follows that k1 + k2 + 1 ≥ n, or k1 + 1 ≥ n− k2. Furthermore, it
is not the case that e1 is Pn-adjacent to ep−1 because then {e1, ep, ep−1} would be a
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set of pairwise Pn-adjacent edges in a claw, giving a contradiction by Corollary 2.6.
Thus, k1 + kp−1 + 1 < n. Combining both inequalities, we get that

n− k2 + kp−1 ≤ kp−1 + k1 + 1 < n,

so kp−1 < k2. By applying the same arguments, we also get that kp + 1 ≥ n − kp−1
and kp + k2 + 1 < n. Combining both inequalities, we get that

k2 + n− kp−1 ≤ k2 + kp + 1 < n,

so k2 < kp−1, a contradiction.

Corollary 3.10. Let G ∈ Λn such that G is unicyclic. If r is a root, then the edges
incident to r cannot induce, as vertices, a graph with a cycle of order 4 or more in
HL(G).

The corollary follows from the same proof technique used for Lemma 3.9: if G
is a counterexample, then the cycle C ′ in HL(G) contradicting Corollary 3.10 leads
to contradictory inequalities. We now have all the tools needed for our last result.
Remember that the girth of a graph G, denoted by g(G), is the size of the smallest
cycle in G.

Theorem 3.11. Let G ∈ λn such that g(HL(G)) > 4. If G has unicyclic compo-
nents, then HL(G) has unicyclic components.

Proof. We may, again, assume G is connected as the proof applies to each component
of G if G is disconnected. Since G is unicyclic and is in λn, it follows that HL(G)
must have a cycle.

For a contradiction, assume that there exists two cycles C1 and C2 in HL(G)
such that C1 6= C2. Corollary 3.10 and g(HL(G)) > 4 imply that no root is incident
to every edge of C1 or C2. Since no edge in the arms can be in a cycle of HL(G), it
must be that every edge in the cycle of G is in a cycle of HL(G). Set C as the cycle
of G, so E(C) ⊆ V (C1) and E(C) ⊆ V (C2). Since C1 6= C2, there must exists an
edge e ∈ C1 that is not in C2. This edge cannot be in C so it is incident to a root
r. Set E(r) as the set of edges incident to r, and let E(r)∩E(C) = {f1, f2}. But f1
and f2 are both in V (C1) and V (C2), so

(E(r) ∩ V (C1)) ∪ (E(r) ∩ V (C2))

induces at least one cycle in HL(G). Every edge in this cycle is incident to r, which
contradicts Corollary 3.10.

Requiring that g(HL(G)) > 4 is most likely not necessary for the previous state-
ment to remain true. Finding a proof that avoids using this assumption is desirable,
but probably hard. To continue the study of minimally n-convergent graphs, we
propose two directions. The first direction is working more towards the proof of
Conjecture 3.5. One roadmap to such a proof is the following. First, verify that if
G ∈ λn, then HL(G) ∈ λn (such a statement sounds easy to prove but we could



A. CARBONERO/AUSTRALAS. J. COMBIN. 83 (3) (2022), 348–360 360

not do it). Second, confirm that limit graphs have unicyclic components. Lastly,
improve Theorem 3.11 by removing the assumption that g(HL(G)) > 4. This, in
turn, proves Conjecture 3.5.

A second direction to study λn, which has not been discussed in detail in this
paper, is establishing the veracity of the following conjecture.

Conjecture 3.12. If G ∈ Λn and G is not the disconnected union of two graphs in
Λn, then there exists a unique graph G′ in λn such that G′ ⊆ G.

The existence of G′ is already known. The conjecture adds that this graph is
unique. This would imply that Pn-convergent graphs are actually just variations of
graphs in λn. In other words, characterizing Λn would heavily depend on character-
izing λn. Proving Conjecture 3.12, however, needs a more thorough development of
the theory of minimal n-convergence (for instance, proving Conjecture 3.5). A good
starting point for this direction is to prove or disprove Conjecture 2.9, as it deals
with the Pn-convergence of graphs that have distinct Pn-convergent subgraphs.
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