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Abstract

A graph G is (doubly) chorded pancyclic if G contains a (doubly) chorded
cycle of every possible length m for 4 ≤ m ≤ |V (G)|. In 2018, Cream,
Gould, and Larsen completely characterized the pairs of forbidden sub-
graphs that guarantee chorded pancyclicity in 2-connected graphs. In
this paper, we show that the same pairs also imply doubly chorded pan-
cyclicity. We further characterize conditions for the stronger property of
doubly chorded (k,m)-pancyclicity where, for k ≤ m ≤ |V (G)|, every
set of k vertices in G is contained in a doubly chorded i-cycle for all
m ≤ i ≤ |V (G)|. In particular, we examine forbidden pairs and degree
sum conditions that guarantee this recently defined cycle property.
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1 Introduction

Various cycle properties of claw-free graphs have been well-studied throughout his-
tory (see [10]). One important cycle property is pancyclicity. A graph is pancyclic
if it contains at least one cycle of every possible length from three to the order of
the graph. Many variations of pancyclicity have been of recent interest in the field.
In this paper, we define and consider extensions of two variations of pancyclicity:
chorded pancyclity, which was recently defined by Cream, Gould, and Larsen [9];
and (k,m)-pancyclicity, a notion introduced by Faudree, Gould, Jacobson, and Les-
niak in 2004 [11]. A chorded cycle is a cycle containing at least one edge between
vertices that are non-adjacent on the cycle. We call such an edge a chord. A graph G
of order n is chorded pancyclic if it contains a chorded cycle of every possible length
i, for 4 ≤ i ≤ n, and G is (k,m)-pancyclic if, for k ≤ m ≤ n, every set of k vertices
in G is contained in a cycle of every possible length i, for m ≤ i ≤ n.

Our property extensions add chords to the aforementioned cycle properties. In
particular, we define the properties of doubly chorded pancyclicity and (doubly)
chorded (k,m)-pancyclicity as follows. A graph G of order n is doubly chorded
pancyclic if it contains a doubly chorded cycle of every length i for 4 ≤ i ≤ n.
Further, G is (doubly) chorded (k,m)-pancyclic if, for k ≤ m ≤ n, every set of k
vertices in G is contained in a (doubly) chorded cycle of every length i for m ≤ i ≤ n.
Our results explore forbidden subgraphs and degree conditions that guarantee these
new properties in graphs.

In 1971, Bondy [1] published his famous metaconjecture that states, “Almost any
non-trivial condition that implies a graph is Hamiltonian, also implies that the graph
is pancyclic.” Nearly 50 years later, this metaconjecture was extended when results of
Cream, Gould, and Hirohata suggested that conditions implying Hamilitonicity also
imply the stronger property of chorded pancyclicity [8]. The work of Chen, Gould,
Gu, and Saito [2] further supports extending Bondy’s metaconjecture to chorded
pancyclicity. Our results suggest that this metaconjecture may be further extended
to the newly defined variations of pancyclicity.

In this article, we consider only finite simple graphs. Further, we let G be a
graph of order n with vertex set V (G) and edge set E(G). Pt is a path containing
t vertices, and we call a cycle with m vertices an m-cycle, denoted Cm. Let C be a
cycle with a given orientation and x ∈ V (C). Then x+ denotes the first successor
of x on C and x− denotes the first predecessor of x on C. If x, y ∈ V (C), then
C[x, y] denotes the path of C from x to y (including x and y) in the given direction
on the cycle C. We denote the neighborhood of a vertex v in V (G) by NG(v), that
is NG(v) = {x ∈ V (G)|xv ∈ E(G)}. The degree of v in G is |NG(v)| and is denoted
degG(v). Let W be a subset of the vertices in V (G). Then NG(W ) is the set of
all neighbors of the vertices in W in V (G) \ W . Further, NW (v) = NG(v) ∩ W
and degW (v) = |NW (v)|. To denote the subgraph induced by the vertices of W we
use 〈W 〉. Let H be a subgraph of G. For v ∈ V (G) − V (H) we denote NH(v) =
NG(v) ∩ V (H) and degH(v) = |NH(v)|.

Many of our results focus on forbidden subgraphs. We say G is H-free if G does
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Z1 Z2

Figure 1: The graphs Z1 and Z2

not contain H as an induced subgraph, and we call H a forbidden subgraph of G.
In particular, we focus on the claw (K1,3), certain paths, and the graphs Z1 and Z2

(shown in Figure 1) as forbidden subgraphs.

We also consider the following degree sum condition of a graph G:

σ2(G) = min{degG(u) + degG(v) | u, v ∈ V (G), uv �∈ E(G)}.

By convention we define σ2(G) = ∞ when G is the complete graph, Kn. For terms
not defined here, see [15] for more information.

2 Doubly Chorded Pancyclicity

In this section, we examine extensions of chorded pancyclicity to doubly chorded
pancyclicity. We begin with two results on chorded pancyclicity by Cream, Gould,
and Larsen [9].

Theorem 2.1. (Cream, Gould, and Larsen [9]). Let G be a 2-connected, {K1,3, R}-
free graph of order n. Then G is chorded pancyclic if any of the following conditions
are satisfied:
(i) R = P4 and n ≥ 5,
(ii) R = P5 and n ≥ 8, or
(iii) R = P6 and n ≥ 13.

These results are sharp with respect to n.

Theorem 2.2. (Cream, Gould, and Larsen [9]). Let G be a 2-connected, {K1,3, R}-
free graph of order n ≥ 10. Then if R = Z1 or R = Z2, then G = Cn or G is chorded
pancyclic.

Theorem 2.3, 2.4, and 2.5 are extensions of Theorem 2.1, and Theorem 2.6 and
2.7 are extensions of Theorem 2.2. In order to prove these results, we introduce the
following lemmas that establish that (chorded) cycles of sufficient length must be
doubly chorded with respect to each forbidden pair.

Lemma 2.1. Let G be a 2-connected, {K1,3, R}-free graph. Then any m-cycle must
be doubly chorded if any of the following conditions are satisfied:
(i) R = P4 and m ≥ 5,
(ii) R = P5 and m ≥ 6, or
(iii) R = P6 and m ≥ 7.
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Proof. To prove part (i), let C be an m-cycle in G for any m ≥ 5. Since G is P4-free,
choosing any P4 contained in C implies the existence of one of three possible edges,
any of which form a chord on C. Then, we can choose a different P4 on C containing
exactly one endpoint of the chord. This P4 again must not be induced, which implies
the existence of an edge that will add a second chord to C. So C is doubly chorded.
The proof of parts (ii) and (iii) follow similarly.

Lemma 2.2. Let G be a 2-connected, {K1,3, R}-free graph. Then any chorded m-
cycle C must also be doubly chorded if any of the following conditions are satisfied:
(i) R = Z1 and m ≥ 5, or
(ii) R = Z2 and m ≥ 6.

Proof. To prove part (i), consider a chorded m-cycle C in G for m ≥ 5. If C has
exactly one chord, then the chord in C will induce either a claw or a Z1. This implies
the existence of a second chord. The proof of part (ii) follows similarly.

We will use the above lemmas in this section to prove the existence of doubly
chorded cycles of sufficiently large lengths; we will see that the more difficult part of
the proofs in this paper is showing the existence of relatively small doubly chorded
cycles. We begin by addressing the sufficiently large doubly chorded cycles. A graph
G of order n is doubly chorded k-pancyclic if there exists a doubly chorded cycle of
length i for every k ≤ i ≤ n. Thus doubly chorded pancyclicity is doubly chorded
4-pancyclicity.

Lemma 2.3. Let G be a 2-connected, {K1,3, R}-free graph of order n. Then G is
doubly chorded k-pancyclic if any of the following conditions are satisfied:
(i) R = P4, k = 5, and n ≥ 5,
(ii) R = P5, k = 6, and n ≥ 8,
(iii) R = P6, k = 7, and n ≥ 13,
(iv) R = Z1, k = 5, and n ≥ 10 (and G �= Cn), or
(v) R = Z2, k = 6, and n ≥ 10 (and G �= Cn).

Proof. Let G be a 2-connected, {K1,3, R}-free graph of order n. By Theorem 2.1 or
Theorem 2.2, whichever appropriate, G is chorded pancyclic. So consider a chorded
m-cycle C in G for m ≥ k. Applying Lemma 2.1 or Lemma 2.2, whichever appropri-
ate, C must also be doubly chorded. Therefore, G is doubly chorded k-pancyclic.

We now describe Algorithm 1, which we use in the proofs of Theorem 2.3 through
Theorem 2.7. In these proofs, we use the conditions placed on the graph to establish
the existence of singly chorded cycles of small sizes in claw- and R-free graphs where
R is any one of P4, P5, P6, Z1, and Z2. We then input these singly chorded cycles
into Algorithm 1, which uses the forbidden subgraphs to show the existence of small
doubly chorded cycles. See [9] for examples of proofs that employ the techniques
used in Algorithm 1, the appendix for an example of the steps of Algorithm 1, and
below for pseudocode.
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The initial arguments of Algorithm 1 are the representation of an unchorded
cycle C and one chord not yet on the cycle. In the first step of the first call of the
algorithm, we add the chord to the cycle to construct a chorded cycle.

Three scenarios are checked. First, if the current graph is claw-free, R-free, and
does not contain a doubly chorded m-cycle, false is returned and the iteration ends.
If the current graph contains a doubly chorded m-cycle, the most recently added
edge is removed, true is returned, and the iteration ends.

If none of the above has occurred, the current graph is checked for an induced
claw. If an induced claw exists, the edges that would eliminate the induced claw are
stored in a list called edges. If no induced claw exists in the current graph, the graph
is checked for an induced R, and the edges that would eliminate the induced R are
stored in edges. Then the iteration ends.

After each iteration, the algorithm is called again with the arguments being the
current graph and the next edge in edges. If all of the return values are true, then
any version of the initial graph with added edges so that it is claw- and R-free will
also contain a doubly chorded m-cycle. If at least one of the return values is false,
then a counterexample is found.

Algorithm 1 Algorithm for forbidden subgraph subcases

add(edge)
if C does not contain doubly chorded m-cycle nor induced claw nor induced R
then
return false

else if doubly chorded m-cycle exists in C then
remove(edge)
return true

else
edges = []
if induced claw exists in C then
edges = findInducedClaw()

else
edges = findInducedR()

end if
for i in length(edges) do
algorithm(edges[i])

end for
remove(edge)

end if

Theorem 2.3. Let G be a 2-connected, {K1,3, P4}-free graph of order n ≥ 7. Then
G is doubly chorded pancyclic. This result is sharp.

Proof. Let G be a 2-connected, {K1,3, P4}-free graph of order n ≥ 7. By Lemma 2.3,
G is doubly chorded 5-pancyclic. Thus, it remains to show that G contains a doubly
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Figure 2: This graph has no doubly chorded 4-cycle, which shows that
Theorem 2.3 is sharp.

chorded 4-cycle. Since G is chorded pancyclic, G must contain a chorded 7-cycle
C = v1v2 . . . v7v1. There are exactly two possible cases, up to symmetry, for the
location of the chord on C: v1v3 or v1v4. For each case, we run Algorithm 1 on
C using the chord as the initial edge input and setting m = 4 and R = P4. The
algorithm never returns false, verifying that G contains a doubly chorded 4-cycle in
every possible case. Therefore, G is doubly chorded pancyclic.

Figure 2 shows a 6-vertex, 2-connected, claw-free, and P4-free graph that does not
contain a doubly chorded 4-cycle. This shows that Theorem 2.3 is sharp with respect
to n. Also note that these conditions guarantee chorded pancyclicity for n ≥ 5, but
n ≥ 7 is required to guarantee doubly chorded pancyclicity.

We similarly extend part (ii) of Theorem 2.1 as follows:

Theorem 2.4. Let G be a 2-connected, {K1,3, P5}-free graph of order n ≥ 9. Then
G is doubly chorded pancyclic. This result is sharp.

Proof. Suppose G is a 2-connected, {K1,3, P5}-free graph of order n ≥ 9. By
Lemma 2.3, G is doubly chorded 6-pancyclic. We now use Algorithm 1 to prove
that G contains a doubly chorded 5-cycle and a doubly chorded 4-cycle. Since G is
chorded pancyclic, G must contain a chorded 9-cycle C = v1v2 . . . v9v1. It follows
by symmetry that there are exactly three cases for the location of the chord in C:
v1v3, v1v4, or v1v5. For each case, we run Algorithm 1 on C using the chord as the
initial edge input and setting m = 4 and R = P5. The algorithm never returns false,
verifying that G must contain a doubly chorded 4-cycle. We similarly set m = 5 and
run the algorithm for each case and find that G always contains a doubly chorded
5-cycle. Therefore, G is doubly chorded pancyclic.

Figure 3 shows an 8-vertex, 2-connected, claw-free, and P5-free graph which does
not contain a doubly chorded 4-cycle. This shows that Theorem 2.4 is sharp.

Theorem 2.5. Let G be a 2-connected, {K1,3, P6}-free graph of order n ≥ 13. Then
G is doubly chorded pancyclic. This result is sharp.

Proof. Suppose G is a 2-connected, {K1,3, P6}-free graph of order n ≥ 13. By Lemma
2.3, G is doubly chorded 7-pancyclic, and thus it remains to show that G contains
a doubly chorded m-cycle for each m ∈ {4, 5, 6}. We use Algorithm 1 to ver-
ify the existence of these cycles. Since G is chorded pancyclic, G must contain a
chorded 13-cycle C = v1v2 . . . v13v1. It follows by symmetry that there are exactly
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Figure 3: This graph is {K1,3, P5}-free but has no doubly chorded 4-cycle,
which shows that Theorem 2.4 is sharp with respect to n.

five cases for the location of the chord in C, which can be any one of the edges
{v1v3, v1v4, v1v5, v1v6, v1v7}. For each m ∈ {4, 5, 6}, and for each possible chord loca-
tion, we run Algorithm 1 on C using the chord as the initial edge input and setting
R = P6. The algorithm never returns false, verifying that G must contain a doubly
chorded 4-, 5-, and 6-cycle. So G is doubly chorded pancyclic.

The sharpness of Theorem 2.5 with respect to n follows directly from the sharp-
ness of part (iii) of Theorem 2.1.

Theorem 2.6. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 7.
Then G is doubly chorded pancyclic. This result is sharp.

Proof. We first prove the result for n ≥ 10 and then lower the bound to n ≥ 7.
Suppose G is a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10. We have doubly
chorded 5-pancyclicity by Lemma 2.3, so it remains to show that G contains a doubly
chorded 4-cycle. Since G is chorded 5-pancyclic, G must contain a chorded 10-cycle
C = v1v2 . . . v10v1. By symmetry, there are exactly four cases for the location of the
chord in C, which can be any one of the edges {v1v3, v1v4, v1v5, v1v6}. Setting m = 4
and R = Z1, we run Algorithm 1 on each of the four cases using the chord as the
initial edge input. The algorithm never returns false and thus verifies that G must
contain a doubly chorded 4-cycle. So G is doubly chorded pancyclic.

Suppose n ≥ 7. Since G is 2-connected and {K1,3, Z1}-free, G is Hamiltonian
by a theorem of Goodman and Hedetniemi [13]. Since G �= Cn, G must contain a
chorded Hamiltonian cycle. If n = 7, then without loss of generality the chord of
the Hamiltonian cycle C7 is one of the edges in {v1v3, v1v4}. If n = 8 or n = 9,
then without loss of generality the chord of the Hamiltonian cycle C8 or C9 is one
of the edges in {v1v3, v1v4, v1v5}. For n ∈ {7, 8, 9}, for m ∈ {4, . . . , n}, and for each
possible chord location, we run Algorithm 1 on Cn using the chord as the initial edge
input and setting R = Z1. The algorithm never returns false, and thus verifies that
G is doubly chorded pancyclic for n ≥ 7.

The appendix details an example of the algorithm steps as it is used in the proof
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Figure 4: This graph has no doubly chorded 4-cycle, which shows that
Theorem 2.6 is sharp.

Figure 5: This graph is {K1,3, Z2}-free but has no doubly chorded 4-cycle
(or doubly chorded 5-cycle), which shows that Theorem 2.7 is sharp with
respect to n.

above. Figure 4 shows a graph of order six that is {Z1, K1,3}-free and does not
contain a doubly chorded 4-cycle, which demonstrates that Theorem 2.6 is sharp.

Theorem 2.7. Let G �= Cn be a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10.
Then G is doubly chorded pancyclic. This result is sharp.

Proof. Suppose G is a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10. By Lemma
2.3, G is doubly chorded 6-pancyclic. To show that G contains a doubly chorded 4-
cycle and a doubly chorded 5-cycle, we use Algorithm 1. Note that G must contain a
chorded 10-cycle C = v1v2 . . . v10v1, and by symmetry there are exactly four cases for
the location of the chord, which can be any one of the edges {v1v3, v1v4, v1v5, v1v6}.
Setting R = Z2, we run the algorithm on each of the four cases for each m ∈ {4, 5}.
All cases return true, verifying the existence of a doubly chorded 4-cycle and a doubly
chorded 5-cycle in G.

Figure 5 shows a {K1,3, Z2}-free graph on nine vertices with no doubly chorded
4-cycle. So Theorem 2.7 is sharp.

3 (Doubly) Chorded (k,m)-pancyclicity

Recall that a graph G is doubly chorded (k,m)-pancyclic if, for k ≤ m ≤ |V (G)|,
every set of k vertices in G is contained in a doubly chorded i-cycle for all m ≤ i ≤
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|V (G)|. We say that a result is sharp with respect to m if the given conditions do
not guarantee doubly chorded (k,m− 1)-pancyclicity. We say that a result is sharp
with respect to k if the bound on k cannot be lowered.

In this section, we extend results on (k,m)-pancyclicity to chorded or doubly
chorded (k,m)-pancyclicity under forbidden subgraph conditions. One critical prop-
erty for proving these results is cycle extendability. A non-Hamiltonian cycle C in a
graph G is extendable if there exists a cycle C ′ in G such that V (C ′) = V (C)∪{v} for
some v ∈ V (G)− V (C). Suppose x, y ∈ V (C), then we say that C is extended on x
and y to C ′ if vx, vy ∈ E(C ′). A graphG is cycle-extendable if every non-Hamiltonian
cycle is extendable [14].

Theorem 3.1. (Faudree and Gould [14]). Let R and S be connected graphs (R, S �=
P3) and let G be a 2-connected graph of order n ≥ 10. Then G is {R, S}-free implies
G is cycle extendable if and only if R = K1,3 and S is one of the graphs C3, P4, Z1,
or Z2.

The next three lemmas relate cycle extendability to chords. We will use these
lemmas in the proofs of the doubly chorded (k,m)-pancyclicity results.

Lemma 3.1. For any extendable cycle C with k vertices and j chords, where k ≥ 3
and j ≥ 0, any extended cycle C ′ with k + 1 vertices has at least j + 1 chords.

Proof. Suppose G contains an extendable cycle C with k vertices and j chords. Let
H be the subgraph of G where V (H) = V (C) and E(H) = E(C)∪J , where J is the
set of j chords between the vertices of C. Then H has exactly k + j edges.

Consider the extended cycle C ′ where V (C ′) = V (C)∪ {v} for some v ∈ V (G)−
V (C). Let x1 and x2 denote the vertices in V (C) such that C ′ is extended on x1

and x2.

Let H ′ be the subgraph of G where V (H ′) = V (C) ∪ {v} and E(H ′) = E(H) ∪
{vx1, vx2} for some x, y ∈ V (C). Then H ′ has j + k + 2 edges. Since C ′ has exactly
k + 1 edges, there are j + 1 edges in E(H ′) that are not on the cycle C ′. Since
V (C ′) = V (H ′), any of these edges must be chords on C ′. Thus C ′ must contain at
least j + 1 chords.

Lemma 3.1 allows us to reduce the problem of finding a doubly chorded i-cycle
for every i ≥ m to simply finding a doubly chorded m-cycle:

Lemma 3.2. Let m ≥ 4. If G is cycle extendable and every set of k vertices is
contained in a doubly chorded m-cycle, then G is doubly chorded (k,m)-pancyclic.

Proof. Let m ≥ 4. Suppose that G is cycle extendable and every set of k vertices
is contained in a doubly chorded m-cycle. Let S be a set of k vertices and Cm a
doubly chorded m-cycle containing S. Extending Cm yields a cycle of length m+ 1
containing S, and by Lemma 3.1, this extended cycle Cm+1 must have (at least)
2 chords. Repeating this process inductively, we obtain a doubly chorded r-cycle
containing S for any m + 2 ≤ r ≤ |V (G)| by extending a doubly chorded (r − 1)-
cycle containing S. Thus G is doubly chorded (k,m)-pancyclic.
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Furthermore, it will be important to distinguish between two possible types of
cycle extensions. If a cycle Ck is extended on xi and xj to Ck+1, then it may be
the case that the edge xixj ∈ E(Ck). The next lemma addresses the case in which
xixj /∈ E(Ck).

Lemma 3.3. For any k ≥ 4, if an extendable cycle Ck cannot be extended using two
adjacent vertices of Ck, then Ck must be chorded.

Proof. Suppose C = x1x2 . . . xkx1 is an extendable cycle of length k that cannot be
extended on two vertices adjacent on C. This implies that C is extendable on two
vertices xi and xj non-adjacent on C. Let C ′ be an extended cycle of C such that
V (C ′) = V (C) ∪ {v} for some v ∈ V (G)− V (C) and vxi, vxj ∈ E(C ′). Now assume
towards contradiction that C is not chorded. Note that there must be exactly two
edges on C ′ incident to each vertex in V (C ′). Consider the vertices xi−1, xi, and
xi+1. By assumption, vxi is on C ′. However, xi−1xi and xi+1xi must also be in E(C ′)
since C is chordless and by assumption vxi−1, vxi+1 /∈ E(G). But then we have three
edges all incident to xi that are in E(C ′), which is a contradiction. Thus it must be
that C is chorded.

3.1 The pair {K1,3, P4}
Now we extend results about graphs with K1,3 and P4 as forbidden subgraphs. In
particular, we build off of Crane’s work on {K1,3, P4}-free graphs, stated in the
following theorem.

Theorem 3.2. (Crane [3]). Let G be a 2-connected, {K1,3, P4}-free graph of order
n ≥ 10. Then each of the following hold:
(i) G is (1, 4)-pancyclic;
(ii) G is (k, k + 2)-pancyclic for k ≥ 2.

We extend this pancyclicity result to the following theorem on chorded pancyclic-
ity.

Theorem 3.3. Let G be a 2-connected, {K1,3, P4}-free graph of order n ≥ 10. Then
each of the following hold:

(i) G is doubly chorded (1, 5)-pancyclic;
(ii) G is doubly chorded (2, 5)-pancyclic;
(iii) G is doubly chorded (k, k + 2)-pancyclic for k ≥ 3.

These results are sharp.

Proof. Suppose G is a 2-connected, {K1,3, P4}-free graph of order n ≥ 10. Parts (i),
(ii), and (iii) each follow from Theorem 3.2 and part (i) of Lemma 2.1, which tells us
that every cycle of length m ≥ 5 must be doubly chorded under these conditions.

To show that these results are best possible, construct a graph G′ from G = Kn−1

as follows. Remove an edge between two vertices u, v ∈ V (G). Now add a vertex w to
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G with edges wu and wv. The resulting graph G′ is 2-connected and {K1,3, P4}-free,
but the vertex w is not contained in any doubly chorded 4-cycle. Therefore, parts (i)
and (ii) are sharp with respect to m = 5. Similarly, part (iii) is sharp with respect
to k ≥ 3.

3.2 The pair {K1,3, P5}
Next we extend the following result about {K1,3, P5}-free graphs.

Theorem 3.4. (Crane [4]). Let G be a 2-connected {K1,3, P5}-free graph on n ≥ 5
vertices. Then the following hold:
(i) G is (1, 5)-pancyclic;
(ii) G is (k, 3k)-pancyclic for all k ≥ 2.
These results are best possible under the given conditions.

We extend this pancyclicity result to the following theorem on chorded pancyclic-
ity.

Theorem 3.5. Let G be a 2-connected, {K1,3, P5}-free graph of order n ≥ 5. Then
each of the following hold:
(i) G is doubly chorded (1, 6)-pancyclic.
(ii) G is doubly chorded (k, 3k)-pancyclic for all k ≥ 2.

These results are best possible.

Proof. Let G be a 2-connected, {K1,3, P5}-free graph of order n ≥ 5. By part (ii)
of Lemma 2.1, under these conditions any cycle of length m ≥ 6 is doubly chorded.
Thus, parts (i) and (ii) follow from Theorem 3.4.

The sharpness of the condition on k in part (ii) follows from the sharpness of
Crane’s Theorem 3.4. To show that part (i) is best possible, construct a graph G′

from G = Kn−2 as follows. Remove an edge between two vertices x, v ∈ V (G). Now
add two vertices a, b and the edges ax, bz, ab. Any 5-cycle that contains {a, b} must
also contain {x, z}. But for any y ∈ V (G′) − {a, b, x, z}, the 5-cycle abzyxa is not
chorded. We note that G′ is {K1,3, P5}-free, but a is not in a chorded 5-cycle.

3.3 The pair {K1,3, P6}
Next we build off of the following result about {K1,3, P6}-free graphs.

Theorem 3.6. (Crane [5]). Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 7
vertices. Then G is (k, 3k + 4)-pancyclic for all k ≥ 1. This result is best possible
under the given conditions.

We extend this pancyclicity result to the following theorem on chorded pancyclic-
ity.
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Theorem 3.7. Let G be a 2-connected, {K1,3, P6}-free graph of order n ≥ 7. Then
G is doubly chorded (k, 3k + 4)-pancyclic for all k ≥ 1. This result is best possible.

Proof. If G is a 2-connected, {K1,3, P6}-free graph of order n ≥ 7, then by part (iii)
of Lemma 2.1, we have that every cycle of length m ≥ 7 is doubly chorded. Thus
Theorem 3.6 extends to doubly chorded (k, 3k + 4)-pancyclicity for k ≥ 1.

Since Theorem 3.6 is best possible under the given conditions, Theorem 3.7 is
also best possible.

3.4 The pair {K1,3, Z1}
Turning our attention to {K1,3, Z1}-free graphs, we again build off of a result due to
Crane.

Theorem 3.8. (Crane [3]). Let G �= Cn be a 2-connected graph of order n ≥ 5. If
G is {K1,3, Z1}-free, then each of the following hold:
(i) G is (1, 3)-pancyclic;
(ii) G is (k, 4)-pancyclic for k ∈ {2, 3};
(iii) G is (k, k)-pancyclic for each integer k ≥ 4.

To extend this theorem, we will use the following result due to Faudree and
Gould.

Theorem 3.9. (Faudree and Gould [14]). If G is a connected {K1,3, Z1}-free graph
with a vertex of degree at least three, then G is a complete graph or a complete graph
minus a matching.

In particular, we use this result to show that Crane’s Theorem can be extended
to doubly chorded pancyclicity results as follows.

Theorem 3.10. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10.
Then each of the following hold:
(i) G is doubly chorded (1, 4)-pancyclic;
(ii) G is doubly chorded (2, 5)-pancyclic;
(iii) G is doubly chorded (3, 5)-pancyclic.

These results are best possible.

Proof. Suppose G �= Cn is a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10. We
first prove part (i).

Note that G must contain a vertex of degree at least 3 because G is 2-connected
and G �= Cn, and Cn is the only 2-connected graph on n vertices with a maximum
degree of 2. So by Theorem 3.9, G is isomorphic to Kn minus at most a perfect
matching. We claim that every vertex is contained in a doubly chorded 4-cycle.
To see this, let v1 ∈ V (G), and consider seven other vertices v2, v3, . . . , v8 in G.
Since G = Kn minus at most a matching, without loss of generality, the only edges
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that may be missing among these eight vertices are v1v2, v3v4, v5v6, and v7v8. Then
{v1, v3, v5, v7} induce a doubly chorded 4-cycle in G. Since G is cycle extendable by
Theorem 3.1, it follows from Lemma 3.2 that G is doubly chorded (1, 4)-pancyclic.

To prove part (ii) and (iii), let k ∈ {2, 3}, and let S be a set of k vertices. By
Theorem 3.8, S is in a 4-cycle, which extends to a chorded 5-cycle containing S by
Lemma 3.1. Then by Lemma 2.2, any chorded 5-cycle must also be doubly chorded
under these conditions. So every set of k vertices is contained in doubly chorded
5-cycle, which implies doubly chorded (k, 5)-pancyclicity by Lemma 3.2.

To show that parts (ii) and (iii) are best possible, construct a graph G′ from
G = Kn by removing an edge between two vertices u, v ∈ V (G). Then G′ is 2-
connected and {K1,3, Z1}-free, but the set {u, v} is not contained in a doubly chorded
4-cycle. Note, however, that {u, v} are still in a chorded 4-cycle.

Although the above conditions are not sufficient to guarantee doubly chorded
(2, 4)-pancyclicity, singly chorded (2, 4)- and (3, 4)-pancyclicity do hold:

Theorem 3.11. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10.
Then G is chorded (2, 4)-pancyclic and chorded (3, 4)-pancyclic.

Proof. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10. By
Theorem 3.10, G is doubly chorded (3, 5)-pancyclic, so it suffices to show that every
set of three vertices in G is contained in a chorded 4-cycle. To do this, begin with a
set of three vertices that is contained in a doubly chorded 5-cycle C = v1v2v3v4v5v1.
We now divide the proof into the two cases (up to symmetry) of the location of the
two chords in C.

Case 1. Suppose C contains the chords v1v3 and v1v4. Then avoiding an induced Z1

on v1, v2, v4, and v5, either the edge v2v4 or v2v5 must be present. If v2v5 ∈ E(G),
every set of three vertices in C is contained in a chorded 4-cycle. So suppose v2v4 ∈
E(G), and notice that every set of three vertices in C is now contained in a chorded
4-cycle except for {v2, v3, v5}. So, now observe that the edge v2v5 or v3v5 must be
present so that the set {v2, v3, v4, v5} does not induce a Z1. When either edge is
added, the set {v2, v3, v5} is now in a chorded 4-cycle.

Case 2. Suppose C contains the chords v2v4 and v3v5. Then the edge v1v3 or v1v4
must be present to avoid an induced Z1 on {v1, v3, v4, v5}. Adding either edge, we
obtain a graph that simplifies the argument to Case 1.

Therefore, G is chorded (3, 4)-pancyclic, which also implies chorded (2, 4)-pancy-
clicity.

Further, we can use Theorem 3.8 to show the following.

Theorem 3.12. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10.
Then each of the following hold:
(i) G is doubly chorded (k, k + 1)-pancyclic, for all k ≥ 4.
(ii) G is doubly chorded (k, k)-pancyclic, for all k ≥ 5.

These results are best possible.
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Proof. Let G �= Cn be a 2-connected, {K1,3, Z1}-free graph of order n ≥ 10. To prove
part (i), we first note by Theorem 3.8 that G is (k, k)-pancyclic for all k ≥ 4. Also,
note that G is cycle extendable by Theorem 3.1. For any k ≥ 4, by Lemma 3.1, we
have that every set of k vertices is contained in a chorded m-cycle for all m ≥ k + 1.
Then by Lemma 2.2, any such chorded m-cycle must also be doubly chorded. So G
is doubly chorded (k, k + 1)-pancyclic for all k ≥ 4.

To prove part (ii), we first note by Theorem 3.8, that G is (k, k)-pancyclic, so
any set of k vertices for k ≥ 5 in V (G) must be contained in a k-cycle C. We will
show that C must be chorded; it then follows by Lemma 2.2 that any chorded cycle
must also be doubly chorded. If k = n, then C must contain at least one chord
because G �= Cn. If k < n, then since G is cycle extendable, we can extend C to a
(k + 1)-cycle.

Suppose C = x1x2 . . . xkx1 is extended on x1 and x2 to C ′ such that x1x2 ∈ E(C),
and let v be the additional vertex in the extended cycle, C ′. Notice that {v, x−

1 , x1, x2}
and {v, x1, x2, x

+
2 } each cannot induce a Z1. If x−

1 x2 ∈ E(G) or x+
2 x1 ∈ E(G), then

C is chorded and we are done. So, assume x−
1 v ∈ E(G) and x+

2 v ∈ E(G). Then
avoiding an induced Z1 on {x−

1 , x1, v, x
+
2 }, x−

1 x
+
2 or x+

2 x1 must be in E(G). In either
case, C is now chorded.

Otherwise, suppose C is extendable only on nonadjacent vertices of C. Then by
Lemma 3.3, C must be chorded. Thus every set of k vertices is contained in a doubly
chorded k-cycle for k ≥ 5.

To show that the statement in (i) is best possible, begin with a complete graph
G = Kn and form G′ by removing two vertex-disjoint edges xy and uv. Then G′ is
2-connected and {K1,3, Z1}-free, but the set of vertices {x, y, u, v} is not contained
in a chorded 4-cycle. This graph also shows that part (ii) is sharp with respect to k.

3.5 The pair {K1,3, Z2}
Our results in this section extend the various types of pancyclicity in the following
result on {K1,3, Z2}-free graphs to various types of doubly chorded pancyclicity.

Theorem 3.13. (Crane [3]). Let G �= Cn be a 2-connected graph of order n ≥ 10.
If G is {K1,3, Z2}-free, then each of the following hold:
(i) G is (1, 4)-pancyclic;
(ii) G is (k, 3k)-pancyclic for each integer k ≥ 2.

We first extend part (i) to a doubly chorded result. Our proof is analogous to the
proof of part (i) in [3]; instead of avoiding C3 and C4, we avoid C3 and a chorded C4.

Theorem 3.14. Let G �= Cn be a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10.
Then G is doubly chorded (1, 5)-pancyclic. This result is best possible.

Proof. Let G �= Cn be a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10. Let
w ∈ V (G). By the cycle extendability of G and Lemma 3.1, it is sufficient to show
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that w is contained in a triangle or a chorded 4-cycle. Thus, we assume this is not
the case.

Since G is doubly chorded pancyclic by Theorem 2.7, there must exist a doubly
chorded 4-cycle in G. Recall that G is 2-connected. Let s be the smallest integer
such that there exists a doubly chorded 4-cycle H in G and a pair of vertex disjoint
paths from w to H , one of which has length s. Now let t be the smallest integer such
that there exists a doubly chorded 4-cycle C in G, a path P of length s from w to
C, and a path Q of length t from w to C that is vertex disjoint from P (except for
w). We note s ≤ t. Let C = xyzvx.

Without loss of generality, suppose that P = xx1x2 . . . xs and Q = yy1y2 . . . yt,
where xs = yt = w. Note that P and Q are disjoint paths from w to H . We will
show via contradiction that s = 1 and t = 1. Suppose s ≥ 2. We will show that
the vertices {z, v, x, x1, x2} induce a Z2. To avoid this Z2, we must have one edge of
{x2x, x2v, x2z, x1v, x1z} in E(G). However, note that x2x, x2v, or x2z /∈ E(G), for
otherwise we violate the minimality of s by creating a path from w to C of length
s− 1 that is disjoint from Q.

Note that the cases x1v ∈ E(G) and x1z ∈ E(G) are the same by symmetry.
Without loss of generality, assume x1v ∈ E(G). Then x1z /∈ E(G), since otherwise
w is connected to the doubly chorded 4-cycle x1vzxx1 by a path (that is disjoint
from Q) of length s − 1, which contradicts the minimality of s. But now we must
have s = 2, since otherwise {v, x, x1, x2, x3} induces a Z2 by the minimality of s. If
t ≥ 3, then {v, x, x1, w, yt−1} induces a Z2 (using the fact that w is not contained in
a triangle, and using the minimality of t). Thus t = 2.

Avoiding an induced claw on {v, y1, x1, z},we must have one edge of{x1y, y1z, x1z}
∈ E(G). Note that x1y1 /∈ E(G), since w is not contained in a triangle. Now if
y1z /∈ E(G), then y1v ∈ E(G) since {v, z, y, y1, w} cannot induce a Z2. Therefore
y1z ∈ E(G). Since {v, x, x1, w, y1} cannot induce a Z2, we must have y1x ∈ E(G)
or y1v ∈ E(G). If y1x ∈ E(G), then y1xzyy1 is a doubly chorded 4-cycle that
violates the minimality of t. So y1v ∈ E(G). But now y1yvzy1 is a doubly chorded
4-cycle that violates the minimality of t when we replace P with the path P ′ = vx1w
of length s. This contradiction shows that x1v /∈ E(G). By symmetry, we have
that x1z �∈ E(G). So the vertices {z, v, x, x1, x2} must induce a Z2, and we have a
contradiction. Therefore, s = 1.

Assume t = 2. Then the vertices {v, z, y, y1, w} induce a Z2, which cannot be
avoided without creating a doubly chorded 5-cycle containing w. Now suppose t ≥ 3.
To avoid an induced Z2 on the vertices {v, z, y, y1, y2}, we must have one of the edges
{y2v, y2z, y2y, y1z, y1v} ∈ E(G). Adding any one of the edges {y2v, y2z, y2y} violates
the minimality of t. Adding the edge y1z yields a Z2 induced by {z, y, y1, y2, y3}. So
y1z /∈ E(G), and by symmetry, y1v /∈ E(G). Thus, t = 1, and w is contained in a
doubly chorded 5-cycle.

To see that Theorem 3.14 is sharp, construct a graph G′ from G = Kn−1 by
removing an edge xy from G, and then adding a vertex w of degree 2 such that
wx,wy ∈ E(G′). Then G′ is a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10,
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but w is not contained in a chorded 4-cycle.

Next we extend part (ii) of Theorem 3.13 in the following way.

Theorem 3.15. Let G �= Cn be a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10.
Then each of the following hold:
(i) G is doubly chorded (2, 7)-pancyclic;
(ii) G is doubly chorded (k, 3k)-pancyclic, for all k ≥ 3.

This result is best possible.

Proof. Let G �= Cn be a 2-connected, {K1,3, Z2}-free graph of order n ≥ 10. To prove
part (i), we first note that by Theorem 3.13, any set of two vertices in G must be
contained in a 6-cycle C. Since G is cycle-extendable, we can extend C to a 7-cycle
C ′, which by Lemma 3.1 must contain a chord. Then by Lemma 2.2, C ′ must also
be doubly chorded. This suffices to show that G is doubly chorded (2, 7)-pancyclic
by Lemma 3.2.

To prove part (ii), consider a set of k vertices in V (G) for any k ≥ 3. This set must
be contained in some (3k)-cycle C since G is (k, 3k)-pancyclic by Theorem 3.13. We
will show that C is chorded and then apply Lemmas 2.2 and 3.2 to obtain the desired
result. If 3k = n, then C is chorded since G �= Cn. So suppose 3k < n. Since G is
cycle extendable by Theorem 3.1, C can be extended to a (3k+1)-cycle. If C is only
extendable on two vertices that are nonadjacent on C, then by Lemma 3.3, C must
be chorded. Otherwise, extend C to a (3k+ 1)-cycle C ′, where V (C ′) = V (C)∪ {v}
for some v ∈ V (G)− V (C), such that v is adjacent to a pair of vertices x1, x2 which
are adjacent on C.

Avoiding an induced Z2 on {v, x2, x1, x
−
1 , x

−−
1 } and a chord on C, either the edge

vx−
1 or vx−−

1 must be present. Similarly, avoiding an induced Z2 on {v, x1, x2, x
+
2 , x

++
2 }

and a chord on C, either the edge vx+
2 or vx++

2 must be present.

If vx−−
1 , vx++

2 ∈ E(G), avoiding a claw induced by {v, x−−
1 , x++

2 , x2}, there must
be a chord on C. If vx−−

1 , vx+
2 ∈ E(G), avoiding a claw induced by {v, x−−

1 , x+
2 , x1},

there must be a chord on C. The case where vx−
1 , vx

++
2 ∈ E(G) is symmetric to

the previous case. Lastly, suppose vx−
1 , vx

+
2 ∈ E(G). Avoiding an induced Z2 on

{x−−
1 , x−

1 , v, x2, x
+
2 } and a chord on C, the edge vx−−

1 must be present. Avoiding an
induced claw on {v, x−−

1 , x1, x
+
2 }, one of three edges must be present, all of which

add a chord to C.

Therefore, C is chorded, which by Lemma 2.2 is sufficient to show that C is doubly
chorded. So every set of k vertices is contained in a doubly chorded (3k)-cycle. Then
applying Lemma 3.2, we have that G is doubly chorded (k, 3k)-pancyclic.

To see that part (i) of Theorem 3.15 is sharp, let the graph G be defined by
V (G) = V (C) ∪ V (Km) and E(G) = E(C) ∪ E(Km), where C = axbcyda is a
6-cycle and Km is a complete subgraph on m ≥ 4 vertices. Also, ensure that C
and Km are vertex disjoint. Then, create a graph G′ from G as follows. For each
v ∈ {a, b, c, d}, add edges connecting v to every vertex in the subgraph Km. Now,
G′ is a 2-connected, {K1,3, Z2}-free graph of order n = 6 +m ≥ 10, but {x, y} is a
set of two vertices not contained in a chorded 6-cycle.
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Crane showed in [3] that part (ii) of Theorem 3.13 is sharp with respect tom = 3k,
which implies that part (ii) of Theorem 3.15 is sharp with respect to m = 3k as well.

4 Degree Sum Conditions

Faudree et al. established sharp degree sum bounds that guarantee a graph to be
(k,m)-pancyclic for certain k and m. This work was extended by Crane, who specifi-
cally examined claw-free graphs in Theorem 4.1 [6]. In this section, we further extend
the work of Crane to establish degree sum bounds that guarantee chorded and doubly
chorded (k,m)-pancyclicity for claw-free graphs. Cream, Gould, and Hirohata es-
tablished σ2 conditions for (doubly) chorded vertex pancyclicity (e.g. Theorem 4.2).
We extend Theorem 4.2 through the addition of a claw-free condition.

Theorem 4.1. (Crane, [6]) Let k be an integer, and let G be a claw-free graph of
order n ≥ 3.
(i) If σ2(G) ≥ n then G is (k, n)-pancyclic, for k ≥ 1.
(ii) If σ2(G) ≥ n+ 1 then G is (1, 3)-pancyclic.
(iii) If σ2(G) ≥ 2n− 3 then G is (2, 3)-pancyclic.
(iv) If σ2(G) ≥ 2n− k then G is (k, k)-pancyclic for 3 ≤ k ≤ n.
(v) If σ2(G) ≥ 4n−2k−5

3
then G is (k, k + 2)-pancyclic for 3 ≤ k ≤ n−5

2
.

(vi) If σ2(G) ≥ n then G is (k, k + 2)-pancyclic for k > max{n−5
2
, 2} or k = 2.

(vii) If σ2(G) ≥ n then G is (k, k + 3)-pancyclic for k ≥ 3.

All of the σ2(G) bounds are sharp.

Our first result is an extension of part (ii) of Theorem 4.1 and the following
theorem of Cream, Gould, and Hirohata [7].

Theorem 4.2. (Cream, Gould, and Hirohata [7]) Let G be a graph of order n ≥ 4.
If σ2(G) ≥ n + 1, then G is chorded vertex (1, 5)-pancyclic.

Theorem 4.3. Let G be a claw-free graph of order n ≥ 3. If σ2(G) ≥ n+1, then G
is chorded (1, 4)-pancyclic.

Proof. Suppose G is a claw-free graph of order n ≥ 3 with σ2(G) ≥ n + 1. By
Theorem 4.2, every vertex is contained in a chorded m-cycle for all m ≥ 5. Thus it
remains to show that every vertex is contained in a chorded 4-cycle.

Consider a vertex v1 ∈ V (G). The case when n = 3 is trivial, so let n ≥ 4. By part
(ii) of Theorem 4.1, v1 must be contained in a 4-cycle, which we label C = v1v2v3v4v1
for some v2, v3, v4 ∈ V (G). Suppose C is chordless, otherwise we are done. Now
consider the case when n = 4. Note that v1v3 /∈ E(G), so degG(v1)+degG(v3) ≥ n+1
by our assumption. Then v1 and v3 must have at least three common neighbors. But
v1 and v3 share the only other possible neighbors of v2 and v4. This is a contradiction.

Consider the case when n ≥ 5. It follows by the same logic from the previous
case that v1 and v3 must have at least one common neighbor not on the 4-cycle.
Suppose the vertex w ∈ V (G) − V (C) is a common neighbor of v1 and v3. Now
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the set {v1, v2, v4, w} cannot induce a claw centered at v1. Then v2w ∈ E(G) or
v4w ∈ E(G). In each case, it is easy to verify that v1 is in a chorded 4-cycle.

The bound on σ2(G) in Theorem 4.3 is sharp due to the sharpness of part (ii) of
Theorem 4.1, since chorded (1, 4)-pancyclicity implies (1, 3)-pancyclicity.

Theorem 4.4. Let G be a claw-free graph of order n ≥ 5. If σ2(G) ≥ n+1, then G
is doubly chorded (1, 5)-pancyclic. This result is best possible.

Proof. Suppose G is a claw-free graph of order n ≥ 5 with σ2(G) ≥ n+ 1. We have
by Theorem 4.3 that G is chorded (1, 4)-pancyclic. We assume that n ≥ 9, since if
5 ≤ n ≤ 8, then it can easily be verified that the σ2(G) condition guarantees that
every vertex is contained in a doubly chorded m-cycle for all 5 ≤ m ≤ n.

Claim: Every vertex is in a doubly chorded 5-cycle.

Let x ∈ V (G). Assume there exists a vertex y ∈ V (G) satisfying xy �∈ E(G).
Otherwise, it is easy to see that since G is Hamiltonian, x must be contained in a
doubly chorded 5-cycle. Since σ2(G) ≥ n + 1, and x and y are nonadjacent, there
exist at least three distinct common neighbors a, b, c of x and y. Avoiding an induced
claw on {x, a, b, c}, we can assume without loss of generality that ab ∈ E(G). Then
we have the doubly chorded 5-cycle abycxa (with chords bx and ay) containing x.

Claim: Every vertex is in a doubly chorded m-cycle for m ≥ 6.

Let x ∈ V (G). By Theorem 4.3, x is contained in a chorded m-cycle C, for
m ≥ 6. We write C = v1v2 . . . vmv1 where x = vj for some 1 ≤ j ≤ m. Assume that
C has exactly one chord; otherwise the claim holds. We have two cases depending
on the position of the chord in C.

Case 1. The chord on C does not form a triangle with three vertices of C.

Without loss of generality, suppose the chord is the edge v1vi, where 4 ≤ i ≤ m−2.
Avoiding a claw induced by {v1, v2, vm, vi}, one edge of {v2vm, vmvi, v2vi} must be
in E(G). Any of these edges is a second chord of C. Thus C is a doubly chorded
m-cycle containing x.

Case 2. The chord on C forms a triangle with three vertices of C.

Without loss of generality, assume the chord is the edge v2vm. We have two
subcases:

Subcase 2.1 (x �= v1). Since v3v5 �∈ E(G) by assumption, the σ2(G) condition ensures
that v3 and v5 have at least three common neighbors, at least one of which we can
assume is not on C, for otherwise C is doubly chorded and we are done. Thus, let
w1 �∈ V (C) be a common neighbor of v3 and v5. Note that {v3, v2, v4, w1} must not
induce a claw centered at v3. To avoid this claw, note that if v2v4 ∈ E(G), then C
is doubly chorded and we are done. If v2w1 ∈ E(G), then there is a doubly chorded
m-cycle, v2w1v3v4v5 . . . vmv2 with chords v2v3 and v5w1, containing x since x �= v1.
If v4w1 ∈ E(G), there is a doubly chorded m-cycle, v2v3w1v4v5 . . . vmv2 with chords
v3v4 and v5w1, also containing x.
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Subcase 2.2 (x = v1). Suppose m = 6. Since v4v6 �∈ E(G), and σ2(G) ≥ n + 1, the
vertices v4 and v6 must share some common neighbor w1 ∈ V (G)−V (C). Now, notice
that the vertices {v6, v2, v5, w1} must not induce a claw centered at v6. The edge v5v2
would add a second chord to C. The edge w1v2 would create the doubly chorded
6-cycle v1v2v3v4w1v6v1 with chords v2v6 and w1v2. So assume that v5w1 ∈ E(G).
Now, again using the σ2(G) condition, the nonadjacent vertices v1 and v5 must share
a common neighbor w2 where w2 �∈ V (C) ∪ {w1}. Now we have that x = v1 is
contained in the doubly chorded 6-cycle v1v6w1v4v5w2v1 with the chords v5v6 and
v5w1.

Suppose m ≥ 7. Since v2v4 /∈ E(G), by the σ2(G) condition, v2 and v4 must share
at least one common neighbor w1 /∈ V (C). Similarly, since v3v7 /∈ E(G), v3 and v7
must share at least one common neighbor w2 where w2 /∈ V (C)∪{w1}. Now, x = v1
is contained in the doubly chorded m-cycle v1v2w1v4v3w2v7 . . . vmv1 with the chords
v2v3 and v2vm.

This completes the proof of the claim and hence of the theorem.

To show that Theorem 4.4 is best possible with respect to m, we construct a
graph G′ from G = Kn−1 as follows. Add a vertex w to G such that w is adjacent to
three other vertices. Let x, y, and z be these three neighbors of w. Then remove the
edge xy. The resulting graph G′ is claw-free and satisfies σ2 ≥ n+ 1, but the vertex
w is not contained in a doubly chorded 4-cycle.

The following theorem is a restatement of part (iii) of Theorem 4.1, given by
observing that (2, 3)-pancyclicity and doubly chorded (4, 4)-pancyclicity are both
equivalent to a graph being complete. The sharpness of Theorem 4.5 with respect
to the σ2(G) bound follows immediately from the sharpness of Theorem 4.1.

Theorem 4.5. Let G be a claw-free graph of order n ≥ 3. If σ2(G) ≥ 2n− 3, then
G is doubly chorded (4, 4)-pancyclic. This result is best possible.

We now extend part (iv) of Theorem 4.1.

Theorem 4.6. Let G be a claw-free graph of order n ≥ 5. If σ2(G) ≥ 2n− k, then
G is doubly chorded (k, k)-pancyclic for 5 ≤ k ≤ n.

This result is best possible.

Proof. Suppose G is a claw-free graph of order n ≥ 5 with σ2(G) ≥ 2n−k. Consider a
set S of k vertices in V (G) for any 5 ≤ k ≤ n. By part (iv) of Theorem 4.1, G is (k, k)-
pancyclic for all 3 ≤ k ≤ n, so S is contained in an m-cycle Cm for all m ≥ k. We
will show that Cm must be doubly chorded. So, assume towards a contradiction that
Cm has at most one chord. Then we can choose two vertices x, y ∈ V (Cm) satisfying
xy �∈ E(G) such that neither x nor y is an endpoint of the chord on Cm (if such a chord
exists). Then, deg(x) ≤ n−m+2, and likewise deg(y) ≤ n−m+2. So, since m ≥ k
and k > 4, we have that deg(x)+deg(y) ≤ 2n+4−2m ≤ 2n+4−2k < 2n−k ≤ σ2(G).
But this is a contradiction to the σ2(G) condition because x and y are nonadjacent.
Therefore, it must be that Cm has two or more chords, and hence G is doubly chorded
(k, k)-pancyclic for 5 ≤ k ≤ n.
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The same sharpness example associated with part (ii) and (iii) of Theorem 3.10
can be applied to to show that Theorem 4.6 is sharp with respect to k. The sharpness
of Theorem 4.6 with respect to σ2(G) follows from the sharpness of Theorem 4.1
part (iv).

Next we introduce a series of lemmas that will be instrumental in extending the
results of Theorem 4.1. We will use Lemma 4.1 to prove Lemma 4.2, a result that does
not rely on any forbidden subgraph or degree sum conditions, but rather explores
when (k,m)-pancyclicity can directly imply doubly chorded (k,m + 1)-pancyclic
results.

Lemma 4.1. For any k, l ≥ 0, if G is (k, k + l)-pancyclic, then any set S of k
vertices satisfies |E(〈S〉)| ≥ k − l.

Proof. Let S be a set of k vertices in V (G). We know that S is contained in a cycle
C of length k+ l since G is (k, k+ l)-pancyclic. Since |V (C)− S| is l, the maximum
number of edges on C incident to a vertex in V (C)−S is 2l. Furthermore, any edge
in C that is not incident to any vertex in V (C)− S must lie between two vertices of
S. So, since C has k + l edges, it follows that there are at least (k + l)− 2l = k − l
edges in E(〈S〉).
Lemma 4.2. For any k ≥ 3 and 0 ≤ l < k, if G is (k, k + l)-pancyclic, then G is
doubly chorded (k, k + l + 1)-pancyclic.

Proof. Let k ≥ 3 and 0 ≤ l < k, and assume G is (k, k + l)-pancyclic. Since we
would like to show doubly chorded (k, k+ l+1)-pancyclicity, note that by definition,
k + l < n. Consider a set S of k vertices, and let r ∈ {k + l + 1, k + l + 2, . . . , n}.
By assumption, there exists a cycle C of length r containing S. We will show that
C must be doubly chorded, so assume towards contradiction that C has at most one
chord. Label the vertices of C = v1v2 . . . vk+l+1 . . . vrv1 such that vr is an endpoint
of the chord (if a chord exists), and note that r ≥ k + l + 1 ≥ 4.

In order to apply Lemma 4.1, consider the set of k vertices T = V (C[v1, vk+l+1])−
R, where R is a set of l + 1 vertices that minimizes the number of edges in 〈T 〉.

First we prove the case of r > k + l + 1. Notice that |E(C[v1, vk+l+1])| = k + l.
By construction of the set R, we have |E(〈T 〉)| = |E(〈V (C[v1, vk+l+1]) − R〉)| ≤
(k + l) − (2l + 1) = k − l − 1. Note that we subtract 2l + 1 because there are l + 1
vertices in R, each with two incident edges that lie in E(C[v1, vk+l+1]) − E(〈T 〉),
with the possible exception of one vertex (v1 or vk+l+1) which may only have one
such incident edge. But the above inequality contradicts Lemma 4.1, which says that
the set T must induce at least k − l edges. Therefore, since we assumed C has at
most one chord, we now have that C is doubly chorded.

Next, we prove the case of r = k+l+1. Making a similar argument as the previous
case, we have |E(〈T 〉)| = |E(〈V (C)−R〉)| ≤ (k + l + 1)− (2l + 2) = k − l − 1. But
Lemma 4.1 says that T must induce at least k − l edges. So C is doubly chorded.
Thus G is doubly chorded (k, k + l + 1)-pancyclic.
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Lemma 4.2 allows us to extend the results of Theorem 4.1 to be doubly chorded
as follows:

Theorem 4.7. Let G be a claw-free graph of order n ≥ 5. Then each of the following
hold:

(i) If σ2(G) ≥ 4n−2k−5
3

, then G is doubly chorded (k, k + 3)-pancyclic for 3 ≤ k ≤
n−5
2
.

(ii) If σ2(G)≥n, then G is doubly chorded (k, k+3)-pancyclic for k>max{n−5
2
,2}.

(iii) If σ2(G) ≥ n, then G is doubly chorded (k, k + 4)-pancyclic for k ≥ 3.

Proof. Parts (i) and (ii) follow immediately from parts (v) and (vi), respectively, of
Theorem 4.1 and Lemma 4.2. For part (iii), Theorem 4.1 part (vii) and Lemma 4.2
give us the result for all k ≥ 4. We now prove the k = 3 case separately:

Let G be a claw-free graph of order n ≥ 5 satisfying σ2(G) ≥ n. By Lemma 4.2,
G is doubly chorded (4, 8)-pancyclic. Then it only remains to show that every set
of three vertices is in a doubly chorded 7-cycle. So let S be a set of three vertices,
which by Theorem 4.1 must be contained in a 7-cycle C.

Assume that C has at most one chord, otherwise we are done. Note that there
must exist a pair of vertices in V (C) − S that are adjacent on the cycle C. (This
can be verified by checking the four distinct distributions of three vertices on a
7-cycle.) Label the vertices of C such that C = v1 . . . v5abv1 with a, b /∈ S and
v1v4, v3v5 /∈ E(G). Such a labeling must exist, for otherwise C would be doubly
chorded.

Since σ2(G) ≥ n, there exists a common neighbor w1 �= v4 of v3 and v5. If
w1 ∈ V (C), then C is either immediately doubly chorded, or C has one chord and
the claw-free condition then guarantees a second chord. So assume w1 /∈ V (C). Next
consider the nonadjacent vertices v1 and v4, which must have at least two common
neighbors. If two common neighbors are on C, then C is doubly chorded. So, assume
v1 and v4 have at least one common neighbor that is not on C.

For the first case, suppose that the only common neighbor of v1 and v4 not on
C is the vertex w1. Then v1 and v4 also have one common neighbor x ∈ V (C). If
x ∈ {v5, a, b}, then C is either immediately doubly chorded, or doubly chorded after
applying the claw-free condition. Thus x ∈ {v2, v3}. If x = v2, then v2v4 ∈ E(G), and
either v1v3, v3v5, or v1v5 must also be an edge in G, otherwise {w1, v1, v3, v5} induces
a claw. This makes C doubly chorded. So suppose x = v3. Then v1v3 ∈ E(G). Note
that v4 and a must be nonadjacent, for otherwise C is doubly-chorded. Now apply
the degree sum condition to v4 and a. If the only common neighbors of v4 and a are
contained in V (C)∪{w1}, then S is contained in a doubly chorded 7-cycle. So there
exists a vertex w2 /∈ V (C) ∪ {w1} such that v4w2, aw2 ∈ E(G). We must avoid an
induced claw on {v4, v3, v5, w2}. If v3w2 is an edge in G, then v1v2v3w2v4v5w1v1 is a
doubly chorded 7-cycle containing S. If v5w2 is an edge in G, then v1w1v5w2v4v3v2v1
is a doubly chorded 7-cycle containing S.

For the second case, assume there exists a vertex w2 /∈ V (C) such that v1w2, v4w2

∈ E(G) and w2 �= w1. Notice that v1v2v3w1v5v4w2v1 is a 7-cycle containing S with a
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single chord v3v4. To avoid the induced claw on {v3, v2, v4, w1}, we must add one of
three possible edges, any of which form a second chord on the 7-cycle containing S.
This completes the argument that S must be contained in a doubly chorded 7-cycle.

Remark. We now construct a graph to show that part (i) of Theorem 4.7 is sharp with
respect tom when k = 3, i.e. doubly chorded (3, 6)-pancyclicity is best possible under
these conditions. In particular, note that σ2(G) ≥ n guarantees (2, 5)-pancyclicity
according to Part (vi) of Theorem 4.1. The following example also shows that Part
(vi) of Theorem 4.1 cannot be extended to chorded (2, 5)-pancyclicity.

We construct a graph on n vertices as follows. Label three vertices u, v, and
z, and add the edge uv. Then partition the other n − 3 vertices into three vertex-
disjoint complete subgraphs A, B, and C, where |V (A)| = |V (B)| = |V (C)| = n−3

3

if n ≡ 0 (mod 3). If n �≡ 0 (mod 3), then let A be the set with one more or
one less vertex than B and C. Now add additional edges to the graph as follows.
For every a ∈ V (A) and for every x ∈ V (B) ∪ V (C), add the edge ax. For every
x ∈ V (A) ∪ V (B), add the edge ux, and for every x ∈ V (A) ∪ V (C), add the edge
vx. For every x ∈ V (B) ∪ V (C), add the edge zx. Then the graph is claw-free, and
σ2(G) ≥ 4n−10

3
≥ 4n−2k−5

3
when k = 3. However, the set {u, v, z} is not contained in

a chorded 5-cycle.

The set {z, u} in the above graph also shows that Part (vi) of Theorem 4.1
cannot be extended to chorded (2, 5)-pancyclicity, even if we require a higher bound
of σ2(G) ≥ 4n−10

3
.

We do not yet have sharpness examples for part (i) of Theorem 4.7 when k ≥ 4.
Thus, a question for future work is whether or not m = k+3 in part (i) of Theorem
4.7 can be lowered when k ≥ 4.

Lemma 4.3. Let G be a claw-free graph of order n satisfying σ2(G) ≥ n− 3. Then
for all m ≥ 8, every m-cycle in G is doubly chorded.

Proof. It is shown in [12] that the independence number α(G) in a claw-free graph
satisfies α(G) ≤ 4n

σ2(G)+4
. Thus we have α(G) ≤ 4n

(n−3)+4
< 4n

n
= 4. Let C =

v1v2 . . . vmv1 be a cycle of length m ≥ 8. Then {v1, v3, v5, v7} cannot be an indepen-
dent set, otherwise α(G) < 4 is contradicted. So, there must be at least one edge
among this set of vertices, and any such edge is a chord on C. Similarly, {v2, v4, v6, v8}
cannot be an independent set, and thus must induce at least one edge, making C
doubly chorded.

We now use this lemma to prove a stronger version of Part (i) of Theorem 4.7 for
sufficiently large k ≤ n−5

2
:

Theorem 4.8. Let G be a claw-free graph of order n. Then

(i) If σ2(G) ≥ 4n−2k−5
3

, then G is doubly chorded (k, k + 2)-pancyclic for all 6 ≤
k ≤ n−5

2
.
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(ii) If σ2(G) ≥ n and n ≥ 15, then G is doubly chorded (k, k + 2)-pancyclic for all
k > n−5

2
.

(iii) If σ2(G) ≥ n and n ≥ 5, then G is doubly chorded (k, k + 3)-pancyclic for all
k ≥ 5.

Proof. For part (i), by part (v) of Theorem 4.1, under these conditions G is (k, k+2)-
pancyclic for 6 ≤ k ≤ n−5

2
. Since k ≤ n−5

2
, we have 4n−2k−5

3
≥ n − 3, and thus we

can apply Lemma 4.3, which ensures that every cycle in G of length at least 8 is
doubly chorded. Therefore, G is doubly chorded (k, k + 2)-pancyclic for 6 ≤ k ≤
n−5
2
. Similarly, parts (ii) and (iii) follow from parts (vi) and (vii) of Theorem 4.1

respectively and Lemma 4.3.
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Appendix

In this appendix, we give an example of the steps of Algorithm 1, the algorithm
for forbidden subgraph subcases. We use the example of a graph G �= Cn on n = 6
vertices such that G is K1,3 and Z1-free. As detailed in the proof of Theorem 2.5, it is
known that G must contain a chorded Hamiltonian cycle. Consider the subgraph C
of G that is a chorded Hamiltonian cycle C = v1v2 . . . v6v1. We will use the algorithm
to examine the case when v1v3 is the chord of the Hamiltonian cycle, so the first edge
in the algorithm is v1v3. The algorithm systematically adds and removes edges until
G is claw-free, Z1-free, and does not contain a doubly chorded 4-cycle. Then false
is returned, and we obtain the sharpness example shown in Figure 4. Whenever
an edge is added, we use an indentation to show the steps that belong to the same
subcase, i.e. the subcase determined by choosing one edge of a set of possible edges
that eliminate a certain forbidden subgraph.
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Algorithm Steps:

Add v1v3 to E(G).
No induced claws are found.
The induced Z1 on {v1, v2, v6, v3} is found.
The edge v2v6 is added to eliminate the Z1 on {v1, v2, v6, v3}.

No induced claws are found.
The induced Z1 on {v3, v4, v2, v1} is found.
The edge v2v4 is added to eliminate the Z1 on {v3, v4, v2, v1}.

No induced claws are found.
The induced Z1 on {v2, v4, v1, v6} is found.
The edge v4v1 is added to eliminate the Z1 on {v2, v4, v1, v6}.

A doubly chorded 4-cycle is found on {v3, v2, v1, v4}.
The edge v4v1 is removed.

The edge v4v6 is added to eliminate the Z1 on {v2, v4, v1, v6}.
No induced claws are found.
The induced Z1 on {v4, v3, v5, v2} is found.

The edge v3v5 is added to eliminate the Z1 on {v4, v3, v5, v2}.
No induced claws are found.
The induced Z1 on {v3, v2, v5, v1} is found.
The edge v2v5 is added to eliminate the Z1 on {v3, v2, v5, v1}.

A doubly chorded 4-cycle is found on {v3, v2, v5, v4}
The edge v2v5 is removed.

The edge v1v5 is added to eliminate the Z1 on {v3, v2, v5, v1}.
The conditions have been met and no doubly chorded 4-cycle exists.
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